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SOME RESULTS AND APPLICATIONS ABOUT THE 
VECTOR c-ALGORITHM 

CLAUDE BREZINSKI 

The e-algorithm is a device found by Wynn [7] to accelerate the 
convergence of sequences. It is closely related to the Padé table in 
the following way (Wynn [8]): if we apply the e-algorithm to the 
partial sums of the power series f(x) = ^ i=0 ^%%i then etk — 
fk,n+k(x) where fktn+k(x) is the Padé approximant to f(x) the de
nominator of which is of degree k and the numerator of degree n + k. 
Wynn [9] has also proposed a non-scalar €-algorithm working with 
vectors or matrices or with elements of an associative division algebra 
over the complex numbers. 

There is still no connection between this non-scalar e-algorithm and 
a Padé table because of non-existence of a theory for the non-scalar 
Padé table. Yet I think that two recent papers by Wynn [10], [11] 
are the beginning of such a theory. It is the reason why, in this paper, 
I should like to speak about convergence theorems for the non-scalar 
e-algorithm and give an application of the vector e-algorithm to the 
solution of systems of nonlinear equations. 

The non-scalare-algorithm satisfies the relationship 

with the initial conditions €^J = 0 and €0
(n) = Sn where the Sn are 

non-scalar quantities. The inverse of a vector is defined by z~l = 
zl(z, z) where z denotes the complex conjugate of z and (z, z) is the 
scalar product. Let us first give two results concerning the applica
tion of the non-scalare-algorithm to sequences of matrices. 

THEOREM 1. If Sn = 2fc=o Ak where A is a nonsingular matrix and 
ifl— Ais nonsingular, then 

€2<
n>= ( / - A)"1 Vn. 

This theorem is a generalization of a result of Householder [4] for 
the scalar e-algorithm. 

THEOREM 2. If {Sn} is a sequence of square matrices so that 

Sn+1 - S = (A + £n) • (Sn - S) or Sn+1 - S = (Sn - S) • (A + £n) 
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where A and En are square matrices, with \\A\\ < 1 and limn^aoFn = 0 
then: 

lim €2
(n) = S and lim (€2<

n> - S)(Sn- S)~l = 0. 

This theorem is a generalization of a theorem by Henrici [3]. 
The demonstration is quite the same. If En = 0 Vn then e2

(n) = 
SVn. 

We now give a theorem concerning the application of the non-scalar 
e -algorithm to vectors. 

THEOREM 3. Let {Sn} be a sequence of k dimensional vectors so 
that Sn+1 — S = A(Sn — S) where A is a matrix so that I — A is non-
singular, then€{^ = S Vn. 

A very powerful method for solving systems of nonlinear equations 
has been obtained by Brezinski [1], [2] using the vector e-
algorithm. This method is quadratic without calculating any deriva
tive. If we want to find the solution s of x = F(x) where F is a trans
formation of Rp into itself, we propose the following algorithm: x0 

given 

iteration n \ 

u0 ~ Xn 

uk= F(ufc_!), k = 1, • • -,2p, 
_ (0) xn+l ~ €2p . 

THEOREM 4. If F is Fréchet-differentiable in the neighbourhood of 
s and if I — F'(s) is non singular, then there exists a neighbourhood of 
s so that for each x0 belonging to this neighbourhood the preceding 
algorithm converges at least quadratically to s. 

If we know some supplementary properties of F, we prove:. 

THEOREM 5. If for k > 1, F(x) - s - F'(s) • (x - s) = 0(\\x - s\\K) 

thenxn+l - s= 0(\\xn - s\\K). 

We have the same result with o instead of O. 
This algorithm is the generalization of Steffensen's method for equa

tions and theorem 5 is similar to that given by Ostrowski [5] for 
equations. We notice that the convergence result of theorem 4 does 
not need the convergence of the basic iterations uk = F(wfc_1). 

The application of the previous algorithm to the solution of two 
point nonlinear boundary value problems has been studied by Rieu 
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[6]. The solution of such a problem can be reduced to the solution 
of a system of nonlinear equations after integrating the differential 
system. 

EXAMPLE. 

x'(t) = y(t)-z(t) * ( 0 ) = 1 , 

y'(t) = x*(t) + y(t) t / ( l )= - 4 - e ( 2 - e \ 

z'(t) = x2(t) + z(t) z(l) = - 4 - e(l - e). 

The missing initial conditions are t/(0) = — 1 and z(0) = 0. Starting 
from the initial guess t/(0) = — 25 and z(0) = 35 we obtain: 

iteration y(0) z(0) 

1 -0.99268 0.877(10-2) 
2 -1.00000022 - 0.184(10~6) 
3 -1.00000000065 -0.572(10~9) 

The following iterations give the same result, which is in fact the solu
tion of the discretized problem. The error has the same magnitude as 
the discretization error. It is possible to use the same method for 
solving some partial differential equations of evolution with boundary 
conditions. 
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