
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 4, Number 2, Spring 1974 

THE INTERPOLATION OF PICK FUNCTIONS 
WILLIAM F. DONOGHUE, JR. 

Before stating our version of the Cauchy Interpolation Problem it 
is desirable to recall the definition of the degree of a rational function. 
Let f(z) be a rational function; then, in a known way, f(z) may be 
regarded as a continuous map of the Riemann sphere into itself. This 
mapping has a Brouwer degree, d, which we take to be the degree of 
the rational f(z). Equivalently, if f(z) is presented as the quotient 
of two relatively prime polynomials p(z) and q(z), where d' is the 
algebraic degree of p and d" is the algebraic degree of q then the 
degree of f(z) is given by d = max(d ', d"). Finally, we should note 
that for all but finitely many values of k the function f(z) — A has 
exactly d distinct and finite zeros, and these are simple. If it is known 
that the rational f(z) has degree at most N and that it has at least 
N + 1 zeros, multiplicity included, then f(z) vanishes identically. 

Cauchy Interpolation Problem. Let there be given k distinct inter
polation points on the real and equally many 
non-negative integers vu v2,

 p3, ' ' ', vk a s w e H as N = 5)^=i (vt ~*~ -0 
real numbers f{j where 1 ̂  i == k and O^j^ v{. It is required to 
find a rational function f(z) of degree at most N/2 satisfying the N 
conditions fij\Xi) = fijt In any case that we study, the problem 
will in fact be an interpolation problem: there will be a function F(z), 
usually not rational, so that the data/^ are obtained from Fij)(Xi). 

In the special case when N = k, where no derivatives were con
sidered in the problem, the Cauchy Interpolation Problem was ex
haustively studied by Löwner in a famous paper [2]. The other 
extreme case, where k = 1, corresponds to the determination of 
certain Padé approximations of a function, these approximations being 
on the diagonal or adjacent to the diagonal in the Padé table. 

It is important to note that if f(z) is a solution to the Cauchy 
Interpolation Problem for which the degree of f(z) is strictly smaller 
than N/2 then the solution is unique. Were there another solution 
g(z), the rational function f(z) — g(z) would have degree at most 
N — 1, but would have at least N zeros, since at each interpolation 
point %i there would be a zero of degree v{ + 1. Thus the difference 
would vanish identically. We emphasize that this will always be the 
case when N is odd. It is therefore clear that the Interpolation Problem 
depends significantly on the parity of N. 
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In order to state the useful theorems concerning the Cauchy Inter
polation Problem it is convenient to introduce the concept of the 
divided differences of a function. In view of the fact that we shall be 
concerned almost exclusively with analytic functions, we give a some
what unorthodox definition. Let F(z) be analytic in some region üi> 
and suppose that k0, Ai, A2, ' ' % A* i s a system of £ + 1 not neces
sarily distinct points in 2 \ Let C be a rectifiable curve in th which 
surrounds these points. We then set 

_ 1 _ f F\z) 
[Ao, ku À2, * • S A J - 2ni } c { z _ Xo)(z _ ki){z _ X a ) . . . {z _ ki) dz. 

It is plain to see that this "divided difference" can be evaluated 
by residues and that it will be an algebraic expression in the points 
ki and the values of the function F at those points as well as the values 
of some of the derivatives. Indeed, if we take for the k the points of 
the Cauchy Interpolation Problem, each x{ being taken v{ + 1 times, 
then the resulting difference will involve exactly the data of the 
Cauchy Interpolation Problem. It becomes clear that we could have 
stated that problem in an equivalent way: all possible values of the 
differences [A0, A1? • * *, A£] are prescribed, whenever the set of A's is 
a subset of the N numbers 

[Xi, * i , ' ' *, X2, X2, • • ', X3, X3, * * *, Xk, Xk] 

where each x{ is taken v{ + 1 times. Then it is necessary to find a 
rational function f(z) of degree at most N/2 realizing these dif
ferences. 

Let us suppose that N is even and write N = 2n. Take the set of N 
numbers corresponding to the Cauchy problem and divide these num
bers into two sets of n elements each in any way that is convenient. 
Call the elements of the first set £ b £2, ' ' % £n a n ( i those of the second 
Vu T?2> * ' *> Vn- Now form the matrix of order n: L = 

[€l, Vi] [£l> Vi, V2Ì [ f b Vl, V2, ' ' ', Vn] 

[ f b 2̂> Vl] [£l> &> ^b V2I [£ b &> ^b V2, ' ' \Vn] 

[ fbfe* ' * '>€n>Vl\ [fl>&, ' * ,£n,Vl,V2, ' ' '>Vn] 

Note that the i/'-th element of this matrix is [fb f2, ' ' ,£i>Vi,V2, ' * '>Vj]> 
THEOREM 1. L will be singular or non-singular in a way that de

pends only on the data of the interpolation problem, and inde
pendently of the assignment of the names £ and r)j in that problem. 
When L is non-singular there exist two pairs of real polynomials 
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[°o> To] and [o- «,, T «,] of degree at most n such that all solutions to 
the Cauchy problem occur in the family 

= <T0(Z) + tar^z) 
JAZ) T0(z) + tT„(z) • 

All functions in this family are solutions to the Interpolation Prob
lem save for at most k exceptional solutions where numerator and 
denominator have a common zero at an interpolation point. The cor
responding rational function is then of degree strictly smaller than n 
and is not a solution to the Interpolation Problem. 

Our next theorem does not require that N be even. 

THEOREM 2. A solution to the Cauchy Interpolation Problem exists 
if there exists an integer n with 2n = max vi such that all n by n 
matrices L of the type above formed from data of the problem are 
non-singular, while all such matrices of higher order are singular. 
The solution then is exactly of degree n, but it need not be unique. 

Pick Functions. 
A function <p(£) = U(£) + iV(£) is called a Pick function if it is 

analytic in the upper half-plane and has positive imaginary part. 
Such functions admit a canonical representation, easily derived from 
the Poisson integral representation of the harmonic and positive 
V({). We will have 

where a 1= 0, ß is real and /x a positive Radon measure on the real 
X-axis for which / (X 2 -h l ) - 1 dfi(\) is finite. The representation is 
unique, in fact, putting £ = £ + i , ) 7 we have a = lim^oo V(fl?)/j? 
and ß = Re[^>(i)] while the measure /x may be determined from the 
function in the following way. We consider a monotone increasing 
function fi(k) corresponding to the measure and normalize it so that 
fi(\) = (fi(k + 0) + fi(k — 0))/2. Under these circumstances, then for 
every interval (a, b) 

1 (b 

fi(b) — fx(a) = lim— V(x + vq) dx. 
^-^o IT Ja 

Associated with the open interval (a, b) we have the subclass of 
Pick functions denoted P(a, b)\ these are the Pick functions which 
admit an analytic continuation from the upper half-plane across the 
interval (a, b) into the lower half-plane such that the continuation is 
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by reflection with respect to the real axis. It is not difficult to show 
that <p(£) is in P(a, b) if and only if the corresponding measure \L puts 
no mass in the interval (a, b). A function F(z) is a series of Stieltjes if 
and only if — F(z) belongs to P(0, oo ). If a rational function <p(Q 
belongs to P(a, b) then its poles are simple, fall on the real axis outside 
the interval (a, b) and have negative residues. 

In this paper we will suppose that a Pick function <p(£) is given and 
that it belongs to the class P(a, b); we seek to approximate the function 
with solutions to the Cauchy Interpolation Problem associated with 
the given function where the interpolation points x{ are all within the 
open interval. It is easier to describe the situation if we suppose, in 
addition, that <p is not a rational function. 

THEOREM 3. The square matrices L associated with the interpolation 
are non-singular. 

While we avoid giving the proofs of our theorems, it is worth
while to indicate its nature here. Consider the functions f(\) and 
gj(k) where ftk)-1 = (A - ^)(X - i2) • • • (X - €,) and g/X)"1 = 
(X — Tjj) (X — %) • • • (X — rij). Using the canonical representation of 
<p, at least under the additional hypothesis that a = 0, we find 

Uj = [€i, ti, • • ; ti, vu ih, • • ;vjì = J/A)&W «*/*(*) 

= (A&) 

the inner product being taken in the L2-space associated with the 
measure fi. Thus the matrix L^ is a sort of Gram's matrix, and as in 
[1], it is easy to show that it is non-singular when the support of 
the measure is not a finite set. 

The important theorem is essentially due to Loewner [1, 2]. 

THEOREM 4. Let N be odd and <pN the corresponding (unique) 
interpolation for <p; then <pN is also in P(a, b). When N is even many of 
the interpolating functions are in the Pick class, but not all 

In view of certain well-known compactness properties for the Pick 
class and the class P(a, b) and because of the form of the approximating 
functions when N is even, the successive approximations to (p display 
the usual limit-point and limit circle behavior associated with the 
moment problem as well as with the Sturm-Liouville problem. How
ever, in almost every case, only the limit-point case occurs and the 
approximating functions converge to <p(£) uniformly on compact sub
sets of the union of the upper half-plane, the lower half-plane and the 
interval (a, b). The convergence is generally extremely rapid and the 
approximations oscillate about the limiting function in certain inter-
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vais. We refer to the paper of M. F. Barnsley in these proceedings for 
further detail. 
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