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ON THE APPROXIMATION OF INVARIANT MEASURES 
FOR CONTINUED FRACTIONS* 

M . S. WATERMAN 

ABSTRACT. Kuzmin's theorem gives a sequence of functions 
which converge to the density of the invariant measure of ri­
dimensionai continued fractions. The convergence is uniform 
and geometric. This paper gives bounds on the rate of con­
vergence for two natural approximations to the sequence of 
functions given by Kuzmin's theorem. 

1. Introduction. The metric theory of continued fractions, for n > 1, 
does not at this time include the form of the absolutely continuous in­
variant measure for the associated shift transformation. Numerical as 
well as theoretical results have been obtained for this measure. 

In [1] some ergodic computations were performed in order to 
approximate the invariant measure for Jacobi's algorithm (the 2-dimen-
sional continued fraction). Although an approximation was obtained, 
certain measure theoretic difficulties made an estimation of error in the 
approximation impossible. Thus it is of interest to find a technique 
where an estimate of the error is possible. 

After Schweiger proved the existence of the invariant measure, 
Kuzmin's theorem was proved for n > 1 in [6]. Kuzmin's theorem, 
generalized to n-dimensions, gives a sequence of approximates to the 
density of the invariant measure which converges uniformly and geo­
metrically. Many metric results, such as a geometric rate of mixing, 
follow from this theorem. 

The purpose of this paper is to give bounds on the rate of conver­
gence of some natural approximations to the sequence of functions in 
Kuzmin's theorem. The evaluation of these functions involves 
summing over a countable set. To illustrate our techniques in a simpler 
setting and to provide some bounds for Gauss' measure, we deal with 
the one-dimensional case first. It should be pointed out that each of 
our approximation theorems depends on the measure of sets whose 
continued fraction expansions have bounded partial quotients. 
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2. Gauss' Measure. In this section we consider one-dimensional 
continued fractions. For x G (0,1) and [ ] denoting the greatest 
integer function, define 

(1) al(x)= [ i ] , 

The integers ^(x) , a2(x), • • • are the partial quotients in the continued 
fraction expansion of x. We define the vth order cylinder generated by 
x to be B„(x) = {y : a^y) = a^x), i = 1, 2, • • -, v}. We will use [ai9 a2, 
• • •] to denote the finite or infinite continued fraction IIax + l/a2 

+ • • \ If JP^X) = 0, then the continued fraction expansion of x is 
finite. Note that T maps (0,1) into (0,1). The mapping T does not 
preserve Lebesgue measure X, but does preserve Gauss' measure /A. 
This measure fi is defined by 

w ^v ; log 2 U 1 + x 

Gauss found that k{a : T^a) < x} has the limiting value, as v—* oo ? 

log2(l -I- x). It is easy to see that /x(0, x) = log2(l + x). This result can 
be obtained from the individual ergodic theorem. Gauss posed the 
problem of estimating the difference between the approximate and 
limiting values. Kuzmin in 1928 solved this problem by a consideration 
of the sequence of functions defined in the next theorem from [3]. 

THEOREM 1. Definedv recursively by 

(3) „„.„-^(-L.)-^, ,*,. 

where^r0 satisfies 0 < m S * 0 W = M and \¥0(x) - >Mî/)l = N\x ~ Î/I-
Then we have 

(4) K» - ( Ï+WÏ I * M "-
where a= J0 ^o(t) dt and b are fixed constants and a(v) = 
ess supo <t < 

The motivation for this theorem is that h(x) is the density of the 
invariant measure for T if and only if h(x) satisfies Kuzmin's equation: 
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*e>-s*(rh)(Thr 
It can be shown ( [4] ) that <r(v) < 3 (2/(3 + VB))V. 

Let Q = {1, 2, • • •}. A useful form of (3) is contained in the follow­
ing lemma from [3]. 

LEMMA 1. If^v(x) is defined as in Theorem 1, then 

(5) ¥„(*)= 2*o(jK*))IJ&'(*)|, 

where fv(x) = [alya2, • • •, a* + x] /or eac/i a = (AJ, a2> ' ' *> a^) ̂  Q"« 

For the remainder of this section we take ^Q{X) = 1, so that (5) be­
comes 

*,(*) = 2 tf'(*)|. 

Applying the chain rule for derivatives to fv ' (oc), we obtain 

Since Ç is infinite, it is of some interest to approximate ^v(x) by 
summing (6) over a selected finite subset of Qv. We first consider 

(7) \N(x)= S I//WI-
{1,2,--,N}" 

The next theorem gives bounds on the rate of convergence of "9V. 

THEOREM 2. IfVv(x) and \N(x) are defined as in (6) and (7), 

Ì(1-(1-3(NT1))'" ,)<*'('>-^W 

<20-0-^)('-i)'-')-
PROOF. Let ZN" = {1,2, • • -, 2V}"and fN" = Ç " ~ 1N". Then 

¥„(*)-4.N(*) = S li'(x)|. 

According to Renyi [4] , we have 
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sup*!//(*)I < „ 
inf;i//(x)| - • 

Thus 

\fv '(x)I g sup\fv'(x)\^2 inf|/,'(*)| g 2 £ |/„ '(x)| dx = 2x(B„), 

and 

| / ' ( x ) | ^ i n f | / / ( x ) | i ^ s u p | j ; ' ( x ) | ^ i £ | / / (x) |dx = ^X(fll). 

We now conclude 

(9) | S X(ft) ^ ¥„<*) - V(x) ^ 2 S X(ft). 
lN lN 

To bound ^7- - X(B„) we follow Khintchine [3, p. 70], who derives 
a lower bound. Let ßt(fc) be a cylinder of order v such that a,, = k and 
ftWCBUx. Then [3, p. 69] 

and, noting 

«*-j ( » - £ ) < I/«*) < »Mi -(üsVir)) • 
This argument can be iterated, as in Khintchine, to obtain 

*d i y-1 

- \ 3(N+ 1) / 

U s i n g 2 v X ( f t ) = 1 - 2 i N ' X(ft) and (9), we obtain (8). 
Clearly the upper bound of (8) is a decreasing function of N. If 

v — 1 < N, the binomial expansion gives 
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%(x) - AN(x) < 2 vIN. 

To make this approximation error equal ba(v) of Theorem 1, we need 

3 + V5 \ . . l _ _2^ 
N ' 

o r
 N _ 2 . . . . . . . r , . _ / 3 + VB 

3b exp [ - log ( - ^ ) v ] 

= ̂ «p[,og(i^),] . 
Then the number of points summed over in \N(x) is 

(ffo,exp[log(^±_^_),]y-

COROLLARY 1. If N is fixed, \imv^mAv^(x) = 0. 

PROOF. By the proof of Theorem 1, 

*"<*>< K 1 - w i r )"~: 

In order to find another approximation, we note that 

Therefore the "best" a = (ax, • • -, a j G (> to sum over are those a 
which have the smallest product. Accordingly we let 

do) a~(x)= s n i/i'wi-
aGQv i = l 

« = 1 

THEOREM 3. If^v(x) and Bv
N(x) are defined as above, then 

(ii) %(x) - w(x) < ^ E M r 1 

PROOF. 

N Ä »! 

%(x) - ftw(x) - s n ( - x i — 1 — T T )2 

na.; 
iGQv 
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The required bound for the last quantity is found in Khintchine [3, 
p. 75]. 

The next corollary makes further use of Khintchine's results. 

COROLLARY 2. Let N = eAv where A > 1 satisfies A — log A — log 2 
- 1 > 0. Then 

(12) ¥„(*) - B»(x) < (V277-)-1 V?C-»'(A-logA-log2-l)# 

PROOF. See Khintchine [3, p. 77]. 

3. The Jacobi-Perron Algorithm. Next we consider the n-dimen-
sional continued fraction (the Jacobi-Perron algorithm) where n ^ 2. 
Most of the work of this section is analogous with that of section 2, 
although somewhat harder to accomplish. Identical symbols will be 
used in these sections and similar calculations and reasonings will 
be utilized. We now define the Jacobi-Perron algorithm. Let 
x G (0, l)n and [ ] denote the greatest integer function. Define 

n*)-(±-[*]A-[*].--A-[±] ) , 
\Xi L %i J xY L %i J %i L Xi J / 

• " • « - ( [ * ] • [ * ] • • • • • [ £ ] ) • 

The expansion of a.a. x G (0, l )n is accomplished by 

x = ]imF(a<l\x) + F(a<2>(x) + • • • + F(a<?\x)) • • •)), 

where F(x) = (Ux^xJXn, • • sv- i /**) -
The invariant measure for T, which is absolutely continuous with 

respect to Lebesgue measure A., is known to exist but has not been 
found yet. Therefore a Kuzmin theorem giving a uniform rate of ap­
proximation to p(x), the density of this measure, is of some importance. 
This theorem is stated next [6]. The symbol Jg denotes the Jacobian 
of the function g. 

THEOREM 4. The set (0, l)n is partitioned in n\ simplices Ai defined 
by the intersection of the sets {y E (0, l)n : y$ < yj+h}> Let £iv = 
{k = (k^\ • - -, JfcM) : T'B(k) D AJ. Define^ recursively by 

(14) <P„(x)= S *Âfk(x))\Jfk(x)\> xGAi, 
kG£i,i 
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where fk(x)=F(x+k) and 0 < m g %(x) g M, |*0(«) " *o(»)l 
^ N\\x - y\\. Then 

(15) | * ,W - ap(x)\ < bv(p), 

where p is the density of the invariant measure for T,a — Jty0 dk and 
b are constants, and <r(v) = ess suptdiam B„(t). 

R. Fischer [2] has shown that a(v) g Vn( l - l/(n + l)n)"/n. 
For the motivation of Theorem 4 we consider n = 2. Then p(x) is the 
density of the invariant measure if and only if it satisfies 

p(*) = 2 S P ( — T — > , ) 7—T—TT > 
m i l 0S£ Sm V m + *2 m + X2 / (m + X2)3 

if x (E Aj = {x : 0 < %i < 1, xx < x2 < 1}, 

and 

P * À i osi <« P Vm -h x2 'm + x2 / (m + x2)3 ' 

i f x G A 2 = { x : 0 < x x < 1 , 0 < x 2 g x 1 } . 

A useful form of (14) is contained in the next lemma from [6]. 

LEMMA 2. lf^v(x) is defined as in Theorem 4, then 

(16) %+l(x) = S V0(fi(x))\Jfy (x)\, x G A, 

where fp(x) = F(fc<»> + F(fe<2> + • • • + F(fc<"> + *) • • •))• 

Again we t a k e ^ 0
 = 1 so that (16) becomes 

*»(*)= E |//„(x)|, x G A , . 

The set £i>v is infinite for each i so that we define 

A*N(x) = S l / / » l , x G A*, 

where /{^ = {k G e*,, : fcn «» g N for j = 1,2, • • -, v}. 

THEOREM 5. Iftyv(x) and \N(x) are defined as above, we have 

c - ' ( i - ( i - ^ y ) " 1 ) <*„(*) - AN(x) 
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Remark. The values of the constants in (17) are C = (1 + 2n)n + 1, 
L = (n!)-1, yx = (n\(n - 1)! (2n + l)n + l(n + l)n + 1)~1 , and y2 = 
n!(2n + l)n + l2n~l. 

PROOF. By an analysis similar to that in Theorem 2 (see [7] ), 

C-W^l/MI^CL-W). 
Let@(fcn

(r)) be the collection of order v cylinders (with n-th corrdinate 
of a(v) equal to k{v)) which are contained in a certain cylinder Bv_i. 
Schweiger [5, p. 78] has shown that 

W ( W <\e(k^MBv_l) < y2l(kn^. 
Summing over kn

iv) § N + 1, we obtain as in Theorem 2, 

«B,.,)(i-^)s 2 «fc is^ i t i - i i ) . 

Noting that \{x : an
{l]{x) ^ N} = 1 - 1/(N + 1), we can arrive at (17). 

COROLLARY 3. If N is fixed, l in\^ ooA,N(*) = 0. 

PROOF. See the proofs of Corollary 1 and Theorem 5. 

Our second approximation is 

1 

The results make use of some work of Schweiger. 

THEOREM 6. Iföv(x) and Bv
N(x) are defined as above, then 

(18) tt)-S«W<o'ïM. 

PROOF. See theorem 3 and [5, p. 84]. 

COROLLARY 4. Let N = eAv where A > 1 satisfies A — log A— n 
log 2 - 1 > 0. Then 

(19) Vv - B^(X) < (VS?)- 1 V^ß-^-logA-nlog2-l)> 

PROOF. See corollary 2 and [5, p. 85]. 

4. Conclusion. In section 2 and 3 it can be seen that our bounds on 
the rates of convergence are slightly larger for n > 1. In neither case 
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do we have cause for optimism. Corollaries 2 and 4 give the smallest 
sets to sum over for good approximation. 

If N = eAv and n = 1, we sum over the set {a G Qv ''\\vi=\ a{ ̂  N 
— 1}. The number of points in this set is of the same order as 
/ u n r § j v n à i which is of the same order as N\ogN= AveAv. Thus 
we have shown that Kuzmin's theorem is not too useful for the numeri­
cal approximation of invariant measures. 
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