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ABSTRACT. Let G be a Lie group with Lie algebra g and 
let X and Y be elements of g. If every element of G can be 
written as a product of elements taken alternately from exp(tX) 
and exp(fy), X and Y are said to generate G. A classification 
will be obtained here of all Lie subgroups of the affine group 
acting on the plane; for each such group, necessary and suf­
ficient conditions will be found that a pair of elements in the 
Lie algebra generate the group. All but three subgroups of the 
affine group can be so generated. 

I. Introduction. The real affine group A(2) acting on the plane is 
the set of all transformations from R2 to R2 of the form v —> Av + i, 
where A G GL(2, R) and £ G R2. From now on denote such a trans­
formation by <A,£). Then (A,I) ° (B, m) = (AB,H + Am). The 
Lie algebra a(2) of A(2) consists of all <A,£) with A G M2(R) and 
£ G R2; [<A,£>, (B, m>] = (AB - RA, Am - » > . We shall deter­
mine all Lie subalgebras of a(2) up to conjugacy, and thereby all con­
nected Lie subgroups of A(2) up to conjugacy. 

A connected Lie group G is generated by a pair of one-parameter 
subgroups if every element of G can be written as a finite product of 
elements chosen alternately from the two one-parameter subgroups. 
This happens just in case the Lie algebra of G is generated by the cor­
responding pair of infinitesimal transformations, because the set of all 
such finite products is an arcwise connected subgroup of G and so a 
Lie subgroup by Yamabe's theorem [4]. It is known that all connected 
subgroups of the Moebius group w = (az + ß)l(vz + £), a, ß, v, and £ 
complex, can be generated by an appropriate pair of infinitesimal 
transformations with the exception of the group w = az + ß, a > 0 
[2]. This group is also a subgroup of A(2); we will show that all sub­
groups of A(2), with the exception of this group and two others, can be 
generated by a suitable pair of infinitesimal transformations. 
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II. Subalgebras of M2(R). 

THEOREM 1. Let g be a subalgebra ofM2(R). Then g is conjugate to 
precisely one of the following: 

(1) {0) (2) « ( J °)where|A|SL 

(3 ) R ( i - ; ) w h , „ 0 S » ( 4 ) R ( 0 1) 

< 5 ) R ( ° ' } w{( ; I)} 

<-{(Ô : » m { ( : - : ) } 

<9'{(^ft + i )« )} w h e r e x G R (io){(° * ) } 
( 1 1 > * < 2 ' R ) mum 

PROOF. The rational canonical form theorem implies that each one-
dimensional g is conjugate to an algebra listed in (2) through (5). 

LEMMA. If g C M2(R) is isomorphic to R ffi R, g contains the iden­
tity matrix L 

PROOF. Suppose not and let e and / generate g. Choose h G M2(R) 
so {e,fl,h} is a basis for M2(R). Then sfc(2, R) = [M2(R\M2(R)] 
is generated by [e, h] and [/, ft], although it is three dimensional. 

Assume that g is isomorphic to R © R and choose e so e and I gen­
erate g; after suitable conjugation we may suppose that e is one of the 
matrices listed in (2) through (5); after subtracting a suitable multiple of 
I, we may suppose that e is one of (o o)> (î o)> (o o)- Th u s g *s conjugate 
to 6, 7, or 8; no two of these algebras are conjugate because every matrix 
in 6 is diagonalizable and every matrix in 7 has at least one real eigen­
value. 

If g is two dimensional and non-abelian, g has a basis {e,f} so 
[e,f] = e. Notice that t r e = 0 ; after suitable conjugation, then, 
e=(o - i ) , (°i _o), or (° '). Let f = (a

c
 b

d); [e,f] is then (_°2c^), 
rì-d H% o r (o "-e); *h i s can equal e only if e = (g ̂ a n d / = (» > + 1), 
so g is conjugate to an algebra listed in (9). Distinct ks give distinct 
conjugacy classes of algebras, for if g is conjugate to { (o° (X+i)0) }> g c o n _ 

tains an element with two distinct eigenvalues one unit apart, and these 
eigenvalues must be A and A + 1. 
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Suppose dim g = 3 and I $ g. Then g 0 RI - M2(fl) and sH(2, R) 
= [M2(R), M2(R)] C [g, g] C g, so A(2, R) = g. 

Finally suppose dim g = 3 and J G g. Then «£(2, R) fi g is a two 
dimensional Lie algebra and so conjugate to one of 6, 7, 8, 9; since any 
algebra conjugate to s&(2, R) D g is contained in $£(2, R), sfc(2, R) fi g is 
conjugate to (~g/2 J^) and g is conjugate to 10. 

THEOREM 2. Every connected Lie subgroup ofGL(2, R) is conjugate to 
precisely one of the following: 

(1) {') (2) { ( o ' . ) } » k ™ W S l 

where 0 § \ 

<*>Ki')} «•>{(; 2)1 •>*»>•} 

m {«;)!•>•} m M r "£;)i «>»} 

where X G R 

<">{(: S)i"-*-i} < i2>{Oi«^>°}-
PROOF. An immediate consequence of Theorem 1. 

III. Subalgebras of a(2). Let g be a subalgebra of a(2); define g0 = 
{A G M2(R) | there exists £ G R2 such that < A , £ ) G g } and V = 
{£ G R2 | <0,£) G g}. Then g0 is a subalgebra of M2(R) and V is a 
subspace of R2; g0(V) C V because [<A,£>, <0, m)] = (0, Am>. The 
following sequence is exact: 

O ^ V ^ g ^ g o ^ O 

Notice that conjugation of (A,£) G a(2) by (B,m) G A(2) yields 
(BAB"1, B £ - BAB"1™). In particular g0 becomes B g o B 1 and V 
becomes BV. 
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THEOREM 3. The pair {g0, V} is conjugate to precisely one of the 
following: 

(a) {g0, {0}} where g0 is one of the algebras listed in Theorem 1 
(b) {g0, R

2} where g0 is one of the algebras listed in Theorem 1 
(c) {go,R(o)} where g0 is one of {0}, R(y

0 °), R^_\), R(° J), 

R(o i),{(S*)M(o (A+l)a)}> {(o a)h {(o d)} 

(d) {R(J x°), R(J)} or {R(J »), R(J)} for |x| < 1. 

PROOF. We can assume that g0 is one of the algebras listed in 
Theorem 1. The condition g0( V) C V puts no restriction on V if dim V 
= 0 or 2; when dim V = 1, V can be arbitrary if g = {0} or R(Q l), V = 
R(l) or R(?) if g = R ( J ° ) - l ^ X < l or {(« °U, V=R(jJ) if 
g=R(o°«i), Rill), {(èû

(x + i)b)}. {(S.)}, or {(«*)}, and other-
wise no one-dimensional V will work. When g0 = {0} or R(0 {), 
Bg0B_ 1 = go f° r a ^ B; aPPtymg a n appropriate B to V we can assume 
V=R(o1). If g o = { ( o £ ) } or «(o1 .?), O g o ^ - ^ g o and 
(î o)R(o) = H(?); thus V can be taken to be H(J). If go = R(o x) f° r 

|X| < 1 and Bg0B_ 1 = go, B = (o 2) so R(£) and R(?) are not con­
jugate. 

Choose a subspace Vx of R2 so V © Vx = R2. Whenever A G g0, 
there is a unique <p(A) G Vx so (A, <p(A))G g. Clearly g = {(A, <p(A) 
+ £ > | A G g o , £ £ V } . 

Notice that <p : g0 —> Vx is linear. Let P : R2 —» Vx be the obvious 
projection map. Then <p([A, B] ) = ?{Aip(B) — Bip(A)} since 
[ <A, *>(A)>, (B, <p(B)>] = < [A, B], Ap(B) - B<p{A)). 

Conjugation of g by (J, m) leaves g0 and V fixed and converts 
(A>(p(A)) to (A,<p(A) — Am). Hence we may replace <p(A) by 
P{(p(A) — Am) and obtain a conjugate algebra. 

If go = {0}, <p = 0. If go = Re where e = O 0 < |X| ^ 1, ft -,1) 
0 S X or (Q J), m can be found so <p(e) = em since det e ^ 0. Thus 
after conjugation <p = 0. If I G go we can suppose <p(I) = 0 since / is 
nonsingular; whenever A G g0, 0 = <?([/, A] ) = P{<p(A)} = (p(A), so 
<p = 0. If go = 5£(2, R), <p = 0 unless V = {0} and Vl = R2. In this 
case let e = (o _°i), / = (So) , g = (î o); a s u s u a l w e m a y 
assume <p(e) = 0. Then 2<p(/) = <p[e,f] = (0 o)<p(f), so 
< f ) = 0. Similarly -2? (g ) = *>[e, g] = « _?Mg), so <p(g) = 0 
and <p = 0. If go = {(oV+i)«) }> let e = « x°+i)> / = (8 J). Sup-
pose A / 0, - 1 , or - 2 . Then det(0

x
 x + i ) / ° and we can suppose 

<p(e) = 0; -<p(f) = <p[e,f]=P{(i;J1Mf)}- If V = { 0 } and 
<P(f) = (Si)', (fêî&i) = 0 so Vl = t>2 = 0 and <p = 0. If V = R(l

0) 
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let V, = R(?) and <p{f) = (g); then - (g ) = ((Jl)v) and v = 0 so 
<p = 0. In short, <p can be taken to be zero unless g0 = R(° J), R(0 0)> 
{(o a)}> {(o o)}> o r {(o° a)}- The following five lemmas complete 
the classification. 

LEMMA 1. Let g0 = R(<} §)• If V = R(i) o r R 2 > <P c a n ^ token to 
he zero. IfV = {0} or R(&), <p(i §) can be taken tobe 0 or (Ç). 

PROOF. If Rg0R_1 = go, R = (o d); s u c n a R preserves all possible 
V. Conjugation of <(J 8), ¥>W 8)> by ((a

0 °d),m) yields <(J £); 
(8 dV(<5 o) ~~ ((5 o)m)- Clearly a, d, and m can be chosen to make 
the second part of this expression equal 0 or (?). We are interested in 
the projection of this term on Vx; since Vx = R2, R(?), R(0), and {0} 
when V = {0}, R(o), R(?), and R2, the lemma follows. 

LEMMA 2. Let g0 = R(o o)- If V = R2, <p = 0. If V = {0} or 

fl(o)> <p(o o) c a n be taken to be 0 or (?). 

PROOF. If Rg0R - 1 = go, R = (o d); such a R preserves all possible 
V. b Conjugation of ((U), <P(°0 o)> ty <(S $),»»> yields <(0°

 a>%), 
(o d)<P(o o) — (o alo)m)- Clearly a= d and m can be chosen to 
make the second part of this expression equal 0 or (J). 

LEMMA 3. Let g0 = {($ b
a)}. IfV= R(&) or R2, <p can be taken to 

be zero. IfV= {0}, <p(% b
a) can be taken tobe 0 or Q . 

PROOF. Let e = (2 Ó), / = ( 8 î ) , «»(e) = ß ) , *>(/) = ( ^ ) . 
If V = { 0 } , ß ) = ?(*) = * [ * / ] = (8 J) ( ï i ) - ( 8 ï ) « i ) = 
(-ÏJ), so »! = w2 and u2 = 0. If V = R(<}), let Vx = R(?); then Vl = 
u>, = 0 and (_»,)= *>(«) = ? [ * » / ! = P{(-3)} = (-8,), so Ü2 

= 0. 
If Bg0B_ 1 = go, B = (S d); such a B preserves all possible V. Con­

jugation of (e, <p(e)) and <f,<p(f)) by <(Sd),m) yields 
<(o° t ) . (S dMe) - (o % » and <(0° %d), ß * M / ) " 
(o h[d)m). If V = R(o), we are only interested in the projection of 
the second parts of these expressions on R(?); since <p(e) = 0, the pro­
jection of (o d)<p(e) — (o a,o)m is automatically zero; clearly a— d, 
b = 0, and m can be chosen to make the projection of (Q d)<P(f) 
— (o ^ m vanish. If V = {0}, let <p be the conjugate of <p; 

«•>-M! fH{(S)(ì) 
_ / 0 a/d \ / mt \ l _ / dvl — m2 \ 

VO O / l f f l j / j l 0 / ' 
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_ / 0 fo/d \ / " i i \ _ / bvl - bldm2\= I aw1 \ 
\ 0 l/\m2/ \ o / U t ) , - m2 / ' 

Clearly a, d, and m2 can be chosen to make <p(e) = 0 and <p(f) either 
Oor(J). 

LEMMA 4, Let g0 = {(J5 o)}- If V = {0} or R2, <p can be taken to 
be zero. IfV= fl(£), <p(% $) can be taken to be 0 or (°). 

PROOF. Let e = (° J), / = 0 , *(*) = &) , ? ( / ) = (",)• If 

V = { 0 } , - $ ) = - ? ( * ) = ¥>[*,/] =(o°o) ( " i ) - ( Ò S ) & ) = 
( " V 1 ) . s o tt>2 = t>2 = 0. Conjugation by <J, ("•)) converts (e,<p(e)) 
and (f,(f(f)) to (e, 0) and </, 0), so <p can be taken to be zero. 

If V = R(0), let Vi = R(Ç); then 0 l = u^ = 0 and -(„") = <p[e,f] 
= P{0?)} = 0, so o2 = 0. If BgoB-1 = go, B = (S. a) • Conjugation of 
(e, 0) and </, *(f)> by <(g J), P J ) yields <(0° f ), - ( » %«)("')> 
and( (^ -hla

0) Cobd) U 0
2 ) " ( 0

 _bo) (£")>; we are only interested 
in the projection of the second parts of these expressions on Rtf), 
so <p(e) = 0, tp(f) = (dioj- Clearly d can be chosen so !p(f) = 0 or 

(?)• 

LEMMA 5. Let g0 = {(2
0
 b

a)}. If V = R2, <p is zero. If V = {0} or 
B.(<J)> ^ t) can be taken to be 0 or (g). 

PROOF. Let e = (o Ò), / = (o i). Since / is non-singular, <p(f) 
can be taken to be zero; let <p(e) = ("j). If V = {0}, — (Vt) = —<p(e) = 
<p[e,f] = - ( 8 ?) fö) = f-%1), so U l = 0. If V = Bu), let V t = 
R(?); then 0 l = 0. 

If BgoB-1 = go, B = (S 5). Conjugation of <<?,?(*)> and </, 0) by 
(Cod), (%)) yields respectively 

/ / 0 a l d \ / a b \ / 0 \ _ / 0 aid \ / m i \ \ 
\ \ 0 0 / ' \ 0 d / \ o 2 / \ 0 0 / \ m 2 / / ' 

<(o2 -"?) . - ( ; ^ x : ; ) > 
v2 I \ ü ü / \ m2 

- t y d \ / 2 - b / d 
m2 

I f V = {0}, 

- m2 

?(e) = I h I > Kf) 
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Clearly a, b, d, mx, and m2 can be chosen so <p(e) — 0 or (?) and <p(f) 
= 0. If V = R(o)> w e a r e onty interested in the projections of the 
above expressions on R(?), so <p(e) = («i*ia)v2) and £ ( / ) = ((bd/a)v2-m2); 
clearly a, fo, d, and m2 can be chosen so <p(e) = 0 or (?) and <p(f) = 0. 

Combining the above results, we obtain: 

THEOREM 4. Let g be a subalgebra ofa(2). Then g is conjugate to 
precisely one of the following: 

A. {(A, 0) | A G go} or {(A,£) | A G g0,£ G R2} where g0 is ora? of 
the following 

1. {0} 

3. R (* ~ * ) w h e r e O S \ 

* « (J J) 
* {(ô ;)} 
9 Uka h 

\ VO (A + l)c 
11. sfc(2,R) 

) } where A G R 

* » ( î 
4 . R ( ° 

- {(; 

* {(: 

">• {(Ô 
i o Ti/f / n \ 

) where |X| â 1 

i) 
in 
-in 
in 

B. {< A, £> | A G go, £ G V} where {g0, V} is one of 

«.».«(J) R . ( j ; ) . « ( i ) 
where |X| = 1 

* « ( î x ° ) - « ( î ) ^ « ( . ° J ) . « ( Ì ) 
where |X| < 1 

«•«(J ì ) -«( ì ) * {(;»°)}-»(î) 

«• { ( ;S ) } -« ( ì ) wherek£R 
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C. 

{<(;!)• o> 
{<(oo')C)> 

{<(ï : ) •«)> 
{<(.* ;).(!)> 

« ( ; ! ) • ( : ) > 

{<(.° .-)•(:)) 

{<(óo).C)> 

« e :)•(!)> 

| rER } 

1 r G R } 
L , S £ R } 

LÊR} 

M G R ) 

f.sERJ 

r,s,tG.R.\ 

r,s,tGR\ 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

THEOREM 5. Let G be a connected Lie subgroup of A(2). Then G 
is conjugate to precisely one of the following: 

A. {(A, 0) | A E G0} or {(A, I) \ A E G0, l E R2} where G0 is one 
of the following, 

1. {/} 

3. {e** ( 
cos t — sin 1 
sin t cos ; 

where X = 0 

7. 

9. 

11. 

J)} 
Wïi')f° 
{(lì) !•>•} 

{( 

where X 

a b\ 

c d) 

a> 

R 

ad — be = 1 > 

{(ÔeOh^WSl 

{(ìl')} 

{ ( î 2 ) !•>*»><>} 
{ /cos t —sint\ I ^ 

a ( • * *) \ a > 0 r 
\smt cost/ I J 

10. { ( ;J ) |«>0,d>o} 
i2- (CS) k-^°} 

8. 
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B. {( A, £> | A G G0, £ E V} where {G0, V} is one of 

13. </>,n(J) 14. { ( * " , ) } , R ( J ) w h e , e W S l 

where |X| < 1 

- { - C D } "(J) 
18. { ( 0 ° ° ) | . > M > 0 } . « ( i ) 

« {(lì) l '>"}-«(ì) 
^ { ( £ * * ' ) I 0 > 0 } . R ( J ) - " e r e » e R 

21. {(J ») | .>M>0},«(J) 

M<(? î).(ï)> M«} 
M<(Ji')-(?)> I««} 
* {<(i ; M ; ) > i ' .^R } 

*{<(? ?)•(:)> I — } 
«•{<(Ji')-(:)> l ^ « } 
28- {<(o :)•(:)> h » 6 « } 

IV. Generation of subalgebras of M2(R) by pairs of infinitesimal 
transformations. 

THEOREM 6. Let X, Y G M2(R). 
a. If X and Y have no common complex eigenvector and tr X ^ 0 

or tr Y ^ 0, X and Y generate M2(R) 
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b. IfX and Y have no common complex eigenvector and tr X = tr Y 
= 0, X and Y generate sSL(2, R) 

c. IfX and Y have a common complex eigenvector and X, Y, [X, Y] 
are linearly independent, X and Y generate a subalgebra conjugate to 
{(8 S)} 

d. Otherwise X and Y generate a subalgebra of dimension ^ 2 
e. All subalgebras ofM2(R) can be generated by appropriate X and 

Y. 

PROOF. If g is an algebra listed in Theorem 1 other than s£(2, R) and 
M2(R), there is a complex vector v such that Av = kv for all A G g. 
Consequently if X and Y have no common complex eigenvector, they 
generate a subalgebra conjugate to s£(2, R) or M2(R). But both of 
these subalgebras are self-conjugate. The rest of the theorem follows 
immediately. 

REMARK. If g is a subalgebra of M2(R) and X and Y belong to g, 
the above theorem gives a satisfactory necessary and sufficient condi­
tion that X and Y generate g, since the generation problem is trivial 
when dim g = 2. 

V. Generation of subalgebras of a (2) by pairs of infinitesimal trans­
formations. Let g be a subalgebra of a(2), X and Y elements of g. We 
seek a simple necessary and sufficient condition that X and Y generate 
g. The problem is trivial when dim g ^ 2; if dim g = 3, X and Y gen­
erate g just in case X, Y, and [X, Y] are linearly independent. When 
g —• go is an isomorphism, the problem was solved in the previous 
section. Referring to Theorem 4, we are left with algebras 6 through 
12 when V= R2 and 21. 

THEOREM 7. Let g = {(A,l) \ A G g0, l G R2} where g0 = R(\ ~l) 
O ^ A , {(l ~b

a)}, A(2,R), or M2(R). Let X = <A,£> and Y = (B,m) 
belong to g. Then X and Y generate g if and only if 

(1) A and B generate g0 

(2) The equations Av = I and Bv = m cannot be simultaneously 
solved for v; equivalently A is nonsingular and m / BA~ ll or B is non-
singular and I ^ AB~lm or A and B are singular and one of I (f 
range A,mtfz range B. 

Moreover, such a pair always exists. 

PROOF. The first condition is obviously necessary. If v satisfies the 
second condition, conjugation of X and Y by (I,v) produces (A, 0) 
and (B, 0), so X and Y generate a subalgebra conjugate to 
{ < A , 0 ) | A G g o } . 

Conversely, suppose 1 and 2 hold; then X and Y generate a sub-



GENERATING SUBGROUPS OF THE AFFINE GROUP 129 

algebra g such that g0 = go- If V = R2, g = g; otherwise V = {0} by 
Theorem 3. Then g is conjugate to {(A, 0) | A £ g0} by Theorem 4. 
Let (C, w) £ A ( 2 ) induce this conjugation; then X and Y become 
{CAC-\Cl - CAC-lw) and {CBC~\Cm - CBC~lw), so CI -
CAC-lw = 0, Cm - CBClw = 0; since C is nonsingular, A(C~lw) 
= i,B(C~lw) = m. 

If A is nonsingular, the vector v obviously exists just in case m = 
BA~lv. If A and B generate g0 and both are singular, g0 must be 
s£(2, R) or M2(R), so A and B must have rank 1 and Ker A D Ker B = 
{0}. Suppose £ G range A and m G range B. Let At; = £ and suppose 
that t>! generates Ker A; then A(t> + \vx) = £; since vx (£ Ker B, Bt^ 
generates the range of B and A exists such that B(v + kVi) = ra. 

The existence of a generating pair is clear. 

THEOREM 8. Let g= {((% £),£> | £ G R 2 } . I^f X = <A,£> and 
Y = (B,m) belong to g. Then X and Y generate g if and only if 

(1) A and B are linearly independent, 
(2) Am — B£ belongs to neither R(0 ) nor Rd). 
Moreover, g can always be generated by such a pair. 

PROOF. These conditions are necessary. For example, suppose 
Am — Bi G. R(i). Then the subspace of g generated by X, Y, and 
[X, Y] = (0, Am — Bl) is a subalgebra, so X and Y generate an 
algebra of dimension at most 3. 

Conversely suppose the above conditions hold. Then X and Y 
generate an algebra g with g0 = {(J I)}; it is enough to prove that 
Y = R2. At any rate V is invariant under g0 and so equal to {0}, 
R(o), R(?), or R2. But [(A,i), (B,m)] = (0, Am - Bl) and Am-
B£$R(^)orR(?). 

The above conditions are satisfied by X = ((o ?),0) and Y = 

<(o }) , ({)>. 
THEOREM 9. Let g = {(A, I) \ A G g0,£ G R2} u ;We g0 = {(g *)} 

or {(J J)}. Let X= <A,£) and Y = <B, m) foeZong to g. Then X and 
Y generate g if and only if 

(1) A and B generate g0, 
(2) Am- Bl$ R(l

0). 
Moreover, g can always be generated by such a pair. 

PROOF. These conditions are necessary. Indeed suppose Am — 
Bi G R (o). If g0 = {Co a) }> the subspace generated by X, Y, and 
(0, (0)) is a subalgebra of dimension at most 3. If g0 = {(£ d)}, the 
subspace generated by X, Y, ((0 o)>0) and (0, (o)) is a subalgebra of 
dimension at most 4. 
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Conversely suppose 1 and 2 hold; then X and Y generate an algebra 
g with go = go- It is enough to prove that V = R2; at any rate, V is 
invariant under g0 and so {0}, R(0), or R2. If g0 = {(J b

a)}, Am — 
BZ G V, so V is not {0} o r ^ ) . If g0 = {Co b

d)), g contains <(d ?), 
(ÎJ)> and [X, Y] = <(° *), (ÎJ)) for some s^ s2> £, *i, and t2; we are 
assuming t2 f^ 0. Thus g contains the bracket of these two elements, 
<0, Ct\) - (ts

0
2))Land Vis not {0} or R(J). 

If go == ((o a)}> the conditions are satisfied by X = ((Q °l), 0) and 
Y = ( ( o o ) , (i))- If go = {(o d)} the conditions are satisfied by 
X = <(S }),0> a n d Y = < ( J ° j , ( ° ) > . 

THEOREM 10. Let g = {((% (x + i)J, Ä) | a, b G R, l G R2}/or X G R. 
Le£ X = (A,i) and Y = (R, m) belong to g. 77ien X and Y generate 
g if and only if 

(1) A and B are linearly independent, 
(2) (A - /3)ra - (R + a)£ $ R(£) u;/iere [A,B] = aA + 0R. 
Moreover g can be generated by such a pair unless X = — 2. 

PROOF. If (A — ß)ra — (R — a)l G R(<5), the subspace generated 
by X, Y, and (0, (<J)) is a subalgebra of dimension at most 3. 

Conversely suppose these conditions hold and let X and Y generate 
g; then g0 = {(oV+îja)} a n d it is sufficient to show that V= R2; 
since V is invariant under g0, V = {0}, R(<J), or R2. But g contains 
[X, Y] - aX - ßY = {0, (A - /3)m - (R + a)£), so V = R2. 

If A ^ - 2 , let X = <(0
A 2+1),0>, Y = ((8 A), (?)> and notice that 

the above conditions hold. If A = —2. notice that 

r / 2 a 6 \ / 2 c d \ l / 0 ad - be \ /2a b\ , / 2c d \ 

LU J'U JJ = uo ; = -cu J + flU J 
and 

«r;)-Kî)-{(r')-«}(t) 
__ / amx + femy — c£x — dSLy \ 

\ 0 / ' 

THEOREM 11. Let g = {<(o % Q)}. Let X = {A,I) and Y = 

(B, m) belong to g. Then X and Y generate g if and only if 
(1) A and B generate {(g )̂}> 
(2) Am - R£ 7̂  0. 
Moreover, g can always be generated by such a pair. 

PROOF. If Am — Bl = 0, the subspace generated by X, Y, and 
((o o)> 0) is a subalgebra of dimension at most 3. 
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Conversely suppose these conditions hold and let X and Y generate 
g; then g0 = {(£ b

d)} and it is enough if V ^ {0}. But g contains 
<(o i), (o)> and [X, Y] = ((§ ($), (g)) for some s, t, u; we are assuming 
u ^ 0. Thus g contains the bracket of these two elements, (0, (g)), 
a n d V Y {0}. 

The conditions are satisfied by X = <(<} g),0> and Y = <(§ }), 
(o)). 

THEOREM 12. Every connected subgroup of A(2) not conjugate to 
{< Co a), *> I fl > 0, £ E R% {((a

0 *), (S)> | a > 0, b, c G R } , or 
{< (g2 S), Ä) | a > 0, b E R, £ E R2} can foe generated by an appro­
priate pair of infinitesimal transformations. 

PROOF. It suffices to consider the three dimensional g on the list in 
Theorem 4. Every non-abelian three dimensional Lie algebra can be 
generated by appropriate X and Y except the Lie algebra {(Co 0), £) 
| a E R, £ E R2} [1] ; we should show that only two algebras on our 
list are isomorphic to this algebra. It is easier to proceed directly; we 
already know that 1 through 12 can be generated if V = {0}. If V = R2 

pickX = <0, ( l ) ) ; le tY= <(<} 2),0> in case 2 if X ? 1, <(\ "x),0) in 
case 3 if X ^ 1, ((£ o), 0) m c a s e 4, anc^ ((o i)>0) m c a s e 5. In 
case 3 when X = 1 let X = <0, (o)>, Y = <(} -}), 0). In case 18 let 
X = <(i ?), 0), Y = <(8 ?), (i)>. In case 19 let X = <(' °),0>, Y = 
<(2 <J), (<*)>. In case 20 when X ^ - 1 let X = <(0

X ?+i), 0), Y = 
<(g *), (i)>. In case 28 let X = ((J J), 0), Y = <(* J)), (?)>; in 
case 29 let X = <(8 8),0>,Y= <(So),(i)>. 

REMARK. Notice that the only subgroup of A(2) conjugate to G = 
{(Co %l) | a > 0 , £ E R 2 } is G itself. 
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