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A MULTIPLE-ZERO LEMMA FOR LINEAR 
BOUNDARY VALUE PROBLEMS 

G. B. GUSTAFSON* 

ABSTRACT. The lemma gives conditions on n real-valued 
functions sufficient for some linear combination of these func­
tions to have a zero of order n. The result is specialized to linear 
ordinary differential equations of order k and the method of 
application is considered. 

1. Introduction. The purpose of this note is to communicate a 
special lemma from the theory of real functions. This lemma is poten­
tially useful for the study of boundary value problems for linear ordi­
nary differential equations of order k. 

The spirit of the lemma is to assert under endpoint and differen­
tiability conditions that a linear combination of n functions ui9 * * •, un 

has an n-th order zero at some point of the open interval. 
In the case of two functions, this lemma has played a central role in 

existence and nonexistence arguments for boundary value problems 
associated with the fc-th order linear differential equation 

u(k} + Ë P;(*)w0) = 0. 

The first use of the two-function lemma appears in the fundamental 
paper of Leigh ton and Nehari [4] on fourth order linear differential 
equations. Sherman [9] reformulated the Leighton-Nehari lemma for 
use in the study of the conjugate point function rti(t) associated with a 
k-th order linear differential equation. The Sherman lemma has played 
an important role in existence-nonexistence arguments of Bogar [ 1], 
Dolan [2], Peterson [6, 7] , Ridenhour and Sherman [8] and the author 
[3]. 

The main result for real functions appears in Lemma 2.4; the novelty 
here is the precise information. A model lemma suitable for differen­
tial equations is given in § 3; a discussion of the method of application 
follows. 
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Throughout this paper, f=0(hp) means that \f(h)\^ K\hP\ as 
h -> 0 for some constant K > 0. 

Given n functions ui9 • • *,un of class Cn _ 1[a, b ] , W(ui(x), • * -,ttn(ac)) 
shall denote the Wronsfcian Determinant: de t [u / _ 1 ) ] (1 ^ i ^ n, 1 ê j 
g n ) . 

A real-valued function w G Cn[a, b] shall be said to have a zero of 
order r ( r ë n ) a t c G [a, fo] iff w(f)(c) = 0, 0 § t § r - l . The zero 
shall be called of order exactly r iff w(i)(c) = 0, O ^ i ^ r — 1, w(r)(c) / 
0. 

2. The multiple-zero lemma for real functions. We first establish 
some technical lemmas on Wronskian determinants. 

LEMMA 2.1. Let 0 ^ px ^ p2 = * • • ̂  pn be integers satisfying 
Pi è i — 1 (1 ^ i ^ n), and suppose A = [ay] is an n X n matrix of 
functions satisfying Oy(fe) = 0(hav), cty — maxjp^ — i + 1,0}, then 

det[ A(h)] =0(hT), 

where 

T= Êp i -^n(n- l ) . 
1 = 1 Z 

PROOF. Let's write det A = ^ sgn(c7)Q"=1 ai><r(i), the sum being 
extended over all a in the symmetric group of order n. It suffices to 

showthatJ l t^ i <hMi) = °(hTy 
To establish this, observe that Y\"=i aiMi) = 0(hK), where K = 

2 r = r max{(p<r(i) - i + 1), 0}. Further, since a is a permutation, 

^ Ê to*) - * + i) = 2 *<«> - | * ( " - i) = r. 

This proves the result. 

The result is best possible, because the product of the diagonal ele­
ments of A has order hT. 

LEMMA 2.2. Let 0 ^ rY < r2 < • • • < rn be integers, put m» = 1 
+ rf(l ^i^n). Assume u{ G Cmi [a, b] Pi Cn~l[a, b] ( l ê i â n ) 
are given functions, u{ has a zero of order exactly r{ at x = c £ [a, b], 
1 ^ i ^ n, and puf t^z) = «i(fl)(c)(x - c)'*/^!, l ^ i g n . Then 

W K W , • • -,un(x)) = W(0l(x), • • ;vn(x)) + 0[(x - c)* + 1 ] , 

where 
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R = Ê n - ^ n ( n - l ) . 
< = 1 z 

PROOF. Define h= x - c. Then «,(*) = tn<r<>(c)fcr'/n! + 0(fcr<+1), so 

f«,«>(«) = 0<ü)(i) + 0(fc'.+W) ( O g j S fj) 

( 2 - 1 ) U«)(x) = 0(1) 0' > n) 

for 1 S i = n. 
Let us use the sum rule for determinants on the columns of W(ux, 

• • -, un) together with relation (2.1), then 

(2.2) W(ult • • ;un) = W(vu • • %t>„) + X det[AJ 
i = l 

where each ^ is an n X n matrix. The preceding Lemma 2.1 applies 
to prove det[Ai] = 0(hR + l), where R="Z?=i n - (l/2)n(n - 1); 
indeed, each A* has a column which starts with order one higher than 
the corresponding column of W(vi9 • • -, vn). This completes the proof. 

LEMMA 2.3. Let 0=ri<r2< ' ' ' < rnbe integers, aiy • • -, an non­
zero constants and put v^h) = afi^r^. Then 

W(c„ • • - , « „ ) = a ( n «. ) ^ - + 0(^R+1) 

where R — 5)i = i ri "" (l/2)n(n — 1) and a is a positive integer which 
depends only on n and the integers r1? • -, rn. 

PROOF. Let V(fe) = [^(n), • • ' ^ „ ( / i ) ] . Define for each integer 
t ê O the set Sk to be the set of n-tuples a = (kx, • • *, kn) of nonnega­
tive integers such that |<r| = 2?=i *< = *• Define the operator Ta to 
act on W(vl9 • • *,t)n) as follows: raW(ü!, • • -,t>n) is W(vÌ9 • • -,ün) 
with row i replaced by its fcrth derivative (1 ^ i ^ n). 

The rule for differentiation of determinants gives 

(2.3) ( J - )* W(0 l , •••,!>„)= S ^ ( D , , • • % vn), 

where each ca is a positive integer; this is easily proved by induction on 
k. Further, it is shown by induction that a term will occur on the right 
side of (2.3) iff kx < 1 + k2 < 2 + k3 < • •• < n - 1 + kn; here one 
appeals to the determinant rule that two equal rows yield zero deter­
minant. 
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Let's show that (dJdh)kW(vl9 • • -, vn) = 0 at h = 0 for 0 g k < R 
Let a G Sfc, and assume that T'W^i, * • -, vn) ^ 0 at h = 0, then 

fcx < 1 + k2 < ' ' ' < n - 1 4- kn, and | a | = k. 
Define e{ to be the i-th unit vector of Rn (1 â i ê n). At h = 0, the 

rows of T^W^x, * * ',vn) are multiples of the vectors e{ ( l ^ i ^ n), 
hence 

(2.4) V«-1+*<>(0) = a£ ie£ l (1 ^ i ^ n) 

where £x, • • *,£n is a permutation of the integers 1, 2, • • -, n. 
It follow that ru = k{ + i — 1, hence 

M = i k< = Ì,ri,- (l/2)n(n - 1) = R, 
1 = 1 t = l 

a contradiction. 
This proves that (dldh)kW(vly • • -, t>n) = 0 at fc = 0 for 0 g k < R. 
Now consider the case k — R in relation (2.3). Define a 0 = (fi, r2 

— 1, r3 — 2, • • -, rn — n + 1). The claim is that the only term on the 
right side of (2.3) at h = 0 is c,aoT°oW(vi, • • -, i)n). 

To prove this, let \a\ = R, <7 = (fc1? • • -, kn). If Ï ^ W ^ , • • -,vn) 
^ 0 at h = 0, then relation (2.4) holds and ru = k{ + i — 1,1 ^ i ^ n. 
However, fc1<l + fc2< * * * < n — 1 + fcn implies r£l < rÄ2 < 
< r£n, therefore Ä x < £2 < • • • < £ „ , and we have £x = 1, £2

 = 2, 
• • • , £ „ = n; thus a = cr0. 

Relation (2.4) makes it easy to compute T*ò(vi, • * -, vn) at h = 0, 
the value beingYYï=i a%-

Put a = cao. Then a is a positive integer, and (dJdh)RW(vi, • • -, 
vn)\h=o = «nr=i di- By Taylor's theorem, 

W(i>!, ' ' M>B) = J [(dldhyW(vl9 ' ' ;vn)\h=0]h
klkl + 0(/i«+1), 

fc=0 

and this completes the proof. 

Combining these lemmas, we obtain the following lemma about real 
functions: 

MULTIPLE-ZERO LEMMA 

LEMMA 2.4. Let {ai9 • • *,«„} and {ßx, • • *,ßn} foe two sete of dis­
tinct nonnegative integers and put 

m{ = 1 + max{oi, ft} (1 ^ i ^ n). 
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Assumethat functions u 1? • • -, un are given with 

(2.5) Ui G O [a, b] (1 Cn~l[a, b] (1 ^ i ^ n) 
(2.6) w< has a zero of order exactly a» at x = a and a zero of 

order exactly ß{at x = b (1 ^ i ^ n). 

(2.7) The permutations irx and TT2 which send (a1? • • *,£*„) 
and (j8i, • • #,j3n)> respectively, into natural order, satis-
fy signdn). s i g a W n r - i a,^(û)o i«">(fc)(-l) '"- '+ 1< 0, 
or equivalently, for all e > 0 sufficiently small, 
(_1)(i/2)„<n-,> s i g n ( f f i ) s i g n ^ î l r . i ^ f l + «)«i(b - «)< 0. 

T/ien £/ißre exists constants cx, • • -, cn nof a// zero swc/i £foa£ w(x) = 
2 r = i ciui(x) has a zero of order at least n at some point x0 G (a, b). 

PROOF. Let W<(x) = ( s i g n ^ W ^ x ) , • • -, un(x)), i = 1, 2. Then 
W<(x) = W(ti^(1)(x), • • s u ^ x ) ) (i = 1,2), (hercTT^fc) = n^o*), TT2(k) 
= 7T2(/8fc), for brevity) so lemmas 2.2, 2.3 apply to give 

W^a + fc)W2(fe - fc) = aß I ] W R \ R 

+ 0(/ l
R .+ R

2
+ 1). 

Here, fli = £ % ! c* - (l/2)n(n - 1), R2 = ^ " - i A - (l/2)n(n - 1), 
a( = «/"''(a), foj = Uj(P''(b) (1 ^ t â n), and a and )3 are positive in­
tegers. A rearrangement of this relation gives 

Wiu^a + h), • • -, «„(a + fc))W(«,(fc - h), • • -, un(b - h)) 

= khRl + R2 + 0(7iRi+R*+1) 

* = o ^ s i g n ^ ] [sign^2] [Ilr=i a A ( - l ) A - ' + i ] [Rillfe!]-1. Fur-
ther, fc < 0 by relation (2.7). Therefore, W(ui(x), • * -, wn(x)) changes 
sign at some point x0 G (a, b). The conclusion follows by solving the 
system ]£ " = 1 Uj{i)(x0)Cj = 0 ( O S i S n - 1) for nontrivial ch • • -, cn. 

REMARK. The most common kind of application is when each 
Ui(x) is one-signed on (a, b), then relation (2.7) reduces to the require­
ment that 

(2.8) ( - l J ^ W n - D j s i g n ^ j [ s i g n a l < 0 

3. Boundary value problems. Let Lu = u{k) + $)i=oPi(*)MÜ) be 
a linear ordinary differential operator with continuous coefficients. 
The following restatement of lemma 2.4 is suitable for applications to 
boundary value problems for Lu = 0. 
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LEMMA 3.1. Let uì9 - - -9un be solutions ofLu= 0such that 

(3.1) Ui has a zero of order exactly c^ at a (1 ^ i ^ n), 
ax, • • ' ,0^ distinct, 

(3.2) Mi /kW ö zero of order exactly ß{ atb (1 ^ i ^ n), 
ßi, ' ' %ßn distinct, 

(3.3) tii ts one-signed in (a, fc) (1 ^ f ^ n). 

Zf TTI and 7T2 cam/ (a1? • • -,cO and ß1? • • ',ßn), respectively, into 
natural order, and 

( - l ) ( l / 2 )n (n - l ) s i g n | r i S i g n 7 r 2 < 0 > 

£nen for some x0 G (a, b) there exists a nontrivial solution u = cxUi 
+ * • • + cnun ofLu = 0 with a zero of order at least n at x0. 

APPLICATION TO DIFFERENTIAL EQUATIONS 

Consider a fc-th order linear ordinary differential equation Lu = 0 
and the boundary conditions 

(3.4) u«\sj) = 0 ( O g i g n , . - 1, O g j g i / ) 

which will hereafter be abbreviated to: u has a zero of order (n0, • * *, *K) 
at {s0 < • • • < $ , } . It is always assumed that n0 + • • • + n̂  = k, and 
ö < s0 < • • • < $ , < & . 

Suppose Op = (n0p, • • -, n„p>p) (1 = p = £) is a finite set of boundary 
data and the following uniqueness condition holds: for every choice of 
^ + 1 points s0< ' - • < s„ in (a, b) the only solution of Lu = 0 
with a zero of order otp at {s0 < • • • < s , } i s u = 0 ( l a p ^ £ ) . 

Under this uniqueness assumption, certain kinds of other boundary 
value problems (3.4) also have a unique solution. For example, it is 
well-known that if the only solution with k distinct zeros in (a, b) is 
u = 0, then all problems (3.4) have the unique solution u = 0 (an ele­
gant proof of this has been given by Z. Opial [5] ). 

A common use of this kind of uniqueness result is to obtain the 
existence of a Green's function G(t, s) for boundary conditions (3.4), 
hence converting the problem Lu — f with boundary conditions (3.4) 
into an integral equation 

u(t)= r G(t,s)f(s)ds. 

The role of the multiple-zero lemma is to convert this question into 
possibly more tractable questions. 
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To illustrate the method for n ^ 3, assume the uniqueness condi­
tion holds for the family {ai9 • • •, a9} specified by 

<*! = (h + 1, m — 1,1), a2 = (h, m, I), 

a 3 = (h,m- 2,3,£ - 1), a 4 = (/i + l , m - 2 , £ + 1), 

a 5 = (/* + l , r a - 2,1,£), o e = (h,m+ 1,1- 1), 

a7 = (h, m, 1, £ - 1), a8 = (fc, m - 1, £ + 2), 

erg = (/i,m - 1,1,4 + 1). 

It will be shown that the only solution of the equation Lu = 0 with a 
zero of order a = (h,m — 1, £ + 1) is the trivial solution w = 0. 

Suppose not, and let uY ^ 0 be a solution of Lw = 0 with a zero of 
order a at {s0 < sx< s2\. 

Construct solutions u2 ^ 0, w3 ^ 0 of Lu = 0, with zeros of order 
(h + 1, m — 2,£), (fi, m,£ — 1) at {s0 < sx < s2}, respectively. 

The uniqueness condition implies that ui9 u2, u3 have no other zeros 
on [sj, s2] , counting multiplicities. Hence, we may assume that u^t) 
> 0 on s Y < t < s2, 1 ^ i ^ 3. The permutations 7T1 and TT2 of the 
multiple-zero lemma are given by ^ ^ (m — 1, m — 2, m) —> (m — 2, 
m - 1, m) and TT2: (£ + 1, £, £ - 1)-» {£ - 1, £, £ + 1), therefore (2.8) 
holds: 

(_1)( l /2)(3)(3-l)[ s i g r i 7 r i] [sign7T2] < 0 . 

The multiple-zero lemma applies to give a solution u = CiUx + c2u2 + 
C3U3 ^ 0 of Lu = 0 with a triple zero at t0 G (sj, s2). However, this 
implies u has a zero of order a3 at {s0 < sY< t0 < s2}, a contradiction 
to the uniqueness condition. Therefore, the only solution of Lu = 0 
with a zero of order a in (a, b) is w = 0. 
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