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CONVERGENCE LATTICES1 

ARMANDO R. GINGRAS 

ABSTRACT. A complete lattice in which order convergence 
coincides with topological convergence with respect to the 
order topology 0 is termed a convergence lattice. Each com­
plete chain, each arbitrary product of convergence lattices, and 
each lattice in which each chain is finite is a convergence 
lattice. We say that a complete lattice is locally-intervaled if 
every ©-neighborhood of each point in the lattice contains an 
interval that is also a 0 -neighborhood of the point. 

THEOREM. A complete lattice is a convergence lattice if and 
only if it is locally-intervaled. 

Introduction. When considering simultaneous topological structures 
and lattice-order relations on a set, there are three basic approaches 
possible. The first point of view superimposes a topology on a lattice 
that is required to interact (i.e., be compatible) with the order relation 
in a prescribed way. For instance, the topology may be required to 
render the lattice a Hausdorff space in which the lattice operations 
are continuous. This inaugurates the study of topological lattices. 

The second approach examines topologies on a lattice arising 
naturally from the lattice structure itself. Examples of such intrinsic 
topologies are those defined by Frink [7], Rennie [15], Birkhoff [3], 
Insel [9], Wölk [18], and èie topology generated by order con­
vergence (i.e., the order topology) [2]. 

The third viewpoint introduces a lattice-order on a topological 
space in such a way that a specific intrinsic topology derived from the 
lattice-order agrees with the original topology of the space. For 
example, the classic theorem of Eilenberg [5, Theorem 1] gives a 
sufficient condition on a connected Hausdorff space so that it may be 
totally ordered with the interval topology and the original topology 
coinciding. 
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Of the three approaches to a study of topology on lattices, this last 
one remains the most intractable and least developed today. 

This paper is a study of an important class of complete lattices for 
which the first two points of view merge, namely, those complete 
lattices in which order convergence coincides with the topological 
convergence derived from the order topology. We call such lattices 
convergence lattices. Here we initiate a systematic investigation of the 
mutual dependence of topological and order properties of convergence 
lattices. 

Section 1 details those definitions and conventions basic to this 
work. It contains preliminary results concerning order convergence 
and the order topology© and sets the background for our study. 

General convergence lattices are introduced in Section 2 and several 
characterization theorems are presented. There it is shown that every 
neighborhood of a point of a convergence lattice contains an interval 
that is also a neighborhood of the point; this condition is also sufficient 
to characterize convergence lattices. While this study bears mainly on 
fundamental properties in the topology of convergence lattices, we 
find that a corollary (Corollary 2.10) to the preceding result opens a 
way for a pure lattice-theoretic treatment of convergence lattices. In 
Section 2 it is also shown that each complete chain and each product 
of convergence lattices is a convergence lattice. 

Various examples of convergence lattices (important in other areas 
of mathematics) and complete lattices failing to be convergence lat­
tices are collected in Section 3. 

Finally, a set of four unsolved problems is presented in Section 4. 

§ 1. Preliminaries. The lattice-theoretic terminology used herein is 
consistent with that of Birkhoff [2"]; the topological terms can be 
found in Kelley [ 10]. The exceptions are noted below. In usage of 
words common to topology and lattice theory, the topological meaning 
will take precedence (e.g., compact and closed). 

For typographical convenience, the following deviations from more 
or less standard notation are observed here. We let X be a complete 
lattice with a topology, then if A is a subset of X we set 

0 = generic symbol for a lattice's zero element, 
1 = generic symbol for a lattice's unit element, 
A ' = set-theoretic and lattice-theoretic complement, 
A V B = set-theoretic difference = AD B', 
A° = topological interior of A, 
Ac = topological closure of A, 
r)(x) = local neighborhood system at the point x in X. 

A convergence scheme C for a set X is a class of pairs (<!>, x) where 4> 
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is a net in X and x belongs to X. If (<&, x) G C, then we say that 4> 
C-converges to x and write C-lim 4> = x. If the domain of 4> is of 
interest, we may write C-lim 4>a = x or even C-lima 4>a = x. The C-
closure, denoted by C-cl( A), of a subset A of X is defined to be A to­
gether with all C-limits of every C-convergent net in A. A subset A is 
called C-closed if A = C-cl(A). We say that a net 4> C * -converges 
(or simply * -converges if the convergence scheme C is understood) to 
x if an arbitrary subnet of 4> contains a further subnet that C-converges 
to*. 

We now enter upon our subject proper. 
Let X be a complete lattice. A net xa is said to order converge (or 

o-converge) to a point x in X if 
(1) there exist subsets A and B of X such that A is up-directed and 

B is down-directed, 
(2) sup A = x = inf B, 
(3) for each a in A and b in B, there exists ß in the domain of xa 

such that for a ^ 0, a ^ xa ^ fo. 
A direct verification shows that the foregoing definition is equivalent 

to the following statement: xa o-converges to x if and only if lim-inf xa 

= x = lim-sup xa, where 

lim-inf xa = V / \ xa, 

and 

lim-sup x a = A V * « -

It is equally easy to see that o-convergence is a convergence scheme 
in which every net that is eventually constant and every subnet of an 
o-convergent net is also o-convergent. 

PROPOSITION 1.1. The family C ofo-closed sets of a complete lattice 
satisfies the following axioms for closed sets [10, Theorem 4, pg. 40] : 

(i) x e c, 
(2) If Fl9 F2 G C, then Fx D F2 G C, 

(3) I f F x G C f o r X G A , A ^ 0 , then f\ Fk G C. 

PROOF. See, for example, Vulikh [17, pg. 33]. // 

We use the modified Halmos symbol, //, to indicate the end of a 
proof. 

The order topology on a complete lattice is defined to be that 
(unique) topology having for its closed sets the family C of o-closed 

À 
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sets. Hereafter, we always let @ denote the order topology of a com­
plete lattice. Note that© is always TY. 

In general, o-closure is not a (Kuratowski) closure operator only in 
that o-closure need not be idempotent. Example 3.7 displays calcula­
tions showing the failure of idempotency of o-closure in a particular 
complete lattice. 

Kelly [ 10] approaches convergence in the following way. Let C be 
a convergence scheme for a set X. He calls C a convergence class if C 
satisfies the following four conditions: 

CI. If 4>(a) = x for each a, then (4>, x) G C. 
C2. If <ï> C-converges to x, so does each subnet of <ï>. 
C3. If <I>C «-converges to x, then <!> C-converges to x. 
C4. (BirkhofFs Law of Iterated Limits) Let D be a directed set and 

Ea a directed set for each a G D. Let E = D X f j {£a | a G D} and 
direct E coordinate-wise. Let B = {(a, y) | a G D, y G Ea}. Define a 
net ^ on E in ß by </*(«,/) = («,/(<*))• If * is a net on B in X, then 
4> ° i/i (composition) is a net on E in X. Finally, if C-lima 

C-lim7GEÄ*(a, y) = oc, then 4> ° </* C-converges to ac. 
Kelley then proceeds to prove the following interesting theorem 

[ 10, Theorem 9, pg. 74] that characterizes a closure operator, hence a 
topology, in terms of convergence via convergence classes. 

THEOREM 1.2. Let C be a convergence class for a set X. Then C-cl 
is a closure operator. Furthermore, letting T denote the associated 
topology, a net 4> C-converges to xin X if and only if<I> converges to x 
with respect to T (i.e., T-converges). 

To see that o-convergence is not in general a convergence class, 
the reader is directed to the discussion of Example 3.6. The last part 
of the discussion under Example 3.6 reveals a curious fact. It is shown 
there that o-closure is indeed a closure operator for that particular 
lattice even though C3 and C4 are not satisfied. Thus, while condition 
C4 itself is sufficient for o-closure to be a closure operator, it is not 
necessary. 

PROPOSITION 1.3. Let xa be a net in a complete lattice X. Then 
o-lim xa = x implies that * -lim xa = x, which, in turn, implies that 
0-lim xa = x. 

PROOF. AS every subnet of an o-convergent net also o-converges, we 
have the first implication. Now assume that * -lim xa = x. If xa fails 
to ©-converge to x, there exists some open neighborhood N of x such 
that xa is frequently outside of N. From this we may construct a subnet 
Xy of xa which is always outside of N. Since xa * -converges to x, Xy 
contains a subnet that o-converges to x. Since N' is closed, x £ N ' . 
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This is the required contradiction. Therefore, xa o-converges to x. II 
A net * in a lattice is called isotone if a ^ ß implies that * a ^ &ß. 

An antitone net is defined dually and a monotone net is a net that is 
either isotone or antitone. 

PROPOSITION 1.4. If xa is an isotone net in a complete lattice X, then 
the following statements are equivalent: o-lim xa = x, supaxa = x, and 
0-lim xa = x. Dual statements hold for antitone nets. 

PROOF. Clearly, o-lim xa = x and sup xa = x are equivalent and 
either statement implies that xa ©-converges to x. Now assume that 
xa ©-converges to x, but that sup xa = y ^ x. Then o-lim xa = y 
implies that xa ©-converges to y. If x ^ y, then x (£ [ O, y]. Since 
[O, y] is ©-closed, G = X V [0,y] is open and x E G; ©-lim xa = x 
implies that oca is eventually in G. But this contradicts the assumption 
that for each a, xa GE [ O, y]. Therefore, x ^ y. Since xa is isotone, for 
any ß, a= ß means that xa G [xß, y]. Because [xß, y] is ©-closed, 
x G [xßi y]. Therefore, x ^ x for each ß, hence t/ = x. Thus, JC = y 
and o-lim oca = x. II 

We shall have occasion to consider one other topology on a complete 
lattice which is also derived from the order structure of the lattice. 
Frink's interval topology I [7] is that topology defined by choosing 
the closed intervals [a, b], a ^ b, as a subbase for the closed sets. We 
let I denote the interval topology on a lattice. 

Since we may be considering more than one topology on a set X, 
we mention that if T is a topology on X that possesses a particular 
attribute, say, that of being compact or Hausdorff, then we write that 
X is T-compact or T-Hausdorff. 

As an example of the interplay between two topologies on a lattice, 
consider the result that follows. (We mention in passing that Example 
3.3 shows that the converse of this result is false.) 

PROPOSITION 1.5. Let X be a complete lattice. If X is l-Hausdorjf, 
then @-convergence coinsides with * -convergence (i.e., o * -con­
vergence). 

PROOF. By Proposition 1.3, all that remains to be shown is that if 
4> is a net ©-converging to x in X, then 4> * -converges to x. Atsumi 
[1, Theorem 3] has shown that every net in a I-Hausdorff complete 
lattice contains an o-convergent subnet. From this it follows directly 
that X is ©-Hausdorff (since I is weaker than ©) and ©-compact. There­
fore, if 4> ©-converges to x, then <I> contains an o-convergent subnet ty. 
Since 0 is Hausdorff and \\t also ©-converges to x, ty o-converges to x. 
Because every subnet of 4> ©-converges to x, we see that * * -con­
verges to x. II 
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§ 2. General Convergence Lattices. In the second edition of his 
monumental treatise, Lattice Theory, Garrett Birkhoff [2 ' , Theorem 
IV.13] erroneously assumed that o-convergence and ©-convergence 
invariably agree in lattices. Evidently, Northam [ 14] was the first to 
publish a counterexample and Birkhoff acknowledged the error (in an 
exercise) in the next edition of his book [2"]. Nevertheless, we take 
as our starting point Birkhoff s assumption and initiate a study of those 
complete lattices satisfying this condition. Accordingly, we begin 
with the following definition. 

A convergence lattice is a complete lattice within which o-con­
vergence and ©-convergence coincide. 

THEOREM 2.1. Every convergence lattice is a regular Hausdorff 
space with respect to its order topology®. 

PROOF. Since limits are unique with respect to o-convergence, a 
convergence lattice is a Hausdorff space. Also, it is known that the 
order topology on a complete lattice is regular if o-convergence coin­
cides with ©-convergence (e.g., [4] ). // 

We now present various necessary and sufficient conditions for a 
complete lattice to be a convergence lattice. The first is a direct 
corollary to Proposition 1.3. 

SCHOLIUM 2.2. A complete lattice X is a convergence lattice if and 
only if for any net 4> and x in X both of the following two conditions 
are satisfied: 

(1) 7/4> ̂ -converges to x, then <I> * -converges to x. 
(2) lf& ^-converges to x, then® o-converges to x. 

Notice that condition (2) above is the same as condition C3 of 
Section 1. 

COROLLARY 2.3. If a complete lattice is l-Hausdotjf, then it is a 
convergence lattice if and only if it also satisfies condition C3. 

PROOF. Apply Proposition 1.5 and Scholium 2.2. // 

We consider other properties on a complete lattice satisfying C3 that 
make it a convergence lattice. The following theorem contains several 
equivalents of Birkhoffs rather complicated Law of Iterated Limits 
(i.e., condition C4 of Section 1). Statement (4) is a simple observation 
due to Gaina [8]. 

THEOREM 2.4. Let X be a complete lattice satisfying condition C3. 
Then the following statements are equivalent: 

(1) Xisa convergence lattice. 
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(2) If <ï> ̂ -converges to x, then <ï> * -converges to x. 
(3) X satisfies CA. 
(4) If$> &-converges to x, then 4> contains a subnet o-converging to 

x. 
(5) If & is a net and x G C\ß®-cl {<&(«) | a = ß}, then <ï> contains a 

subnet o-converging to x. 

PROOF. Theorem 1.2 and Scholium 2.2 join to show that statements 
(1), (2), and (3) are equivalent. Clearly, (1) implies (4) and an exami­
nation of the proof of Proposition 1.5 reveals a proof of the converse. 
To show that (5) implies (1), suppose 4> ©-converges to x, but that <ï> 
fails to o-converge to x. By C3, we may further suppose that no subnet 
of <I> o-converges to x. Since x clearly belongs to C\ß ©-cl {<!>(«) l a ^ j S ^ 
by (5), we have that 4> contains a subnet o-converging to x and a con­
tradiction. Conversely, suppose X is a convergence lattice and that x G 
f\@-cl {*(<*) \a^ß}. Then, for any ß in D (the domain of $ ) , there 
exists a net (^(/8, y); y G Eß) in {<&(<*) | a = ß} such that o-lim i/f (ß, y) 
= x. Let E = D X ff {Eß \ß G D} and define a net Y on £ byY(ß,f) 
= \lß(ß,f(ß)). Since C4 holds in X for o-convergence, Y o-converges to 
x. To show that Y is a subnet of <I>, let M be a well-defined mapping of 
E into D defined by M(ß,f) = à where /3 g à and ty(ßj(ß)) = *(à) . 
Then Y = * ° M since Y(/8,/) = *lt(ß9f(ß)) = *(à) = 4> ° Affo/). 
Finally, if/8 is an arbitrary element of D, then for 08,/) in E where / i s 
arbitrary, we have Affo/) = à § ^ ß. Thus, Y is indeed a subnet of <ï> 
that o-converges to x. Therefore, (1) implies (5). // 

We now present two theorems each giving a single condition on a 
complete lattice equivalent to having the lattice be a convergence 
lattice. 

THEOREM 2.5. A complete lattice X is a convergence lattice if and 
onty tf for each element x in X, inf {sup N | N G r)(x)} = x = 
sup{inf N | N G r)(x)}9 where 7)(x) is the ̂ -neighborhood system at x. 

PROOF. Suppose X is a convergence lattice. Set D = {(n, N) | 
nGNG ri(x)} and direct D by (n, N) g (m, M) if M C N. Define a 
n#£ $ on D in X by 4>(n, N) = n. Then 4> ©-converges to x. For if 
N G TJ(X), then (x, N) G D. If (m, M) ^ (x, N), then 3>(m, M) = 
m G M C N. Thus, 4> is eventually in every N in rç(x). Since X is a 
convergence lattice, 4> o-converges to x, i.e., 

V A *("*> M) = x = A V *(m>M)-
(n,N) (m,Af ) S(n,N) (n,N) (m,M) ^(n,N) 
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Since N = {0(m, M) | (ra, M) ^ (n, N)}, we have that inf N = 
inf{4>(ra, M) | (m, M) ^ (n, N)} and sup N = sup{4>(ra, M) | (m, M) è 
(n, N)}. Therefore, x = lim-inf<I>(m, M) = sup {inf N | N G v(x)} a n d 
x = lim-sup 4>(m, M) = inf {sup N | N G T?(X)}. Hence, the above 
condition holds for each x in X. Conversely, suppose that X satisfies 
the condition in the statement of the theorem. Let 4> ©-converge to x. 
Thus for each N in r)(x), there exists ß in the domain of <I> such that if 
a^ß, then 4>(a) G N. Direct TJ(X) by N g M if M C N. Define the 
sets A = {inf N | N G TJ(X)} and B = {sup N \ N G TJ(*)}- Then A is 
up-directed and B is down-directed. To show that A is up-directed, 
for example, let p and q be in A. Then there exist N and M in ^(x) 
such that inf N = p and inf M = q. Let L= N H M and set r = 
inf L. Then r G A and r ^ p and r^ q. Using the theorem's condi­
tion, sup A = sup {inf N | N G TJ(JC)} = x = inf {sup N \N G 17(3;)}. 
Now let a be in A and b be in B. Then there exist Na and Nb in 77(3;) 
such that inf Na = a and sup Nb = b. Let N == Na H Nb and ß in the 
domain of <I> be such that if a = ß, then <!>(«) G N. Then for a = /3, 
we have a = inf Na ^ <ï>(a) ^ sup Nb = b. Therefore, <I> o-converges 
to x. II 

THEOREM 2.6. A complete lattice X is a convergence lattice if and 
only if X is ©-regular and satisfies the following condition: for any 
N G 7)(x), there exists MN G r)(x) such that MN C N and if M G r)(x) 
with M C MN, then inf M and sup M both belong to N. 

PROOF. Suppose X is a convergence lattice. To show that X satisfies 
that theorem's condition, we begin by directing rj(x) by saying that 
N S M i f M C N . The nets x(N) = inf N and y(N) = sup N, N in TJ(X), 

are isotone and antitone, respectively. As shown in the proof of 
Theorem 2.5, we have sup x(N) = sup {inf N \ N GT)(X)} = x = 
inf {sup N I N G r)(x)} = inf t/(N). Therefore, both nets o-converge, 
hence ©-converge, to x. Then if N G T^JC), there exists Mx and M2 in 
r)(x) such that if M è Mx, then sup M = t/(M) G N and if M ^ M2, 
then inf M = x(M) G N. Let MN = Mx H M2 H N. Then MN C N. 
Furthermore, if M GTJ(X), with M C MN, then M ^ MN and x(M) = 
inf M and y(M) = sup M both belong to N. The regularity of© follows 
from Theorem 2.1. 

Conversely, suppose that X satisfies the above condition. Define 
fj(x) to be the set of all closed neighborhoods of oc (i.e., ©-closed neigh­
borhoods). For the moment, fix N in r)(x). By the above condition and 
the Axiom of Choice, we may associate with N a set MN such that 
MN G r)(x), MN C N, and such that if M C MN, where M G T)(X), then 
sup M and inf M both belong to N. Define DN to be the set of all open 
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neighborhoods of x contained in MN. Then DN is not empty. Direct 
DN by saying that for Mx ^ M2 if Mx C M2. Set y(M) = sup M for 
each M in DN. Then y(M) is an isotone net on DN in N. If we let y = 
sup y(M), then t/(M) ©-converges to y. Since for each M G DN, t/(M) 
belongs to N and because N is ©-closed, t/ also belongs to N. Setting 
UN = U{M | M G DN}, then {/# is an open neighborhood of x con­
tained in MN. Therefore, UN G DN and sup L7N = sup y(M) = y G N. 

We may now define u(N) = sup (7N for each N in fj(x), where rj(x) 
is directed by setting Ni S N2 if N2 C Ni. Then w(N) is an antitone 
net defined on y)(x). By the regularity hypothesized for©, u(N) is even­
tually in each M in fj(x). For if M G TJ(X), then there exists N G 7}(x) 
with NOM. Thus VN (Z N (Z M. By regularity again, there exists 
K E ^ ( x ) such that K C C7N. Now if L ^ K in fj(x), then l/L C L C 
K C UN, so that sup l/L = u ( L ) E N , As N C M, t/(L) is indeed 
eventually in M. Therefore u(N) ©-converges to x. Proposition 1.4 
together with the fact that u(N) is antitone show that u(N) o-converges 
to x. Using dual concepts and arguments, we may define a com­
parable net v(N) onfj(x) so that v(N) also o-converges to x. 

To complete the proof, assume that <I>(a) is a net that ©-converges to 
x. By the previous paragraph, for any M in r)(x), there exists N in fj(x) 
such that N C M and C7N C N. As C7N G TJ(*), there exists ß in the 
domain of <!> such that if a ^ ß, then 4>(a) G (7N. Thus, v(N) = 
inf C/N S $(a) ê sup t/N = u(N) for a ^ ß. Therefore, 4>(a) o-con­
verges to x. II 

COROLLARY 2.7. Let X be a convergence lattice. Then for each N in 
r)(x), there exist y and zinN such that [y, z] is a neighborhood ofx. 

We also obtain the following immediate corollary to Theorem 2.6. 
This gives us our first family of convergence lattices. 

COROLLARY 2.8. Let X be a complete lattice. If every point in X is 
topologically isolated (i.e., {x} is open), then Xisa convergence lattice. 

A lattice X is said to be locally-intervaled if for each point x in X 
and each neighborhood N ofx, there exists an interval [a, b] such that 
[a, b] is a ©-neighborhood ofx and [a, b] is contained in IV. 

THEOREM 2.9. Every convergence lattice is locally-intervaled. 

PROOF. Let X be a convergence lattice. Define i(x) to be the collec­
tion of all neighborhoods of x that are also intervals. Direct I (x) by 
setting / = / if / C /. Define two nets on i (x) by w(I) = sup I and 
z(I) = inf/. Set A = {inf M | M GTJ(X)} and B = {sup M | M G T J ( X ) } . 

Then A is up-directed, B is down-directed, and by Theorem 2.5, 
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sup A = x = inf B. If a G A and b £ B , then there exist Mx and M2 

in r)(x) such that a = inf Mx and b = sup M2. Letting N = Mlf] M2, 
we have a = inf Mx ^ inf N ^ sup N = sup M2 = b. By Corollary 
2.7, there exists 7 G i(x) such that inf N ^ inf 7 = z(I) ê w(I) = 
sup I ^ sup N. If/ è I in i(x\ then z(7) ^ z(J) ^ u;(/) ^ u>(I), so that 
a ^ %(/) ^ io(/) ^ b. Thus, z(J) and u?(/) both o-converge, hence 
©-converge, to x. Therefore, for any N in r)(x), there exists I G j (x) 
such that if/ ^ I, then z(/) and u?(/) both belong to N. 

Now set C = {*(/) | / G *(x)} and D = {w(J) \ J G i(x)} and no­
tice that C is up-directed and D is down-directed, and that sup C = 
x = inf D. Let E = {(n, 7) | n G 7 and 7 G i(x)} and direct E by 
setting (n, 7) ^ (m, / ) if / C 7. Define a net O on E by 4>(n, 7) = n. 
Then 4> ©-converges to JC. For if we let c be in C and d be in D, then 
there exist Ix and 72 in i(x) such that c = 2(7!) and d = u>(72). Let 7 = 
li H 72 and we have c = z(Ii) ^ z(7) ^ IÜ(J) ^ tü(72) = d. Now if 
(m,/) ^ (JC, 7), then / C 7 and from <l>(m,/) = m G 7 we have that 
z(I) ^ 0(m, / ) ^ w(I). Hence c ^ *(m, / ) ^ d for (m, / ) ^ (x, 7). 
Therefore, <I> o-converges and ©-converges to x. Finally, if N G r)(x), 
then there exists (n, 7) G £ such that if (m, / ) ^ (n, 7), then 4>(m, / ) G 
N. Since 7 = U{*(m,/) | ( m j ) = (n, 7)}, we have that 7 C N. 
Therefore, X is locally-intervaled. // 

Let X be a complete lattice and x an element in X. An element a 
is called an unavoidable lower bound for x if for each up-directed 
subset D of X with sup D = x, there exists a member d of D such that 
a=d. We let X(ac) denote the set of all unavoidable lower bounds for 
x. An unavoidable upper bound for x and the set v(x) are dually de­
fined. Notice that for each x in X, O G k(x) and / £ D ( X ) and also that 
k(x) and v(x) are up-directed and down-directed, respectively. 

The foregoing definition receives motivation from two sources. 
First, in any complete chain C with the intrinsic neighborhood 
topology, if x G C, then any element a, with a < x, is an unavoidable 
lower bound for x. (This is not true in an arbitrary lattice.) This 
explains the terminology. Second, by simultaneously weakening the 
definition of a compact element and partially strengthening the defini­
tion of a join-inaccessible element [2", p. 186], we may arrive at the 
definition of an unavoidable lower bound. 

With this new terminology, we may restate Theorem 2.9 as follows: 
Let X be a convergence lattice and x an element of X. Then Bx = 
{[a, b] | a G k(x), b £v (x )} constitutes a base for the local neighbor­
hood system at x. 

COROLLARY 2.10. Let X be a complete lattice. Then X is a con­
vergence lattice if and only if for each x in X, sup k(x) = x = inf v(x). 
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PROOF. By Proposition 1.4, if N £: iy(x), then inf N is an unavoidable 
lower bound for x and sup N is an unavoidable upper bound for x. 
The condition then becomes a reformulation of Theorem 2.5. // 

The foregoing corollary suggests a pure lattice-theoretic characteri­
zation of convergence lattices ("pure" in the sense that only lattice 
operations are involved). Thus, it provides an alternate definition of a 
convergence lattice and creates an avenue to a lattice-theoretic (as 
opposed to a topological) study of such lattices. Since this work bears 
mainly on topological aspects of convergence lattices, this algebraic 
path will not be systematically explored at this time. 

The following theorem shows that the concept of being locally-
intervaled completely characterizes the subclass of convergence 
lattices among complete lattices. 

THEOREM 2.11. A complete lattice X is a convergence lattice if and 
only if it is locally-intervaled. 

PROOF. Necessity is precisely Theorem 2.9. As in the proof of 
Corollary 2.10, for any x in X and any N in 7)(x), inf N is an unavoid­
able lower bound for x. Now suppose that there exists some element 
x in X with sup X(x) < x. Set y = sup\(x) and G = X V [0,y]. Then 
G is a neighborhood of x. Therefore, there exists an interval [a, b] C 
G with [a, b] a neighborhood of x. Since a (£ [O, y], a ^ y. But 
a G k(x) and a = t/, a contradiction. Therefore, y <£ x, and sup k(x) 
= x for each x in X. A dual argument and Corollary 2.10 complete the 
proof. // 

Corollary 2.10 also yields as an immediate corollary a result due to 
Kent and Atherton [ 12, Theorem 1]. First we recall the following 
definitions. A lattice X is called compactly-generated if each element 
in X is the supremum of a set of compact elements. A co-compactly-
generated lattice is dually defined and, furthermore, is said to be bi-
compactly-generated if it is also compactly-generated. 

COROLLARY 2.12. A bicompactly-generated complete lattice is a 
convergence lattice. 

PROOF. A compact element c, with c ^ x, is an unavoidable lower 
bound for x. A similar observation for co-compact elements and 
Corollary 2.10 complete the proof. // 

We shall now proceed to attempt a description of those subsets of a 
convergence lattice that are themselves convergence lattices (in the 
induced order). A sublattice A of a convergence lattice X is called a 
sub-convergence lattice of X if A is a complete lattice in the induced 
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order and if the induced order convergence (i.e., oA-convergence) 
agrees with ©-convergence in X. 

For example, if X = [ - 1 , 1 ] and B = [ - 1 , 0 ) U {1}, then B is a 
complete lattice (indeed, a convergence lattice) in the induced order, 
but oB-convergence does not agree with ©-convergence (viz., the se­
quence xn, where xn = — 1/n, is such that xn oB-converges to 1, but 
xn ©-converges to 0 in X. Therefore, B is not a sub-convergence lattice 
of X. However, if we let A = B U {0}, then A is a sub-convergence 
lattice of X. 

THEOREM 2.13. Let Xbe a convergence lattice and A a sublattice of 
X. Then the following statements are equivalent: 

(1) Ais&-closed. 

(2) A is a sub-complete lattice ofX, i.e., 
if S C A, then sup S and inf S are in A. 

(3) Ais a sub-convergence lattice ofX. 

PROOF. (1) implies (2): Suppose A is ©-closed. Let S C A and set s 
= sup S. If S is finite, s G A since A is a sublattice. If S is infinite, let 
D = {/ C S | / is finite} and direct D by setting K ^ / if K C / . De­
fine a net 4> on D in A by <&(/) = sup/ . Then <ï> is isotone and if we 
set s = sup S, then sup <!>(/) = s. For if t = sup <!>(/), then £ ^ Ä. If 
t < s, then for any x G S, {x} G D and 4>({x}) = x = t. Thus 5 = 
sup A^ t. Therefore, by antisymmetry, t = s = sup S and <I> o-con-
verges to s. Hence, <ï> ©-converges to s. Since A is ©-closed, s G. S. 
Similar considerations show that inf S G A. Therefore, A is a sub-
complete lattice of X. 

(2) implies (3). Suppose A is a sub-complete lattice of X. Then by 
definition A is a complete lattice in the induced order. Let $(a) be a 
net in A that ©-converges to x. Thus, lim-inf 4>(a) = x = lim-sup O(a). 
As all infima and suprema taken in A agree with those taken in X, we 
have that 4>(a) oA-converges to x. Conversely, if 4>(a) oA-converges to 
x, then 4>(a) o-converges to x, hence ©-converges to x. Thus both types 
of convergence agree and A is a sub-convergence lattice of X. 

(3) implies (1). Let A be a sub-convergence lattice of X. Let <ï> be a 
net in A ©-converging to x. Since ©-convergence agrees with oA-
convergence, <I> oA-converges to x. Since A is complete in the induced 
order, x G A. Thus, A is ©-closed. // 

COROLLARY 2.14. Let X be a convergence lattice and A a sub-
convergence lattice of X. Then %A-convergence {where ©A is the 
intrinsic order topology on A) and &\A-convergence (where a\A is the 
relative topology induced on A by S) coincide. 
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PROOF. By Theorem 2.13, A is ©-closed. It is well known (and easy 
to show) that for a net 4> in A, 4> ©-converges to x if and only if <E> ©|A-
converges to x, that is, for a closed subspace of a topological space, 
convergence in the subspace coincides with convergence in the whole 
space. Thus, 0|A-convergence agrees with oA-convergence. Therefore, 
o-convergence is derived from a topology on A and ©A-convergence 
agrees with oA-convergence as asserted. // 

The foregoing corollary says that the relative topology on a sub-
convergence lattice agrees with its induced order topology. Thus, 
each sub-convergence lattice is a convergence lattice (in the induced 
order). Examples of sub-convergence lattices are singletons, intervals, 
and maximal chains. 

THEOREM 2.15. Any complete chain is a convergence lattice. 

PROOF. It is known (e.g., [2", pg. 241] ) that in a (complete) chain, 
the order topology coincides with the intrinsic neighborhood topology 
obtained by taking the open intervals (a,b)= [a,b] V {a, b} as a 
base for the open sets. Now suppose <ï>(a) is a net ©-converging to x. 
This means that for any interval (a,b) containing x, there exists ß such 
that a ^ ß implies that 4>(a) G (a, b). Thus, Aa>ß&(a) S a, which in 
turn implies that lim-inf 4>(a) = a. Since this is true for any a with a < 
x, we have that lim-inf <!>(«) i? x by the completeness of X. Dual ob­
servations show that lim-sup 4>(a) ê x, so that we have x ^ 
lim-inf 4>(a) ê lim-sup 4>(a) ^§ x. Therefore, <É>o-converges to x. II 

THEOREM 2.16. Let Xk be a complete lattice for each A £ A. Let 
X = Y\ {Xx | A G A} and order X with the product (i.e., coordinate-
wise) ordering. Then X is a convergence lattice if and only if each X 
is a convergence lattice. 

PROOF. Let | • |x denote the (order-preserving) projection of X into 
Xx. A direct verification shows that X is a complete lattice. Further­
more, if A is a subset of X, then sup|A|x = |sup A|x and inf|A|x = 
|inf A|x. To show the first equality, for instance, let x G A. Then 
\x\k ^ |sup A|x whence sup|A|x ^ |sup A|x. If c E. X is such that 
|c|xü= \x\K for each x E A and each X £ A , then c è ï , wherefore, 
c ^ sup A. Thus, |c|x è | sup A|x. Therefore, sup|A|x = |sup A|x. 

Now assume that X is a convergence lattice. For each ß in A, set Bß 

= r i{ A x I* e A} where Aß — Xß and Ax = {Ox} for A / ß (Ox is the 
zero in Xx). Then Bß is a sub-complete lattice of X, which, by Corollary 
2.14, has its induced order topology coinciding with the relative 
topology from X. As X^ and Bß are order homomorphic and homemor-
phic, we have that each X^ is a convergence lattice. 
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To show the converse, we assume that each Xx is a convergence 
lattice. We now proceed to show that for a net <I>(a) in X, 4> o-
converges to x in X if and only if |3>(a) |x o-converges to \x] x in Xx for 
each X in A. 

First suppose that 4>(a) o-converges to x in X. Then there exist sub­
sets A and B of X such that A is up-directed, B is down-directed, 
sup A = x = inf B, and for any a G A and b £ B , there exists ß such 
that a^ß implies that a § j ( a ) § b. Then for each X, |A|X is up-
directed, |B|X is down-directed, and, by the first paragraph of this 
proof, sup|A|x = |x|x = inf|B|x. Moreover, if s G |A|X and t G |B|X, then 
there exists a G A and b G B such that \a\k = s and |b|x = t. Hence, 
there exists ß such that a è ß implies that a ^ *(a) = fo. Con­
sequently, 5 = |a|x = |*(a)|x = |6|x = *• Therefore, |4>(a)|x o-converges 
to |x|x for each X in A. 

On the other hand, assume that 4>(a) is a net in X such that for each 
X, |3>(a)|x o-converges to xk in Xx. We define x in X such that |x|x = 
xx for each X G A and intend to show that 4>(a) o-converges to x. For 
each X, there exist subsets Ax and Bx of Xx such that Ax is up-directed, 
Bx is down-directed, and sup Ax = |x|x = inf Bx. Define A = 
{a G X| |a|x G Ax for finitely many X and |a|x = Ox for all other X} 
and B = {fc G X| |fo|x G Bx for finitely many X and |fo|x = 7X for all 
other X}. 

Claim: A is up-directed and B is down-directed and sup A = x = 
inf B. For let s and £ be in A. Then there exist finite subsets S and T 
of A for which |s|x G Ax if X G S and |s|x = Ox otherwise, and \t\x G Ax 

if X G T and \s\x = Ox otherwise. Setting R = S U T, R is a finite 
subset of A. Define a in X such that |a|x = Ox for X $ R and |a|x ^ 
|s|x and |a|x ^ \t\k for X G R (this can be done since R is finite and 
each Ax is up-directed). Then aG A, a ^ s, and o è t In a similar 
fashion, B is shown to be down-directed. Since |sup A|x = sup|A|x = 
|x|x, sup A = x. Similarly, inf B = x. 

Now let a G A and b ELB and let C and D be finite subsets of A 
such that \a\x G Ax for X G C, |fo|x G Bx, |a|x = Ox for X $ C, and 
|fc|x = Ix for X $ D. Set E = C U D. Then for any X G £, there 
exists 0X such that for « ^ 0X, |a|x ^ | * ( a ) | x g |&|x. Let 0 ^ ft for 
X G E (note that E is finite). Then \a\k ^ |Ó(a)|x ^ |b|x for a ^ 0 and 
X G E. But for X $ E, |a|x = Ox g £>(a)|x ^ Zx = |fo|x for « ^ ß. 
Thus, a ^ <ï>(a) = b for a =S ß. Therefore, <ï> o-converges to x in X. 

In summary, 4>(a) o-converges to x in X if and only if |$(a)|x o-
converges to |x|x in Xx for each X in A. But |*(a)|x o-converges to 
|x|x in Xx if and only if |4>(a) |x ©-converges to |x|x since each Xx is a 
convergence lattice. As a net in the product topology converges if and 
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only if each projected net converges, we have that |*(a)|x ©-converges 
to \x\x if and only if |4>(a)|x T-converges to \x\k where T is the product 
topology on X generated by the order topology on each Xx. Frink [7] 
has shown that the order topology of a lattice product is the product 
topology generated by the order topology on each coordinate lattice, 
i.e., I = 0 on X. Thus, 4> oconverges to x in X if and only if 4> ©-con­
verges to x in X. // 

As an application of Theorems 2.13 and 2.16, we present the follow­
ing example of a generalized Helly space (cf. Kelly [10, Problem 5.M, 
Pg-164]). 

COROLLARY 2.17. Let X and Y he convergence lattices and define 
H as the set of all isotone functions on X into Y. Then H is a con­
vergence lattice. 

PROOF. Let Z denote n ^ * | Yx = Y and x G X}. By Theorem 2.16, 
Z is a convergence lattice. Claim: H is a sublattice of Z. For iff and 
g belong to H, t hen /A g may be defined by [ / A g] (x) = f(x) A g(x) 
for x G X. T h e n / A g is in H for if x g t/, then/(x) A g(x) ^f(y) A 
g ( x ) g / ( y ) A g ( j / ) . It is clear t h a t / A g S / a n d / A g g g. Ifh^f 
and h ^ g, then h(x) g / ( x ) A g(x) = [ / A g] (x). Thus, / A g = 
inf{f, g}. Furthermore, H is ©-closed in Z. For i f / G Z V H, t hen / i s 
not isotone, i.e., there exist x and y in X such that x < y, but/(x) ^ 
f(y). Since Y is ©-Hausdorff, there exist open sets U and V such that 
fix) G U,f(y) G V, t / n v = 0 , and if z G U and w G V, then 
z^w. The last statement follows from a result of Nachbin [13, § 1, 
Prop. 1] that states that in a convergence lattice, if a ^ fo, then there 
exist U G 77(a) and V G Tj(fo) such that U is increasing, V is decreasing, 
and UD V = 0 . Letting 77̂  denote the inverse set mapping of the 
z-th projection from Z into X, we see that N= 7rx(U) H 7fJ(V) is a 
neighborhood of / in Z. If g G N, then g(x) ^ g(t/) since g(x) G U 
and g(t/) G V. Hence N D H = 0 . Therefore, H is closed in Z. By 
Theorem 2.13, H is a convergence lattice. // 

Given a collection of complete lattices, there are several standard 
ways of constructing new partially ordered sets from the old. Theorem 
2.16 states that the cardinal product [2", pg. 55] of an arbitrary col­
lection of convergence lattices is also a convergence lattice. However, 
since the cardinal sum of two lattices [2", pg. 55] is not even a lattice, 
the cardinal sum of two convergence lattices is not a convergence 
lattice. The cardinal power [2", pg. 55] Yx with base Y and exponent 
X has been shown to be a convergence lattice whenever X and Y are 
convergence lattices (Corollary 2.17). 
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The ordinal product [2", pg. 199] and the ordinal sum [2", pg. 198] 
of two complete lattices are easily shown to be complete lattices [2", 
pg. 201, exercise 10]. The next two propositions show that the ordinal 
product and sum of two convergence lattices are also convergence 
lattices. 

PROPOSITION 2.18. Let X and Y be two convergence lattices. Then 
the ordinal product Z = X ° YofX and Y is also a convergence lattice. 

PROOF. Let (x, y) be an element of Z and C any up-directed subset of 
Z such that sup C = (x, y). If D = {d €E X | (d, e) G C for some e in 
Y}, then D is an up-directed subset of X and sup D = x. We intend to 
use Corollary 2.10 to effect a proof, but actually show only that 
sup X(x, y) = (x, y). 

We first assume that x G X(x). Claim: if b G X(y), then (x, b) G 
X(x, y). Notice that since x G X(x), x G D. Now let E = {e G Y | 
(x, e) G C}. Then E is an up-directed subset of Y and sup £ = y. 
Therefore, there exists some e in E such that b ^ e. Thus, (x, b) ^ 
(x,e) and (x, b) G X(x, y). If we let B = {(x, fo) | fo G X(y)}, then 
sup B = (x, sup X(y)) = (x, y) S sup X(x, y) è sup B. Therefore, 
sup X(x, y) = (x, y). 

We now assume that x (£ X(x). Claim: if a G X(x), then (a, y) G 
X(x, y). Since sup D = x and a G X(x), there exists some d in D with 
flâ d. Letting F = {/G D | / è d}, then sup F = x and / è a for 
each / G F. Clearly, there exists some particular g G F such that 
g > a since a < x. For this g, there exists some e G Y such that 
(g, e) G C. Thus, (a, y) ^ (g, e). Therefore, (a, y) G X(x, y). If we 
let A = {(a, y) | a G X(x)}, then sup A = (sup X(x), y) = (x, y) ^ 
sup X(x, y) ^ sup A. Therefore, sup X(x, y) = (x, y). // 

PROPOSITION 2.19. For two convergence lattices X and Y, the ordinal 
sum Z = X © Y is also a convergence lattice. 

PROOF. Observe that X and Y are disjoint sub-convergence lattices 
of Z whose union is Z. Now suppose thatO(a) is a net in Z©-converging 
to z. Assume first that z ^ Zx. Since X is open in Z, 4>(a) is eventually 
in X, that is, there exists 8 in the domain of 4> such that a = 8 implies 
<!>(«) is in X. Then the net (<I>(a); a = 8) in X ©-converges to z. 
Thus, by Theorem 2.13, V y è ô A a ^ * ( a ) = z = Ay*8 Vaày<&(<*). This 
gives z = V y g ô A a è y <D(«y ^ Vy Aa^y *(«) ^ Ay \/^y *(a) ^ 
Ayi»s Vaèy<l>(a) = z. Therefore, O o-converges to z in Z. A similar 
argument works if z = Oy. // 

We now give another example öf a family of complete lattices each 
member of which is a convergence lattice. (See Examples 3.1 and 3.3.) 
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THEOREM 2.20. A lattice in which each chain is finite is a con­
vergence lattice. 

PROOF. When all chains in a lattice are finite, both the ascending 
and descending chain conditions are satisfied. In this case, each ele­
ment is both compact and co-compact. Applying Corollary 2.10 com­
pletes the proof. // 

COROLLARY 2.21. Each lattice of finite length is a convergence 
lattice. 

§ 3. Examples. This section contains four examples of convergence 
lattices (Examples 3.1 to 3.4) and four examples of complete lattices 
that fail to be convergence lattices (Examples 3.5 to 3.8). Some of 
these examples are discussed in previous sections of this paper. 

EXAMPLE 3.1. Every finite lattice is a discrete compact convergence 
lattice. These lattices include examples which display the presence or 
absence of various lattice properties (e.g., modularity, distributivity, 
and complementedness) in reasonable combination. 

EXAMPLE 3.2. Complete chains and products of complete chains are 
all convergence lattices. Thus, we have the following examples of 
convergence lattices (in their natural order): 

(1) The unit interval/ = [0,1] . 
(2) The real subset {1/n | n is a natural number} U {0}. 
(3) The Cantor ternary set. 
(4) The closed ordinal space [0, ii] where fi is the first uncountable 

ordinal. 
(5) The Euclidean n-cell Jn. 
(6) The Hilbert Cube / " where w is the first infinite ordinal. 
(7) The Tychonoff plank [0, O] X [0, co]. 

EXAMPLE 3.3. Let W be an infinite set. Let X = W U {O, /} and 
order X as follows: any two elements in W are incomparable and 
O ^ wê I for every w G W. Then X is a non-compact discrete 
convergence lattice by Theorem 2.19. X is modular and complemented, 
but not distributive. Also, X is a complete lattice in which every ele­
ment is both compact and co-compact and X itself is bi-compactly 
generated. 

EXAMPLE 3.4. Let X = {(a, b) \ a = 0, 1, or b; b G [0,1] }. As a 

subset of the plane with the usual ordering, X is a distributive com­
pact connected convergence lattice that is not a topological lattice. 
Hence, X is not infinitely-distributive. This example contradicts a 
claim made by Frink [7, Theorem 2] stating that any distributive 
lattice is a topological lattice with respect to the order topology. 
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EXAMPLE 3.5. Let I denote the interior of the unit square in the 
Euclidean plane. Let Y = 7 U {(0,0), (1,1)}. Then Y is not a con­
vergence lattice since (0, 0) and (1,1) cannot be topologically separated 
(i.e.,© is not Hausdorff). 

Although Y is not a Boolean algebra, it does represent a conceptually 
simpler example of a non-©-Hausdorff lattice than the classic one due 
to Floyd [6, Theorem 1] that deals with the complete Boolean 
algebra B of all regular open subsets of the unit interval. Incidentally, 
Floyd's example answers (negatively) a question recently posed by 
Strauss [16, pg. 230, question (iii)] : "Is every [topological] lattice 
Hausdorff in its order topology?" 

EXAMPLE 3.6. Let A = {(*, 0) | x G [0,1)}, B = {(0, y)\yG [0,1)}, 
and Y = A U B U {(1,1)}. Under the coordinate-wise order, Y is a 
complete lattice. © is Hausdorff and compact and I = ©, yet Y is not a 
convergence lattice. Notice that Y is homeomorphic, but not homo-
morphic, to the unit circle of the plane. 

We use this example to show that, in general, o-convergence does 
not form a convergence class (see § 1 for definitions). We may show 
that C4 is not satisfied in Y by first letting D denote the positive 
integers, F the non-negative integers, and Em = D for each m in D. 
Define the sets E and B and the net i|f as in the statement of condition 
C4. Define the net $ by <I>(ra, n) = (1/n, 0) if m is even and (0,1/n) 
otherwise. Then o-limm o-limn 4>(m, n) = O. However, $ ° \fß fails to 
o-converge since lim-inf 4> ° \fß = O and lim-sup 4> ° \p = I. It is 
also easy to show that o -convergence in Y fails to satisfy C3. 

A curious thing about this example is that o-closure is indeed a 
closure operator. To demonstrate this we first define the sets V = 
{(a, b) G Y I a = 0} U {/} and H = {(a, b) G Y | b = 0} U {/}. Then 
both V and H are order homomorphic and homeomorphic to the unit in­
terval / = [0,1] with the usual (metric) topology /ut on / . It is well 
known that o-convergence in V and H agrees with convergence with 
respect to fi in / . Therefore, o-closure of a subset B of V (or H) is the 
same as its /Lt-closure in / . Hence o-cl(o-cl(B)) = o-cl(/x-cl(B)) = 
/LI-C1(/JL-C1(B)) = fjL-cl(B) = o-cl(B). Now let A be any subset of Y. 
Since V U H = Y, we have A= AD Y = AD (V U H) =(A Pi V) U 
(A H H). Thus, o-cl(A) = o-cl(A Pi V) U o-cl(A H H) and o-cl 
(o-cl(A)) = o-cl(o-cl(A PI V) U o-cl(o-cl(A H H)) = o-cl(A n v ) U 
o-cl(A Pi H) = o-cl(A). Therefore, o-closure is idempotent and satis­
fies all of the axioms for a closure operator. 

EXAMPLE 3.7. Let Y denote the collection of all non-negative real 
sequences {xn} (partially ordered component-wise) satisfying the 
condition sup xn < 1 together with the element I that has 1 for each 
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component. Then Y is a complete lattice. Since oclosure is a (topo­
logical) closure operator in a convergence lattice, we show that Y is 
not a convergence lattice by showing that o -closure in Y is not idem-
potent. Let A denote the collection of elements t/(ra, n) in Y for m, 
n = 1,2, 3, • • -, where the fc-th component of y(m,n) is defined as 
defined as follows: 

1/n if k = 1, 

0 if 2 g k g m, 

1 - 1/n i f f c ^ m - f 1. 

Then for a fixed n, j/(ra, n) o-converges to xn = (1/n, 0, 0, • • •). Thus, 
xn belongs to o-cl( A) for each n. Also, xn o-converges to O = 
(0,0,0, • • •). Hence O belongs to o-cl(o-cl(A)). But O ^ o-cl(A) as 
no infinite sequence of distinct elements in A is o-convergent to O. 
Therefore, o-cl(o-cl(A)) / o-cl(A). 

EXAMPLE 3.8. The following sets are constructed in the Euclidean 
plane: H = {(x, y) |0 S x ê 5, 0 g j / § 2 } , K = {x, y) |0 ^ ( / ^ 5, 
0 ^ x g 2}, and L = {(4, 4), (5, 5)}. Let Y = H U K U L. Then Y is 
a complete lattice that is not a convergence lattice since it contains a 
homeomorphic copy of the lattice of Example 3.6. This example is 
drawn from a paper by Kent [11, example 2] and corrects an error 
made there. (It is claimed in [11] that Y is a convergence lattice.) 

§ 4. Unsolved Problems. 
1. Show that conditions C3 and C4 of Section 1 are independent in 

a complete lattice. 
2. A complete lattice is 0-Hausdorff if and only if each ©-convergent 

net contains an o-convergent subnet. 
3. Every (distributive?) convergence lattice is a normal topological 

space. 
4. A complemented convergence lattice is not connected. 
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