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A PERTURBATION PROBLEM IN THE 
SCATTERING OF WAVES* 

PAO-LIU CHOW 

1. Introduction. There have been a great number of works done 
on the scattering of waves by an inhomogeneous medium, either 
deterministic or stochastic. A satisfactory treatment of this problem 
in three dimensions seems to be lacking. To be specific, consider the 
time-harmonic wave propagation governed by the reduced wave 
equation 

(1) Afi(r) + k2n2(r,€)u(r) = 0, [r| < oo, 

where A is the Laplacian operator in the space variable _r; k is wave 
number with Imffcj è 0, and n2 is the refractive index depending on 
a small parameter €. Assume that 

l i , x<o , 

and Tj is a given deterministic or random function of_r = (x, g). For a 
plane wave 

(2) Ui = Afäe**, x < 0, 

incident from the left half-space, we wish to determine the scattered 
field us(r, e) and the transmitted field uT(r, e), which satisfy a radia
tion condition at \r\ = » , so that 

is a continuously differentiable solution to (1). It is a common 
practice to utilize the small parameter e and seek a solution by the 
regular perturbation in e. As was pointed out in [4], in common with 
the initial-value problems, this method suffers the secular behavior in 
the perturbation series which gives rise to unphysical results. Also we 
presented various methods to circumvent this difficulty for stochastic 
problems. Among them is the so-called "parabolic" equation approxi
mation which has been applied to the deterministic or stochastic wave 
propagation at high frequency (\k\ » 1). By fixing ß = he = O(l), 
one can rationalize this approximation as the reduced problem of a 
singular perturbation problem [12] (for details, see [4]). In this 
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case, not only does the reduced equation have a different type, 
("parabolic" vs. elliptic), but the most vital information, the scattered 
field us, is left undetermined. Other perturbation techniques have the 
same defect. 

To illustrate the relevant points and to gain some insight into the 
three-dimensional problem, the deterministic problem in one dimen
sion will be reexamined. We shall adapt the method of averaging to 
obtain a uniformly valid solution for the reflection coefficient. Con
crete results are obtained in certain special cases. Then a brief re
view of recent works on the scattering by a random medium will be 
given. 

2. A Deterministic Reflection Problem in One Dimension. Let us 
consider the problem where the inhomogeneities are confined to 
0 = x^L. The half-space problem can be recovered as the limit 
L —» oo (with the aid of the limiting absorption principle if k is real). 
Then the solution in x < 0 and x > L can be written down easily 

(4) u((x)= {*' 
kx + R*e~ikx, x < 0, 

x> L, 

where the amplitude A in (3) is taken to be one, the reflection co
efficient Rç and the transmission coefficient T€ are as yet to be deter
mined. If rj is a constant, then 

(5) u£x) = Aeikix + Be~iki\ O g x g L , 

in which fci(c) = fcVl + €7). In view of (4), (5) and the continuity 
conditions on ue and u€X we get 

m(e)(e2ikiL- 1) , x r 

6 R.= / 2/ x 2ikl - > - m € a s L ^ o o , 

where 

n - l V I + erj - 1 
(7) m(€) = 7TT=vrT^TT-
For a nonconstant function rj(x), we prefer to work with the differen
tial equation governing a function closely related to the reflection co
efficient. A study of such equation may lead to a novel approximation 
of which an error estimate becomes possible. 

To this end, let us seek the interior solution in the form 

(8) u€(x) = AJixW** + B€(x)e~ikx, 0 < x < L. 

By the standard procedure of variation of constants, (1) can be reduced 
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to a canonical form 

<•» i ( î ) - - ^ a - r ) ( î ) - — < -
Then the continuity of u€ and u€X together with (4) imply that 

« (î)--(i)-(î)-"(5)-
Define the reflection function 

(11) *.(*) = B((x)IA(x). 

In view of (10), we have 

(12) 0.(0) = fl.. 

Invoking (9), it is easy to verify that <f>€ satisfies the complex Riccati 

equation 

(13) d*M = ^mx)e-,kx + eikx] 2, o < x < L, 
(XX Al 

and the terminal condition 

(14) &(L) = 0. 

This procedure is a variant of the so-called "invariant imbedding" by 
Bellman and Kalaba [ 1], who introduced a different reflection func
tion as a function of the thickness L. Noting (12), the solution of the 
terminal-value problem (13) and (14) evaluated at x = 0 gives B^. 

For a fixed k (or rescale x by x = kx), the form (13) suggests the 
use of the method of averaging by Bogoliubov and Mitropolsky [2]. 
However, to obtain a nontrivial result (</> =̂  0), we must first extract 
the principal contribution due to the inhomogeneous, linear part (see 
[3]). To this end, let 

(15) (f)€ = 0o,e + €(j)le7 

where </>0 € solves the linear problem 

(17) *o,.(L) = 0. Then a substitution of (15) into (13) and (14) yields 
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(18) 
+ 26(1 + to^-2**)*!,. + tôS-3**], 

(19) 4>U{L) = 0. 

The linear problem can be easily solved to give 

(20) 4>o,€(x) = (l/2)tfcc \L r)(t)exp{2ikt + ike P ri(s) ds} dt. 

In (18) and (19), if we set 

(21) 0 u (x )=O. (* ) e -*«<""* , 

they can be brought into the form 

(22) d Qjdx = (he2l2i)[ai £>€
2 + a2 Ot + a3], 0 < x < L, 

(23) Oc(L) = 0. 

Here the coefficients a{, i = 1, 2, 3, are given by 

(24) ai(x,e) = ri(x)exp{-2ik[x + (e/2) J* 17(f) dt] }, 

(25) <z2(x, e) = 2e " V x ^ x ) * - * * * , 

(26) a3(x,e) = «-ai)(*)0o,(*)exp{-2tfc [ x - (e/2) |* i j ( t )d t 1 } • 

Now we apply the method of averaging to the problem (22)-(23) to get 

(27) d ÖJdx = (fce2/2t)(â! â 2 + ä2Öe + fl3), 

(28) Ö.(L) = 0, 

where âj are the average values of a{ which, if they exist, are defined 

as 

(29) äi(e)= lim (HT) \T ai(x9e)dx> 

and 0€ denotes the average value of £>6. Since a{ are constants, the 
equation (27) can be solved readily. This is why we did not set e = 0 
in a{. Let $1>e be an approximation to <£1>€ when Q is replaced by Q in 
(21). Then, by invoking the first theorem of Bogoliubov [2], we can 
assert that there exists a small positive number €0 such that 
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sup \<f)€(x) - (j)0i€(x) - €# M (x ) | = o(e), 
/OQ\ xE[Q,L] 

fo r€ 2 L= O ( l ) a n d 0 < € g e 0 . 

Note that <5e = 0 when ä3 = 0. In this case, the linearized solution 
<f>0e given by (20) uniformly approximates <f>€ up to o(e), and hence 

« ,= (tfce/2) | L T?(*)exp J2ifc [ t + (e/2) j * 77(5) ds ] } d* + o(€), 

(31) 
e2L = O(l). 

A sufficient condition for (31) to hold is that <f>0t€ is square-integrable 
over [0, 00 ). However the necessary condition is not obvious. 

For example, we take 77 to be a constant. A trivial integration of 
(20) gives 

(32) 

and (29) 

(33) 

0o, 

yields 

,(*) = 

äi 

ä2 

an 

€T7 r^At o.r + * y r 

2 ( 2 + CT})1"'." 

= 0, 

= -1,2/(2 + «,), 

= Z^? eifc(2+t7; 

- V ) 

1)/. 

?2ifcx 
}> 

2(2 + er>)2 

Then the solution of (27) and (28) can be shown to be 

Ut( ' 2(2 + en) 
(34) 

•{>-->[-£?%«-'>]}• 2(2 4- er?) 

and hence, noting (30) 

«w «• - süT^r {«p* [<2+«*)L - w ^ ] - ' } • 
which agrees with the exact result up to o(e) for€2L = O(l). 

As another example for which 77 7̂  constant, let 

(36) 7)(x) = T70 COS fox, 

where 770 and b are some positive constants. Corresponding to (36), 
the expression (20) for <f>0 becomes 
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(t>0e(x)= (^fa?oe/2) cos bt exp[2ikt 
(37) ' ix 

+ ikr)0b~^(sin bt — sin bx)] dt. 

To simplify the computation of the average values äh we make use of 
the large parameter /c, and expand <£0 asymptotically to give 

<f>0e(x) (el4}ri0{e2ikx cos bx — cos bL 
(38) ' 

• exp[2ifcL + i/n70b
_1€(sin bL — sin bx)] }. 

Based on (38), it is found that 

ài = 0, 

(39) ä2= - 7?o2/4, 

53 = — (i7o3/16) c o s bL • exp[2i/cL + ikr)0b~le sin bL]. 

Upon substituting (39) into (27), the solution to the average problem 
(27) and (28) is simply 

(De(x) = — (l/4)rjo COS bL • exp(2i/cL 

+ ikr)0b-l€ sin bL)[ l - e-*V:-<«2/8)<L-*)] . 

In view of (15), (21), (38) and (40), we obtain, for large k 

R € ~ (l/4>foe{cos bL • exp[2i/cL(l - (1/16)T?0
262) 

(41) + ikr)0b-l€ sin bL] - 1} + o(e), 

f o r L = 0(e-2) . 

In general, we suppose that ax • 53 7̂  0, and the roots \1 ? A2 of the 
equation 

(42) axr
2 + ö2r + ä3 = 0, 

are distinct. Then it is easy to verify that the solution O of the average 
problem (27) and (28) is given by 

~ , v = A1\2{exp[(l/2)ifcâ1ÀQ(L-x)] - 1} 
1 ' u « u . {X1exp[(l/2)tfca1X0(L- x)] - A2} ' 

where A0 = kY — X2. 
The above method of determining the reflection wave can be 

generalized to the multi-mode propagation problem. To be specific, 
let us consider the following n X n matrix-differential equation 

(44) (d2ldx2)U€(x) + K2[I + eY(x)] U€(x) = 0, 0 < x < L, 
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where K is a real symmetric matrix, I is the identity and Y is a given 
matrix-valued function integrable over [0, L] . We wish to seek a 
solution matrix U€(x) of (44) which can be extended in a continuously 
differentiable manner to a function on ( — oo , a> ) such that 

{ pixK J_ p-ixKft x < 0 

e««t «ill 
in which R€ and T€ denote, respectively, the reflection and transmission 
matrices, and the unitary, exponential matrix eixK has its inverse being 
e-ixK Again let 

(46) U€(x) = e^A^ix) + e~ixKB€(x). 

The steps (8)-(10) can be carried over to the matricial case verbatim. 
Here, of course, A^x) and Be(x) are n X n matrices and the corre
sponding canonical equation reads 

( 4 7 ) d / 4 \ = W - W - Y | ( * ) \ / 4 . \ o < x < L 
( ' dx\Bj 2i V Y,(x) Y ^ / U , / ' ' 

and 

<«» _ ( î L - ( i ) - ( a : U - ( ï - ) -
In (47), Yi is the complex conjugate of Yt and 

Y,(x) = Ke^Yfa)«?**, 
(49) 

Y2(x) = KeilKY(x)e-"K. 

Let the reflection function <f>f be defined as 

(50) *€(x)=B.(*)A.- '(x). 

Then, noting the identity A~*x = — A ç ^ ' A ç ^ - 1 and (47), one can 
verify by a direct substitution that <f>€ satisfies the matrix-Riccati equa
tion 

dfijdx = (eWfcY^xfa + Y2(x)& 

+ &Y2(x) + Y ! ( x ) } , 0 < x < L , 

and 

(52) <fc(0) = R€ <k(L) = 0. 

As before, let <f>€ = <f>0e + €<f>le, where </>0e is the linearized solution of 
(51) and (52) given by 
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(53) 4 > o » = (kl2)M.2(x) \L M1(i)Y1(f)M2(i) dt M,(x). 

The fundamental matrices Mi and M2 solve the following initial-value 
problems 

(54) (dJdx)Ml = (6/2i)M1Y2, ML(0) = I, 

(55) (dldx)M2 = (€/2i)Y2M2, M2(0) = I, 

and satisfy the relations MY~l = M2 and M 2
_ 1 = M^ Analogous to 

(21), we set 

(56) <t>u = M2 (DeM!. 

Then the average (D€(x) is governed by the Riccati equation with con
stant coefficients 

(57) d Ojdx = (e2/2i)( Ö& <De + h2 öe + Öe53 + 54), 0 < x < L, 

(58) oe(L) = 0. 

Here the coefficients 5; are the average values of the matrices b^x) 

b,(x) = M1(x)Y1(x)M2(x), 

fo2(x) = €-1M1(x)0o»Y1(x)M2(x), 

fc3W = €-IM1(x)Y1(ac)0o»M2(x), 

fe4(x) = e-2M1(x)</>o,t(x)Y1(x)0o,€(x)M2^). 

If the solution of (57) and (58) is obtainable, we can again ascertain 
that 

(60) 1 ( ^ - ^ ( 0 ) - € öe(0)|| = o(€), 

where || • || denotes a matrix norm. 
The results presented in this section are believed to be new. How

ever, certain results on the gradual reflection of short waves by an 
infinite, inhomogeneous medium were reported recently by Meyer 
[10] at the 1975 SIAM National Meeting (June 11). His approach 
seems quite different from ours. 

3. Reflection by a Random Medium. The scattering of waves by a 
one-dimensional random medium has been treated by many authors 
(see, e.g., [6, 11, 13] ). In this case, the function r\ in (2) is a ran
dom function, and the equation (1) becomes a stochastic differential 
equation. To compute the statistics of the reflection coefficient R, 

defined by 

(59) 
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one may deal with the nonlinear stochastic equation (13) directly. 
For example, ifr)(x) is a stationary Markov diffusion process in x, then 
the joint process (0 l5 <f>2, 17) is a three-dimensional diffusion process, 
where <f>l9 <j>2 denote the real and imaginary parts of the reflection 
function <\>. Let g be a smooth function on R3, and let G be the condi
tional expectation 

G(X, Z\, %2-> Z3) 

(61) 
= E{g[*i(0>*a(0.*»(*)] l</>i(*) = zu(l>2(x) = z2,r,(x) = z3},x< t. 

It is known from the theory of diffusion processes [ 7] that G satisfies 
the Kolmogorov Backward Equation, with z = («„ z2, z3) 

( 6 2 ) ~=(^-l2) t^jiz) £%- +e
2Ì«^) f s A G , 

ÖX iJ^l dZidZj i = l dZi 

and the end condition 

(63) HmG(x,z) = g(z). 
xU 

In (62), the diffusion coefficients b{j and the drift vector a{ can be 
computed via (13) in terms of the correlation function, it Er) = 0 

(64) y(x)=E[rl(t+x)rì(t)]. 

Assuming that the transition probability density p(x, z; t, £) for the 
process (<£, 17) is smooth, it satisfies the Fokker-Planck Equation 

(65) àpldt = £?py 

and 

(66) l i m p ( x , z ; t , i ) = 8 ( 2 - i ) 
t\x 

where J!* designates the adjoint of £ and 8 stands for the Dirac delta 
function. Once the density function p is determined from (65) and 
(66), the mean values of all functions of R, e.g., the mean reflection 
power E|R|2, can be obtained by integrating it with respect to the 
marginal density in (</>l5 <f>2) after setting x = 0, t = L and ^ = £2

 = 0 
in p. Results obtained this way are exact. 

The perturbation theory comes into the picture through a limit 
theorem of Hashiminskii [8]. When rj is not Markovian but satisfies 
a strong mixing condition, the solution process (<£l5 <£2) of (13) and 
(14) will converge weakly to a Markov process as e —> 0, L —» 00 with 
Le2 fixed. Here the hybrid of the principle of averaging, laws of large 
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numbers and the central limit theorem yield some rather far-reaching 
results in stochastic differential equations. For the detailed analysis 
of concrete problems, one is referred to [6,11,13]. 

In three dimensions, however, there exist no parallel results. The 
reflection of mean waves was treated in [9] by the method of smooth
ing perturbation. The resulting integro-differential equation was 
solved by the Wiener-Hopf technique. The second-moment problem, 
determining the mean reflection power, has not yet been resolved. 
This problem is of great interest due to its importance in radio science. 
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