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SINGULAR PERTURBATION OF SOME QUASILINEAR 
PARABOLIC EQUATIONS IN DIVERGENCE FORM 

MIN MING TANG 

Let H C En, n â 2, be a smooth domain. Consider for every e > 0 
and t > 0 the initial value problem 

n d 

€Ut ~ 2 ~dxai^ f> u> Ux>e) 

4- a(x, t, u, ux, e)u + ef(x, t,e) = 0. 

u(x, t, c) = 0, for x G dil. 

u(x, 0, €) = ù(x, e), for x Œ fi. 
n 

(Q S ai(x9t9u,uXte)uXi^ v\Vu\2. 
t = i 

\ai(x,t,z,p,€)\^M(\z\ + |p|),and 

a(x, t, u, ux> c) ê 0, for any x G fl, f > 0, and z , p G f i X Rn. 

\f(x, t, e)\ < M for any x G fi,^ > 0, and 0 < e < 1. 

The purpose of this paper is to study the behavior of the solution 
of (/J as e —» 0. The methods employed here are similar to [5], where 
the stability of some quasilinear parabolic equations in divergence 
form is considered. 

Singular perturbation of quasilinear parabolic equations has been 
studied by Hoppensteadt [ 1]. He was able to obtain uniformly valid 
asymptotic expansions of the solution in terms of inner and outer 
expansions. However, many hypotheses were required to obtain his 
results. In particular, he required certain smallness criteria of the 
initial conditions. In this paper we are able to eliminate these special 
hypotheses. However, the equations we consider are of a more special 
type than was considered in [ 1] and our results are qualitative. 

We will assume a unique classical solution exists for equations (Ie). 
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Existence theorems for these equations can be found in [3]. [4] 
obtained maximum type principles for these equations. 

Our method of proof is first to obtain an energy type inequality to 
obtain an L2 estimate on the behavior of the solution in the spaces 
variables; and then obtain a Di Giorgi-Nash type inequality to improve 
the L2 estimate to an L °° estimate. 

We state here the results of this paper. 

LEMMA 1. Let u(x, t, e) be the solution of (7€). Then the following 
estimate holds: 

u2(x, t, €) dx ̂  ßx(t9 e) + ß2(t, e), where 
Jn 

0 i ( M ) = C (u(x,€))2dxe-6tl€and 

ß2(t,e) = (1/0)6 r [ f2(x,r,e)e~^-^dxdr. 
J o Jn 

8 = i>/c(mes 0)2 / n where c is given by the inequality 

f u2 dx ̂  c(mes fl)2'" f |Vu\ 2 dx foru G ÏÏ2
l(0). 

Ja Ja 

(eq.(1.2)[5]) 

Moreover, ßi(t,e) is of boundary layer type, and ß2(t,e) & 

o(«2). 
THEOREM 1. Let u(x, t,e) be a solution of (J€). Then, for t> yue, \i 

arbitrarily small, the following estimate holds 

\u(x, t, e)| g ßx(t, e) + ß2(t, e), where 

ßl(t,e)= (c€-^ r ^(r^dr^+Hand 
Jt-(3i4)ne 

J82(t,e)=(«-'A J' , ^ /82(T,e)dr^^). 
J t-(3l4)fjue 

* n + 2 • 

Moreover, ßi(t,e) is still of boundary layer type, and ß2(t, e) is 
0(€(3\-l)/(2+x)ji 

PROOF OF LEMMA 1. Multiplying equation (7€) by u, integrating 
over fl, integrating by parts, noting the hypotheses on the coefficients 
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of (Ie) and dividing by e, we obtain the inequality: 

— f u2dx + (2vle) f \\/u\2dx 

g 2 J \fu\ dx ^ (l/82) J / 2 dx + S2 J n w2 dx. 

Since 

(-2vle) f | V u | 2 d x ^ r 2 l ; ^ (2/n) f u2dx, 
Jn €c(mes il) Jn 

we choose 

02 = €c(mes fì)(2/n) 

We obtain the differential inequality 

y'(t) + 8iy(t)^m\af
2dx, 

where y(t) = u2 dx. 

Using a form of Gronwall's inequality, we obtain the desired result. 

PROOF OF THEOREM 1. We will only give a brief outline of the proof 
of this theorem, since it is somewhat technical. However, many of the 
details of this proof can be found in [5]. In a subsequent paper, we 
will include all the details and generalize the results. 

We need to define the following terms: 

(1) uk(x, t) = max{u(x, t) - fc, 0}, 

(2) Qa-alP^ = {I* » X0| < P - <TlP: *0 - (1 - <T2/i€) < * < *0}, 

(3) Akß) = {x| \x - x0| ^ p; t*(x, *) > fc}? 

(4) /i(fc,p, /u£) = mes Afc)P(r)dT, and 

(5) |w|n7. = essmax u2 dx + \\/u\2dx. 
0<f<T Jn Jo Jn 

Then multiplying equation (Z€) with ukÇ2(x, t), where £(x,t) is chosen 
suitably, we eventually can obtain the Di Giorgi-Nash type in­
equality 
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\U* Qt>- a , p , n e - o2n 

^ (yk){((<Tlp)-2 + (CT2JU£)-') f f (« - kfdxdt 

+ (k3+l)^k,p,^)}. 

We now define the following terms: 

(6) kh = k + fc(l - (1/2)"), 

(7) Ph = (1/2 + (l/2)^)p, 

(8) rh= (112+ (WY1*2)?*, and 

(9) yh = I"'" f (« - h)2 dx dt. 
J to-H jAk,„P.it) 

it h 

Using the above inequality, we can show that the following recursion 
relationship holds 

yh+l g (yle)2*> (l/fc2^)(l/p2 + l / ^ i + x , 

ft = 0, • • -, where A = 2/(n 4- 2). 

From [2, p. 66], yh —» 0 as ft—» oo if 

j/o < 2 - ^ 2 {(y/€)(l/fc2+^)(l/p2 + / t e ) } " ^ . 

Since 

î/o P° f (u - k)2 dx dt ^ 1° I" u2 dx d£ 
Jfo-(3/4)pte J AM3 / 4 )p J t0 - (3/4)/ ie J f ì 

f*0 D E F ~ 
=i (ßl(t,e)+ß2(t,e))dt= ß(t,e), 

J t0-(3l4)lJL€ 

we choose 

l (<y(l/p + M€))-I/A»-4/X, / x / 2 + 2 x 

Then 

P° f (w - 2/c)2 dx dt = 0. 

Therefore, u(x, t, e) < 2fc a.e. Since m spheres of radii p can cover 11 
and u(x, t, e) is a classical solution, then u(x, t,e) < 2mk. 
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In a similar manner, we can show that u(x, t,e)> —2mk. We have 
now proved the desired result. 
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