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SINGULARLY PERTURBED CONSERVATIVE SYSTEMS 

RICHARD SCHAAR 

1. Introduction. Singular perturbation theory has been applied to 
a wide variety of physical problems, cf. [1], [2], [3]. In these applica
tions, the problem is stated in the form of a system of ordinary differ
ential equations. 

dxldt = fix, y), x(0) = a 
(1) 

edyldt = g(x, y), y(0) = ß 

where x is an m-vector and y is an n-vector. It is then assumed that 
the algebraic equation 0 = g(x, y) has a solution y = 4>(x). Another 
assumption is that the m-dimensional system 

(2) dxoldt = f(x0Mx0)), x0(0) = a 

has a unique solution over an interval [0, T]. The solution of system 
(1) is then compared to (x0(t), <b(x0(t)) over the interval [0, T]. Most 
theorems dealing with these singularly perturbed initial-value prob
lems, cf. [4], [5], [6], and [7], assume that, over at least some portion 
of an open interval containing [0, T], the real parts of the eigenvalues 
of 

^(x0(t),<t>(x0(t))) 
dy 

are negative and bounded away from zero. 
To understand this condition physically, we convert time scales by 

letting T = tie-, system (1) is transformed into 

dxldr = e fix, y), x(0) = a 
(3) 

dyldr=g(x,y),y(0) = ß. 

System (3) is a regular perturbation problem and has a reduced prob
lem, 

dx0ldr = 0, ï0(0) = a 
(4) 

dtjoldr = g(a, y0), y(0) = ß. 

The condition on the eigenvalues of dg/dy implies that (a, 4>(a)) is 
an asymptotically stable critical point of system (4). 

The asymptotic behavior of (x, 4>(x)) implies, in physical terms, that 
the process described by the {/-variables tends very rapidly to equi-
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librium. However, in some physical problems, cf. [8] and [9] , 
the process modeled by the singularly perturbed variables oscillates 
rapidly about the equilibrium solution. The current paper deals with 
this type of physical behavior. 

Other authors have examined similar problems. Mitropolski [10] 
considered a system of the form 

e2d2xkldt2 + (ok
2xk = eFk(xi, * * ^x^edxjdt^dxjdt) 

xk(0) = ak,edxkldt(0) = ßk; k = 1, • • -, n. 

where each o)k is a constant. The boundedness of {xk(t)} and {edxkldt} 
over an interval [0, T] is determined by examining the functions Fk 

when its arguments are replaced by the solutions of 

€2d2xkldt2 + (ox
2xk = 0 

(6) * 

**(0) = a*>€~^j~ (°) = At, & = 1, ' • ', n. 

In this paper, we examine a more general problem than system (5). 
We will consider vector differential equations where <ok is a function 
of t. Scalar problems with co, a function of t, have previously been 
examined (cf. [11] and [12]); the results of these works are also 
expressed in terms of conditions on the function F(x, edxldt). We 
will state boundedness results in terms of conditions on the set 
(ok(t); k = 1, • • -, n. 

In the next section, we will state the problem to be examined and 
the conditions on the set {(ok(t) | k = 1, • • -, n}. § 3 will contain cer
tain preliminary lemmas needed to prove the main result. In § 4, the 
main theorem will be proved. 

2. Formulation. Consider the system of differential equations 

dxldt = f(x, y, e2dyldt) + e2f (x, y, edyldt) 

€2d2yldt2 = g(x, y,€2 dyldt) + e2g(x, y, edyldt) 

where x is an m-vector, y is an n-vector, and € is a small positive param
eter. Let the "reduced problem" 

dx0ldt = f(xo,yO90) 

(8) 0=g(x o , î /o ,0) 

*o(0) = a, 

where a is an arbitrary initial-vector, have a unique solution on the 
interval [0, T]. 
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We suppose 

H 1. If 4>(xo) is the solution of 0 = g(x0, 4>(x0), 0), then y0(t) = 
<S>(x0(t)) is twice continuously differentiate on [0, T] with bounded 
second derivative. 

Because we are examining systems without asymptotic stability, the 
initial-vectors for equations (7) must be restricted. We will consider 
two possible scalings and suppose 

H 2. x(0) = a, 

(9) i/(0) = t/0(0) + eß 

^ ( 0 ) = dy0ldt(0) + €•- %v = 1 or 2 

where ß and y are arbitrary n-vectors. 

We assume 

H 3 . / and g are of class C2 and C3, respectively, in an open set 
EC Rm+n+n containing (x0(t), y0(t), dy0ldt(t)) for t G [0, T]. f and 
g are of class C° and C1, respectively, in E. 

To insure that we obtain oscillatory behavior, we may suppose 

H 4. The eigenvalues of 

are negative. Denote them by — o)k
2(t) where «*(£) > 0 for t (E 

[0,71. 
To avoid problems of internal resonance, we assume 

H 5. If for any t E [0, T], co^t) = a>j(t), then i = j . 

A technical assumption that is needed when v = 1 is 

H 6. Let <i)i, (ûj, coA be any three elements of {a)k \ k = 1, • • -, n}. 
Then there exists not EL [0, T] where co^t) = <Oj(t) + (o^t). 

The principal theorem is: 

THEOREM 1. Given systems (7) and (8), suppose H 1-H 6 /ioW. 
Then there exists C > 0 and e* > 0 swc/i that the solution of system 
(7) with initial conditions satisfying equations (9) exists on [0, T] and 
sa£is/ies 
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|*(*,€) - *o(*)l + \y(t,c) - yo(t)\ + €\^(t,€) -

dy0ldt(t) | ^ Ce1, 

there, provided 0 < e ^ € *. 

This theorem will be proved in § 4. 

3. Preliminaries. The proof of Theorem 1 will crucially use a 
theorem on averaging proved by Sethna and Balachandra [13]. 
Their result examines problems involving multiple time scales t, et, 
e2t, etc. For example, consider 

dzldr = eF(z,T,er) 
(H) 

z(0) = z0, 
where z is an n-vector. If we define the "average" of F(z, r, er) to be 

— CM 

(12) F(Z,T1)= lim 1/M F(z,s,Ti)ds 
M^°° • ' 0 

and we define the "averaged problem" to be 

dzldr = eF(z, er) 
(13) 

z(0) = z0, 

the theorem of Sethna and Balachandra gives the relationship between 
the solutions of systems (11) and (13) over an interval of the form 
[0, Tie]. 

We will state a modified version of their result without proof. Their 
proof of Theorem 1 [13] with minor modifications will prove the 
theorem stated below. 

Consider the system of differential equations 

dzldr = ef(r, er, ai(e)r, • • -, O^CJT, Z, e) 
(14) 

+ € 2 / ( T , € T , a ! ( € ) T , • • •, 0^6>T, Z, c) 

where z, f, and / are n-vectors and e is a small positive parameter. 

A 1. The scalar functions a^t) are such that 

Oi(e) ^ 0, monotone increasing ine, 

o^e)—> 0 ase—» 0, 

ai + l(e)loi(e)^> 0 ase —> 0, i = I, • • -, r — I, and 

ela^e) is bounded as e —> 0. 
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Denote the interval [0, T] by L 

A 2. The functions f and f are mappings into Rnfrom 

JL = {(T9€T9TÌ9 • • -,Tr,z,€) | 0 

S T, 6T G /, Ti E I, t = 1, • • -, r, z E G, 

a bounded domain in Rn
9 0 ^ € ̂  € x}. 

The function f is continuously dijferentiable in ji9 i = 1, 
and Zj and there exists a positive constant ML such that 

\f\^Ml9\ -&- \^Ml9\ -&- \^Ml9and 

\f\ g Mx on X. 

The function f is continuous in r and er in JL. 

A3. The limit 

/O(TI, ' * %rr, z,e) = 

lim 1/M f(s,€S,Th • • -,Tr,€) ds 

existe uniformly for T{EL l,i = 1, • • • , r , 2 G G 5 and 0 ̂  € = ev 

A 4. 77ie limits 

MT i> ' ' -,Tr,z,€) 

lim UM —— (s, es, TÌ9 ' • -, Tr9 z9 e) ds 
JO dTj 

i = 1, • • * , n ; j = 1, • • -,r 

giAl , * * -,Tr,Z,€) 

_ fM d£ 
= lim 1/M —— (s, es, TX, • •-,Tr, 2, c) d$ 

M^oo J 0 dXj 

i,j=l,'-',n 

exist uniformly for Ti E I, i = 1, • • -, r, £ E G, and 0 ^ e â €x. 

A 5. 77ie differential equation 

(15) dz/dr = €/o(ai(e)r, • • -, a ^ T , z, e) 

fozs a unique solution for 0 ^ r. 
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THEOREM 2. Let A 1-A 5 hold. Then given any 8 > 0, there exists 
€2 > 0 such that iffy and <j> are respectively the solutions of equations 
(14) and (15) with ^ (0 , q0, e) = <f>(0, q0, e) = q0, and if <\> with its Q-
neighborhood for Q > 0 lies inside G for O i i â Tla^e) and 
0 < e ^ e l5 then for all 0 < e g e 2 and O ^ T S T/a^e), |^(r) -
*(T) | < 8. 

To show how this theorem is applied, we prove the following 
lemma. 

LEMMA 1. Let A and B be n-vectors where A = col(Al5 • • -, An) 
and B = col(B1? • • -, Bn). Let B be the sum of some subset of {B;}. 
Let 6(s) be a scalar function continuous in s. Let £ be an m-vector and 
F(r1? £ A) he a p-vector. Let 

f(r>€T9rl9tA9B9€) 

= F(TÌ7£A) 0(€T) COS( J' 6(eu) du + B^j 

where F satisfies A 2 of Theorem 2 for 0 ^ rl ^ T and (£ A) in a 
bounded domain G Ç Rm +n. Then 

CM 
(a) lim UM f(s, es, rl91 A, B, e) ds = 0 

M-oo Jo 

(b) lim 1/M \M -^j-(s,es,Tl,Ç,A,B,e)ds= 0 
M^OO Jo drl 

(c) 

, m 

(d) 

(e) 

lim 

lim 
M->°° 

lim 
M - » 0 0 

fM 

1/M 
Jo 

CM 

1/M 
Jo 

fM 

1/M 
Jo 

i = 1, • • -,p 

4 ^ ( ^ 6 5 3 T 1 , | ? A , B , € ) ^ = 0 

t = 1, • • ',p;j = 1, ' 

- ^ - ( 5 , € 5 , T 1 , è A , B , e ) d s = 0 
dA, 7 

i = 1, • • ',p;j= 1, * 

i = 1, • • ',p;j= 1, ' * s 

uniformly for 0 ^ T! = Tand (£ A) G G and for arbitrary B. 

PROOF. Integrating, we find 
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because 

[M d(es) cos ( P 6(eu) du+ Bj ds 

= sin ( [M e(€u) du + £ Ì , 

I 1/M sin ( j M $(eu) du + B ) I ^ 1/M, 

lim I 1/M sin ( I™ 6{eu) du + B ) \ = 0 
1/̂ =0 I \ J o / I 

uniformly in B. Hence 

lim 1/M \M 0(es) cos ( P 6(eu) du + B) ds \ = 0 
M_oo I Jo \ Jo / I 

uniformly in B. Since F(TU £ A) along with all of its partial deriva
tives are uniformly bounded for 0 =§ rx ^ T and (£ A) G G, conclu
sions (a), (b), (c), and (d) are proved. Conclusion (e) is proved by 
noting that the argument used in part (a) is equally true if / is de
fined in terms of sin(/j0(e.s) ds + B). This proves lemma 1. 

Theorem 2 implies that the solution of the origin problem is close 
to the solution of the "averaged problem." Lemma 1 simplifies the 
"averaged problem" by implying that terms of a particular form, i.e., 
the function f of Lemma 1, "average" to zero. This procedure will 
be used in the next section to prove Theorem 1. 

4. Proof of Theorem 1. Let eÇ(t) = *(*) - x0(t), e j (t) = y(t) 
— y0(t), and $2(0 = dyldt — dyjdt. Differential equations (7) 
transform into 

d&dt = fl(t)€ + f2(t) jx + eFtf, n , i2,t,e), 

ed iJdt= i2> 

ed , s/dt = g,m + g2(0 i i + * [g(2)(t, t ji) 

(16) +g(xo ,(/o,0) 

+ g3(*)( ? 2 + dyo/* - ^ V ^ 2 ] 

+ « 2G(£j i, î2,*.€). 

£ ( 0 ) = 0 , jxCO) = e-V3, * 2(0) = «'-•?, 
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where f^t) = dfldx(x0(t), y0(t), 0), etc.; where 

e 2 F(£ il9 u,t,e) = f(x,y,e*dyldt)-f(x0(t\y0(t\Q) 

- €fx(t)€ - ef2(t) i + €2f(x, y, € dyldt); 

where g{2){t, £ $x) consists of all quadratic terms in £ and j x; and 
where 

€3G(£ il9 j2» *>€) = g(x> y > e 2 dyldt) -

g3( 2̂ - d v * 2 ) ] + *2g(*> y>€ < ¥ * ) . 

- e2g(*o, !/o, 0). 

Because g(x, j / , e2 dyldt) is C4 and (x0(£), j/oW) *s C1 o n [0, T], 
g2(f) is C1 on [ 0 , 7 ] . From H 5 and a theorem of Gingold [14], 
there exists a non-singular matrix S(t) G C1 such that 

(17) S-*(t)g2(t)S(t)=D(t) 

where 

D(f) = diagonal ( - a)k
2(t)). 

Equation (17) implies that œk(t) G Cl on [0, 7] for fc = 1, • • -, n. 
Using the matrix S(t), we apply the transformation 

£=t u = Sd - g2
_ 1gif ,and §2 = Sf2 

to system (16) and obtain 

d&dt=(fl-f2g2-i)€ + f2Si1 

+ eF(ï,Çl,Ç2>t,e), 

AY I At Y C - l d S Y _|_ C-l rf(g2~1gl^) 

(18) edtz/dt = D{t)£x - eS-ldSld%2 

+ cS-l[g*Kt, tii) + g.3 (*)(% + dyoldt) 

- d2y0ldt2 + g(x0, i/o, 0)] + e2G(£ d, £2, t, e), 

€(0) = <U,(0) = 6-'S-i(0)/8,i;2(0) = 6-'S->(0)y ; 

where F ( ^ , ^ , ^2, *,e) = 

F ( | , S C 1 - g 2 - 1 g 1 ^ S ^ , t > e ) , e t c . 

Let (V)j denote the tth component of the vector V. We now apply the 
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additional transformation, 

6k(t)= l /€ P a>k(s)ds+ Bk(t) Jo 

(19) (CÙ = Ak(t) sin(0k(t)) 

(l2)k = <*k(t)Ak{t) cos(6k(t)). 
It we let 

system (18) is transformed into the following system of differential 
equations. 

d€ldt=(fl-fag2-
lgi)€ + 

+ /2S col(Afc sin 6k(t)) + eF 

dAkldt= - ^ • ^ c o s 2 ö f c + 
dt ù)k 

+ ( <3\)k S i n 0fc + ( ^ ) f c COS 0* 

(20) wfc 

fc = 1, • • - , n , 

dBkldt = (Afcwfc)~ ' ( - ^ & k cos 0fc sin 0fc + 

+ ( $fe)fc sin 6k + ( ̂ i)fca)fc cos 6k) 

k = 1, • • -,n, 

^(0) = 0,Afc(0) = 6"-i[(S-K0)i3)fc
2 

+ aifc-2(0)(S->(0)y)fc2l^, 

andO^B f c(0)^27T. 

To apply Theorem 2 to system (20), we need to change time scales 
by letting er = t. In an expression of the form f^t) ~ f2(t)g2~l(t)gl(t), 
we let t = ai(e)r where c*i(€) = €. In terms containing 0k(t), we con
vert to T, 

0fc(er) = l/e J o)k(s) ds + Bfc(€T) 
o 

= I*7 cufc(€5) ds + Bk(r) = §k(r)9 
Jo 
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where 

Bk(r) = Bfc(€T), etc. 

To define the domain G of Theorem 2, we examine the linear dif
ferential equations 

(21) +g2-1gi/2S + g 3 SK] f c 3 ] zk, 

zk(0)= Afc(0), fc=l, • • • , n , 

where efc is the n-vector with 1 in the fcth component and zeros else
where. Let 

(22) a = sup zk(t) k = 1, • • -,n 
tG[0,T] 

and 

(23) jLi= inf zfc(*), fc = 1, • • - ,n , 
f E[0,T] 

where we note that /x > 0. 

Define 

G = { ( £ Ä ? B ) E R - ^ | | f | < M / 2 , 
1/2M < (A), < er + M/2, |(fi)fc - Bfc(0)| < ,*/2}. 

To determine the "averaged problem" associated with system (2), 
we first note that because (£i)fc

2 + ((,2)k2<*>k2(t) = Afc
2, F and G are 

uniformly bounded for (f, A, B) G G. Hence, the terms arising from 
F and G can be set equal to zero in the "averaged problem". This 
simplifies ^ and ^ 2

 m system (20) to 

^ 1 = S _ 1 (""f" •col(A)csinöfc) 

. rf(g2"'gl)^ • 

col (Ak sin 0fc)] j 

g?2 = S _ 1 [ — dS/dt • col (cOfcAfc cos 0^) 

+ gm + g3(S • col (wfcAfc cos 0fc) 

+ dt/„/^) - d2y0ldt2 + g(x0, y0, 0)]. 

(24) 
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To use integral averaging, we note that terms involving only one 
trigonometric function like sin(/0

Ta>fc(€s) ds + Bk) average to zero 
after multiplying by cOjt(€r)/o)fc(a1(e)T) and applying Lemma 1. Terms 
involving products of sin 0k(r) and cos ßj(r) can be written as a sum of 
sin(fye(T) + OJ(T)) and sin(0fc(r) - ^(r)). Multiplying by (cofc(€r) 
+ «i(€T))(wfc(a1T) + C O ^ T ) ) - 1 and, if k^j by (a>fc(€r) - co^er)). 
(<*>k(aiT) ~~ ^ ( Ä I T ) ) - 1 , respectively, we find by Lemma 1 that the 
average is zero. Products of sin 0*(T) and sin 0J(T) in the same manner 
average to zero if k ^ j . If k = j , sin20fc = 1/2(1 — cos(2 0fc)), which 
averages to 1/2. The same procedure works for products of cos 0*(T) 

. and cos 6j(t) with the average of cos2 6k(r) being 1/2. Using this infor
mation, we note that from System (24) 

( é?i)fc s m 0fc averages to 

( ^\)k c o s \ averages to zero, 

( ^2 "" S~lg(2))k s m Ok averages to zero, 

and 

( ^2 "" S~ !g(2))fc c o s #fc averages to 

r / dS œkAk a)kAk \-i 

Ls -i\-ir'e'<—+&Sme'<-j-)\k' 
At this point, the value of v becomes important. If v = 2, the terms 

quadratic in {Ak} are multiplied by e2 and can be set equal to zero in 
the "averaged problem". If v — 1, these terms are only multiplied by 
e; and H 6 must be applied. Terms quadratic in {Ak} are multiplied by 
products of three trigonometric functions; such products can be 
written as sums of either sines or cosines with arguments that are 
either 0;(T) + 6j(t) + 6k(t) or 0;(r) + 6j(t) - 6k(t) for some i, j , k = 1, 
• • •, n. 

The first type averages to zero after multiplying by 

CO^CT) + 0)j(€T) + (Ok(€T) 

ù>i(aiT) + <Oj(aiT) + tokia^).. 

By H 6, CÜJ(€T) + O>J(€T) — (ok(€r) ^ 0; hence, with the same pro
cedure we can average the other terms to zero. Therefore, the quad
ratic terms in {Ak} are not present in the "averaged problem". 
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The "averaged problem" for £ therefore, is 

dioldr = €[(/i(€T) - /2(€T)g2-l(€T) 

(25) gl(€T)]fo 

fi>(0) = 0. 

System (25) has f0(r) = 0 as its solution; this information further 
simplifies the "averaged problem" for A and B. 

dÄoldT = e/2 diagonal ( -r^(€r)cofc(€T)~1 

+ [ s " 1 ( e T ) ( - 2 f^ + 

(26) + &~'g^61") + &S<€T)) e* ] fc ) " ^' 
(Âo)jt= Afc(0), fc= 1, • • -,n, 

dBo/d* = 0, 

(fio)fc=Bfc(0), * = 1 , •••,»». 

Comparing the solution of system (26), with that of system (21); if 
Q = /x/4, the solution of system (25) and (26) and a Ç-neighborhood 
of the solution is contained in G for all 0 < e ^ 1 for 0 ^ r ^ Tie. 
Hence, Theorem 2 applies. 

In Theorem 2, if we set S = tt/4, we find that 

\i(r)\ S" M/4 

| A , ( T ) - Zfc(€T)| ^ At/4 

(27) fc=l, • -,n, 

|ß f c(T)-fi f c(0) |^/i /4, 

fc = 1, • • -, n. 

for all 0 < e = €* for 0 ^ r = Tie where e* is sufficiently small. 
The middle n inequalities imply that 

(28) \Mt)\ ^ \zk(t)\ + /i/4 ^ a + pl4. 

When we convert back to the origin time scale t and back to the 
(£ £i> H) system, we see that inequalities (27) and (28) prove 
Theorem 1. 
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