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BIFURCATION OF 2mth ORDER NONLINEAR ELLIPTIC 
PARTIAL DIFFERENTIAL EQUATIONS 

DAVID WESTREICH 

ABSTRACT. Eigenvalues of the linearized part of 2rath 
order elliptic partial differential equations are shown to be 
bifurcation points. 

Introduction. C. V. Cofiman [5] and E. T. Dean and P. L. Chambré 
[6] among others (see for example [9] ) investigated the bifurcation 
problem for elliptic partial differential equations of the form Au = 
\P(x)u + G(X, u,x), restricting themselves to second order equations. 
Cofrman showed that if G(X, u, x) = XG(w, x) and either Gu is bounded or 
G is odd in u then every eigenvalue of the linearized part is a bifurca
tion point. Apparently his methods cannot be extended to the instance 
where G depends nonlinearly on X. Under less severe conditions Dean 
and Chambré proved that the principle eigenvalue is a bifurcation 
point. In this paper we consider the equation where A is a linear 
partial differential operator of order 2m, G is a nonlinear function of 
X, and trade off (Hoffman's unduly restrictive assumptions for a greater 
degree of differentiability of the terms to show that bifurcation occurs 
at every eigenvalue. 

Main Results. Let A be a formally selfadjoint elliptic [ 1, pp. 95-96, 
45] linear partial differential operator of order 2m defined on a 
bounded domain ft in Rn with sufficiently smooth boundary. Con
sider the boundary value problem 

Au = kP(x)u + G(X, u,x) x G ft 

Z>u = 0 xEdil \a\^m-l 

where X G R and P(x) and G(X, t, x) are real valued continuous func
tions on R X R X ft. We are interested in the existence of solutions 
(X, u) satisfying (1) for u small and X near the eigenvalues of the linear
ized equation 
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Au = kP(x)u, x £ ( l , 
(2) 

LHI = o, x G an, H § w - i . 
To be more precise we assume A is uniformly elliptic [1, p. 71] 

and can be expressed in divergence form 

Au = £ ( - l ) N D ^ ( x ) D % ) 
M,l/8|Sm 

where a is the n-tuple of nonnegative integers: a = (a^ • • -, a j , Z> = 
Yl]=i (dldXj)<* with the_order of Da defined by |a| = ax + • • • + a», 
aa/s(*) = 0/*a(*) G C2m(fì) (Ck(R) the space of bounded fc times con
tinuously differentiable functions defined on K). We further assume 
that P(x) e C3™(fi), \P(x)\ ^ 0 for x G fi, G G C2(R X R X fi) 
and G(X, t, x) = o(£) uniformly for A. near eigenvalues of (2) and all x. 
An eigenvalue \0 of (2) is said to be a bifurcation point if every neigh
borhood of (X0, 0) (in the R X C(ii) topology) contains a nontrivial 
solution, that is a solution (X, u) ^ (X, 0), of (1). With our assumptions 
we can prove 

THEOREM. Every eigenvalue of (2) is a bifurcation point of(l). 

PROOF. Let X0 be an eigenvalue of (2). To complete the proof we 
will show that A is a closed linear operator in a suitable Banach space 
and reduce the problem to one of finite dimension and apply M. S. 
Berger's bifurcation theorem [3] which we state in our context as 
follows. In a real Hilbert space H, let L be a compact selfadjoint map 
of H-> H and let T G C2 be a gradient operator [10, p. 54] (for 
fixed X) mapping a neighborhood of (X0, 0) G R X H into H such that 
T(X, 0) = 0 and TX(X, 0) = 0, and suppose X0 is an eigenvalue of L. 
Then X0 is a bifurcation point of the equation Lx = Xx 4- T(X, x). 

As our first simplification we set |P(x)|~1/2 V = u. Then (1) is equi
valent to the problem 

Ät; = kfiv + G(X, v, x), x G f l , 
(3) 

D°v = 0, x G dft |a| g m - 1, 
where Ä = |P|-^AlFl"1/2, G = iPfr)!-1'2^*, |P(x)|-1/2i>,x) and 
/Lt = P(x)l\P(x)\ (that is ± 1). It is readily verified that 

M,l/8|Sm 

is a selfadjoint uniformly elliptic linear operator, äaß(x) G C2m(fl) and 
Xo is an eigenvalue of the corresponding linearized part. 

To find a suitable Banach space and domain for Ä we let C0 "(ß) be 
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the space of infinitely continuously differentiable functions with com
pact support in ß and let \^2

m (ß) be the closure of C0 "(O) with respect 
to the norm 

M l . - 2 |£H»|2-m. 
\a\£m 

By Gârding's inequality there exist constants y, 8 > 0 such that for 
v G ÏÏ2

m(£l\ 

(4) S f äaß(x)D°v • D ^ dx ê r||t;||2)m - «||o|U»w 
M.l*l*m J " 

[1, p. 78]. Thus for / £ C ( Û ) there eixsts a unique generalized solu
tion v G \^2

m(fì) such that (Ä + 8I)v = / [4, p. 199], [1, p. 102]. 
Moreover, by regularity (see [2, section V] and the references cited 
therein) we also have v G C2m-X(ß) H Cm-l(â), D«ü = 0 for x G dïl 
and |a| S m — 1 and for |a| = 2m, D°t; G L2(ß). I f / is also Holder 
continuous [2] then v G C2m(fì). We therefore let C be the space of 
continuous functions on 11 vanishing on the boundary, with the supre-
mum norm and define the domain of Ä, D(A) = (Ä + 87)_1(C) and let 
A be defined by Äu = / - &u for u G D(A) w h e r e « = (Ä + S/)"1/ 
Now D(Ä) is dense in C. Indeed, if v G C, for any subdomain ß ' of 
ß with closure contained in ft we can define v ' = v for x G ft ' and 
Ü ' = 0 otherwise. Let Je be a mollifier as defined in [1, p. 5] . Then 
Jfv ' G C0 °°(ft) and J€v ' —» v ' uniformly in ft" as e -» 0 for any ft", with 
ft" C ft ' [ 1, p. 5] . Thus C0 °°(ß) is dense in C and as (A + 8I)(C0 °°(ß)) 
C C it follows C0 °°(ß) C D(A) and so D(Ä) is dense in C. 

Now we show that A is closed on D(A) in C. As Ä defined on D(A) 
is symmetric in L2(ß) a Hilbert space, A has a minimal closed extension 
in L2(ß), also denoted Ä, with domain DL(Ä) [8, p. 56]. Thus since 
k\\v\\c Ü£ ||t>||L

a(ft) it follows that A has a minimal closed extension in C 
with domain DC(A). However D(A) = DC(Ä). Indeed, suppose t> G 
DC(Ä) and let / = Av. Then as DC(Ä) C DL(Ä) there exists a {t;*} 
C D(Ä) such that t^-* v in L2(ß) and At^-» Av in L2(ß). By (4) and 
the Cauchy-Schwarz inequality 

S Jn (A + 81)^ - t;,.) •(!>,-«,)£& 

g ||(A + 8Z)(t>, - ^)||L2(fì)|h - vjfato. 
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Hence {Vi} converges in \#2
m(ß) and v G W2

m(0). As the bilinear 
form associated with Ä is bounded in \yT

2
m(fi) and / + òv G C it fol

lows that v is a generalized solution of (Ä + 8I)v = g = / + ôv. But 
then v G D(Ä). Therefore A is closed on D(A) in C. 

By the "Fredholm alternative" for uniformly elliptic operators [4, 
p. 199], [1, p. 102] it follows the null space of Ä - kQnI, N(Ä -
kofil), is finite dimensional and by regularity contained in C. In addi
tion (Ä - Xo/ui)0 = / for / G C if and only if Jaf • 0 dx = 0 for all 
0 G N(Ä - AOMJ)- Thus as C = N(Ä - k0fil) © N(A - kofil)1 (where 

tf(Ä - AOMJ)1 = {</* G C | J i/r • 0 dx = 0 for0 G N(Ä - X0/ui)}) 

it follows that C = N(Ä - X0/xi) © R(Ä - X0/iJ) (R( * ) denotes the 
range of Ä — Xo/xi). 

Therefore t> G C is uniquely of the form v = 0 + i/r, 0 G iV(Ä — 
X0/ii)and^ G R(Ä - X0/ii)andG = Gzv(X,0 + </r,x) + GR(X,0 + <M) 
where Qv £ #(Ä - X 0 / A / ) and GR G R(Ä - X0/xi)- Clearly Ä -
X/ui : N(A — Xo/xi)-» 2V(Ä — k0jjLl) for all X and as the resolvent of a 
closed map is open, A — X/ui is a one-one map, with uniformly 
bounded inverse, of D(A) fi R(Ä — k0fil) onto R(Ä — X0/ii) for all 
X near X0. Thus finding solutions of (3) is equivalent to solving in 
R X N(A - kofil) X (D(Ä) H R(A - Xo/ii)) the system 

^ = (A-X iLt/)-1GR(X,0+ <M) 

Ä0 = X/x0 + Çv(X, 0 H- </f, oc). 

By an application of the implicit function theorem [7, p. 265] there 
exists a unique twice continuously differentiate function ifr = i)ß(k, 0) 
such that 

*(A, 0) = (Ä - XM/)-1GR(X, 0 4- *(A, 0), x) 

for (X, 0) near (X0,0). 

Moreover, by regularity for each fixed X and 0, \jß G C2m(ft) H 

Cm_1(ft) in x and D a ^ = 0 on d ft Thus our problem is reduced to solv
ing the finite dimensional equation 

(5) Äf> - X/x0 - Qv(X, 0 + *(A, 0), x) = 0 

An argument similar to that of [11, Theorem 3] will show that (5) 
is a gradient operator equation (for fixed X) with potential 
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P(A,0) = (l/2) 2 [ **(*)»•(* + *(K4>)) 

• D"(</> + ./»(A, <*>)) dx - (1I2)XIX f (4 + tfr(A, 0))2 dx 

- (" G(X,tf> + ^{K4>\x)dx 
Jn 

where G(X, £, x) = /Ó (5(X, s, x) ds. 
Indeed a simple computation and integration by parts yields for 

<fc/GN(Ä-X0*J) 

l imr1(F(X,*+*f)-P(A,0)) 

= Jn [(A - X|*/)(* + *(x,*)) - <S(A,<A 

+ *(*,*))] (/+*«(x, *)(/))<& 

= f [(A-AfJ)(*+*(A,*))-C(A,* 

+ Jn [(Ä - X/tI)(* + *(*.*)) - <S(A,<A 

+ *(A,*))]*0(A, *)(/)<&. 

Now the second term in the last expression is zero. Clearly i^(X, <f>)(f) 
G R(Ä ~ XOMJ) since i/i(X, <f>) G H(Ä - X0fil) for all 0 G N(Ä - X0/*I). 
Thus this integral reduces to 

Jn [(A - X/*I)(*X, *) - Q,(X, * + *(X, <£))] ^ ( X , <t>)(f)dx. 

But this must be zero by the definition of t/f (X, <£). Thus by orthogonal
ity the last expression reduces to 

Jn [(A - X/*7)0 - Qv(X,4 + *(X,<f>))]fdx. 

Consequently (5) is a gradient operator equation and the theorem 
follows from Berger's bifurcation theorem. 

REMARK. In the proof of our theorem we never used the fact that 
G is continuous for all (X, t, x). Thus it would have sufficed to assume 
that G is twice continuously differentiable for X near Xo and t near 0 for 
a l lxGfì . 
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