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ON THE PROBABILITY THAT AN INTEGER CHOSEN 
ACCORDING TO THE BINOMIAL DISTRIBUTION 

BE fc-FREE 
J . E . NYMANN AND W . J . LEAHEY 

Introduction. Let s and t be integers chosen from among the first 
n + 1 non-negative integers according to a binomial distribution with 
parameter p, 0 < p < 1. Consider the probability that s and t be 
relatively prime. In [1] we showed that this probability tends to 
6/7T,2, independent of p, as n—» <». Suppose now we choose a single 
integer s from the first n + 1 non-negative integers according to a 
binomial distribution and ask what is the probability that s be square-
free. In this paper we show that the techniques of [1] can also be 
used to show that this probability is 6ITT2 in the limit. In fact we show 
something more, viz., that the probability that s be fc-free, k any 
integer greater than 1, is l/£(fc) where £ denotes the Riemann zeta-
function. (s is fc-free if and only if s is not divisible by the k-th power 
of any prime.) In section 1 we deal with the case k > 2 and in section 
2, with the case k = 2. 

1. Let n be a non-negative integer and denote by Nn the set of 
integers 0 ,1 , 2, • • -, n. Let Pn be a probability distribution on Nn and 
let Qk denote the set of non-negative fc-free integers. Set Çfc(n) = 

Qk H Nn. For any positive integer d, let AJfi) = {j G Nn : j = 0 
(mod d)}. We then have the following. 

LEMMA 1. Let Pn be any probability measure on Nn. Then for 
n> 1, 

Pn(Qk(n)) = S M(r f ){Pn(An(^) ) - P n ( { 0 } ) } . 
l e d £nl'k 

PROOF. Let pY < p2 < • • * < ps be the primes less than or equal to 
nllk. Then, if Qk(n) denotes the complement of Qk(n) in Nn> we have 

&(n)= Û W ) . 
t = l 

Therefore 
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Pn(Qk(n)) = 1 - Pn(Qk(n)) = 1 - Pn ( Û MPik) ) 

= i - 2 2 (-D'-^A.M) 

nA»H)n •••nAn(Ft)). 
where the inner sum is taken over all r-tuples (i1? i2, ' * *> tr)

 s u c n that 
1 â ix < i2 < ' ' * < %r = s. Now it is clear that if (di9 d2) = 1, then 
^ ( d j ) H A„(d2) = ^ ( d j ^ ) . Hence this last expression can be re­
written as 

i+ 2 2 ( - i ) 1 ? » ^ •••?,,)*)). 

Now if (p^pi, • • • p*,)* > n, MiPhPh ' ' ' Vir)
k) = {°}- Hence this last 

expression is the same as 

2 rtQUKm + i s AVÌPH-• • Pu)um-

Since 

2 MW = 0, 
d|PiP2- • Ps 

S S . Mp*^ • * • vu) = - E J A 
r = ì p. p. • • • « . >nV* l£d^nllk 

r ' l r*2 ' ' r 

This observation completes the proof of the lemma. 

If Pn is the uniform distribution on Nn (Pn(J) = (n + l ) " 1 for all 
j G Nn) then it is easy to check that |Pn(A„(d)) — d~l\ < n~l uniformly 
in d. Using this estimate along with Lemma 1 and the fact that 
È ji(d) d~k-+ l/£(fc), it is not difficult to prove 

\imPn(Qk(n))=llt(k) 
n->°° 

for all k è 2. 

From now on Pn will always be taken to be a binomial distribution 
relative to some fixed parameter p with 0 < p < 1. Thus Pn(/) = 
(5) p ' ( l - p)n-->. For l ^ d ^ n define €n(d) by 
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€ n ( d ) = P n ( A n ( d ) ) ~ d - l = S (n) pJ(l - p)n-J - d-K 
j*0(d) N J ' 

LEMMA 2. |€n(d)| <3C n~1/2 uniformly in d. 

PROOF. See [1]. 

THEOREM 3. If Pn is a binomial distribution, then limn_>«P„(Çfc(n)) 
= l/£(fc) for all k g 3. 

PROOF. By Lemma 1 we have 

Pn(Qk(n)) = E M(d) iUMd")) - Pn({0})} 

= S tid) {d~* + e,(<P) - (1 - p)»} 
l e d an1/* 

1 Sid sin1'* lsSdën1'* 

- (l - p)» 2 Mrf). 
l â d sin1'* 

The first sum tends to l/£(fc) while the last sum goes to zero as n —» a>. 
For the middle sum we have by Lemma 2 

| 2 fi(d)en(dk)\ « n ^ n - 1 ' 2 . 

Thus for k > 2 this term goes to zero which proves the theorem. 

2. In this section we show that limn^ooPn(Ç2(n)) = 6/TT2(=1/£(2)) 

where Pn is a binomial distribution. As in the proof of Theorem 3 it 
is sufficient to show that 

lim J |«„(d*)| = 0. 
n-*°° i s d z an 

We need the following lemmas. For proofs of the first two we refer to 

LEMMA 4. 

2 ("W-p)»-*«n-i. 
|fc-pn|>pn3'4 V * ' 
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LEMMA 5. If d> p(n + n3/4), then \€n(d)\ <ZC d~l uniformly in 
d. 

LEMMA 6. Let K« be the number of integers d which satisfy pn314 

= d2 ^ p(n — n3/4) and which have the property that for some integer 
k, kd2 is in the interval (p(n — n3/4), p(n + n3/4)). Then K„ <3C n3/8. 

PROOF. Let u = pn, v = pn314 and let s = [(u + v)lv]. Suppose 
kd2 G (u — v, u + Ü). Then we must have 2 § J: â s. For each such 
k we ask how many possible d's are there such that kd2 G (u — vy u + 
t>). Such d's must lie in the interval 

(((u-v)lk)u*,((u + v)lk)u*). 

Hence there are not more than zk = ((w + v)112 — (u — ü)1/2)fc~1/2 

4- 1 of them. Now it is easy to verify that (u + v)112 — (u — t?)1/2 = 
(2v2lu)li2. Therefore 

Kn = S zk < (Zv2luyi2 J ) fc"1'2 + 5 - 1 g v(2sluyi2 + s - 1 <3C n3'8. 
fc=2 fc=2 

We now state and prove our main result as 

THEOREM 7. Let Pn be a binomial distribution. Then 

lim PB(Ç2(n)) = 6/TT2. 
n-*« 

PROOF. AS stated at the beginning of this section we need to show 

(1) to» I k(d2)l = 0. 

Let n r = pn3/4, n2 = p(n — n3/4) and n3 = p(n + n3/4). The sum in 
(1) can then be written as 

w X = ? + Ï + ? + 22 • 
l ^ d ^n l ^ d èri! nl<d £n2 n2 <d ^n 3 n3 <d ^n 

(We assume that n is large enough so that nx < n2 and n3< n.) We 
will examine each of these sums separately. By Lemma 2 

S |€n(d2)| « n ^ n " 1 ' 2 ^ n*8f»-i/2 = ri"1/4 

and hence the first term on the right-hand side of (2) goes to zero as 
n -» co. A similar argument works for the third sum on the right-hand 
side of (2). 
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By Lemma 5 |e„(d2)| «C d~2 for d2 > p(n + n3'4). Hence the 
fourth sum 

V \en(d2)\« J d-*< 2 d-2 

and hence goes to zero because it is less than the tail of a convergent 
series. 

The second sum on the right-hand side of (2) is somewhat more 
difficult to deal with. We break it into two parts 

(3) 2 = 2 ' + S" 
nv<d §n2 nl<d2 ^n 2 nl<d Sn2 

where the summation with the prime on it is taken over those d2 which 
have the property that for some integer k, kd2 is in the interval (n2, n3) 
and the double primed summation is taken over the remaining d2. By 
Lemmas 2 and 6 we have 

2 ' \€n(d
2)\ « n^n-1'2 = n"1 '8. 

nx<d § n 2 

Hence the single primed sum goes to zero as n —» «>. We now examine 
the double primed sum. Recall that 

*n(d2)- s ( Î W - P ) - * - « * - 2 -
k^0(d2) X A C 7 

For the d2 under consideration we have by Lemma 4 

S (?W-p)»-*= s (?V(i-p)»-* 
fc-0(da)XIC/ fc-0(d2) X / C / 

|fc-pn|>pn3/4 

= s (jW-p)""*«»»-1. 
\k-pn\>pn^ X * ' 

Hence for those d2, |€n(d2)| <K d~2. Thus for the double primed sum 

2" k(d2)|« 2 d-2< i d-2 

nx<d2 Sn 2 n!<d 2 =in 2 d ^ n ^ / 2 ] 

and hence goes to zero as n —> <». This completes the proof of 
Theorem 7. 
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