ON IDEALS HAVING ONLY SMALL PRIME FACTORS

D. G. HAZLEWOOD

1. Introduction. Let K be a fixed algebraic number field of degree n, with discriminant Δ and regulator R. Let r_{1} and $2 r_{2}$ denote the number of real and complex conjugates, respectively, ω the number of roots of unity, $r=r_{1}+r_{2}-1$ the maximum number of independent nontrivial units,

$$
d_{k}= \begin{cases}1 & \text { if } 1 \leqq k \leqq r_{1} \\ 2 & \text { if } r_{1}+1 \leqq k \leqq r_{1}+r_{2}\end{cases}
$$

and

$$
\begin{equation*}
\lambda=\frac{2^{r_{1}+2 r_{2}} \pi^{r_{2}} R}{\omega d_{r+1}|\Delta|^{1 / 2}} . \tag{1.1}
\end{equation*}
$$

Let O denote the ring of integers in K, \mathfrak{a} an integral ideal in O, \mathfrak{p} a prime ideal in O, h the number of ideal classes, and Na the norm of \mathfrak{a}. For real numbers $x \geqq 1, t \geqq 0$, and an ideal of $O, i \neq(0)$, we denote by $\psi\left(x^{t}, \boldsymbol{x} ; \boldsymbol{t}\right)$ the number of integral ideals \mathfrak{a} of O with $\mathrm{Na} \leqq \boldsymbol{x}^{t},(\mathfrak{a}, \mathfrak{i})=$ (1), and if \mathfrak{p} is a prime ideal dividing \mathfrak{a}, then $N \mathfrak{p} \leqq x$.
J. B. Friedlander [1] and J. R. Gillett [2] derived essentially the following estimate for $\psi\left(x^{t}, x ; \mathfrak{t}\right)$ with t fixed and $\mathfrak{f}=(1)$:

$$
\begin{equation*}
\psi\left(x^{t}, x ; \boldsymbol{i}\right)=h \lambda Z_{1}(t) x^{t}+O\left(\frac{x^{t}}{\log x}\right) \tag{1.2}
\end{equation*}
$$

where $Z_{1}(t)$ is the well-known Dickman function satisfying the dif-ferential-difference equation

$$
\begin{equation*}
t Z_{1}{ }^{\prime}(t)=-Z_{1}(t-1) \tag{1.3}
\end{equation*}
$$

with initial condition $Z_{1}(t)=1$ for $0 \leqq t \leqq 1$ and the constant implied by the use of the O -notation depends not only on the field K, but also on the parameter t.

The object of this report is to establish an asymptotic estimate for $\psi\left(x^{t}, x ; \boldsymbol{t}\right)$ generalizing (1.2) where the O -constant is independent of x, t, and \boldsymbol{f} and depends only on the field K unless otherwise indicated.

Also, as a consequence of the theory, we derive an asymptotic esti-
Received by the editors on September 11, 1975, and in revised form on May 27, 1976.
mate for $\boldsymbol{\Phi}\left(x^{t}, x ; \mathfrak{l}\right)$, the number of integral ideals \mathfrak{a} in O with $N \mathfrak{a} \leqq x^{t}$, $(\mathfrak{a}, \mathfrak{l})=(1)$, and if \mathfrak{p} is a prime ideal dividing \mathfrak{a}, then $N \mathfrak{p}>x$.

Before stating the main theorem, we define the following functions. The function $q(\mathfrak{a})$ defined on the ideals of O is a generalization of the Möbius function given by

$$
q(\mathfrak{a})= \begin{cases}1 & \text { if } \mathfrak{a}=(1) \tag{1.4}\\ 0 & \text { if } \mathfrak{p}^{2} / \mathfrak{a} \\ (-1)^{s} & \text { if } \mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{s}, \mathfrak{p}_{i} \neq \mathfrak{p}_{j} \text { for } i \neq j\end{cases}
$$

For M a natural number with $0 \leqq m \leqq M$ and $r=0$ or 1 , the function $\boldsymbol{\xi}_{\boldsymbol{r}}(\boldsymbol{m} ; \mathfrak{i})$, derived in Section 4, is given by

$$
\begin{equation*}
\xi_{r}(m ; \mathfrak{i})=\sum_{\mathfrak{b} \mid \mathfrak{t}} \frac{q_{r}(\mathfrak{b})}{N \mathrm{D}} \sum_{s=0}^{m}(-1)^{s}\binom{m}{\mathrm{~s}}(\log N \mathrm{D})^{m-s}\left\{\frac{(\log N \mathrm{D})^{s+1}}{s+1}+s!C_{s}(k)\right\} \tag{1.5}
\end{equation*}
$$

where

$$
q_{r}(\mathfrak{a})= \begin{cases}q(\mathfrak{a}) & \text { if } r=0 \tag{1.6}\\ |q(\mathfrak{a})| & \text { if } r=1\end{cases}
$$

and

$$
\begin{equation*}
C_{s}(k)=(-1)^{s}(h \lambda)^{-1}\left\{1-\sum_{m=0}^{s} \frac{\Gamma_{m}(k)}{m!}\right\} \tag{1.7}
\end{equation*}
$$

where $\Gamma_{m}(K)$ is a generalization of Euler's constant for the algebraic number field K defined by

$$
\begin{equation*}
\Gamma_{m}(k)=\lim _{x \rightarrow \infty}\left\{\sum_{N a \leq x} \frac{(\log N \mathfrak{a})^{m}}{N \mathfrak{a}}-\frac{h \lambda(\log x)^{m+1}}{m+1}\right\} \tag{1.8}
\end{equation*}
$$

As proved at the end of Section 4, we point out that

$$
\begin{equation*}
\xi_{r}(m ; \mathbf{t})=\mathrm{O}_{m}\left(\log 2 N \mathbf{t}(\log \log 3 N \mathbf{t})^{m+1}\right) \tag{1.9}
\end{equation*}
$$

Finally, we define $H_{1}(x ; \mathfrak{f})$ by

$$
\begin{equation*}
H_{1}(x ; \mathfrak{f})=(n \nu(N \mathfrak{t})+1) \exp \left(-C(\log x)^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

where $\nu(m)$ denotes the number of distinct prime factors of the rational integer m, n is the degree of K, and $C=a\left(4 n^{1 / 2}\right)^{-1}$ for an absolute constant $a>0$.

Theorem 1. If is an arbitrary integral ideal of $O, \neq(0), x \geqq 1$, $t \geqq 0$ are real numbers, and M is an even integer, then

$$
\psi\left(x^{t}, x ; \mathfrak{t}\right)=h \lambda x^{t} \quad\left\{\sum_{\mathrm{b} \mid \mathrm{t}} \frac{q(\mathrm{D})}{\mathrm{ND}} \mathrm{Z}_{1}(t)\right.
$$

$$
\begin{align*}
& \left.-\sum_{m=0}^{M-1} \frac{(-1)^{m} Z_{1}{ }^{(m+1)}(t)}{m!(\log x)^{m+1}} \xi_{0}(m ; \mathfrak{f})\right\} \\
& +\mathrm{O}_{M, \epsilon}\left(x ^ { t } \left\{t^{A_{1}} H_{1}(x ; \mathfrak{f})(\log x)^{A_{2}}\right.\right. \tag{1.11}\\
& \left.\left.+2^{n \nu(N t)} x^{-2 \epsilon /(n+1)}\left(1+Z_{1}(t)\right)+\xi_{1}(M ; \mathfrak{i}) \frac{t Z_{1}^{(M)}(t)}{(\log x)^{M+1}}\right\}\right)
\end{align*}
$$

uniformly in x, t, and for t outside the intervals $(\gamma, \gamma+\epsilon)$ where $\gamma=1,2, \cdots, M+1, \epsilon$ is an arbitrary positive real number, n is the degree of K, and A_{1} and A_{2} are absolute constants.

We remark that this asymptotic formula is valid only for $t \leqq$ $(\log x)^{1 / 2}$ due to the behavior of $Z_{1}(t)$. We will consider other ranges for t in a later work.

An immediate corollary to Theorem 1 gives a better view of the leading term.

Corollary. If $0 \leqq t \leqq(\log x)^{1 / 2}$, then

$$
\psi\left(x^{t}, x ; \mathfrak{l}\right)=h \lambda x^{t} \sum_{\mathfrak{b} \mid \mathfrak{t}} \frac{q(\mathbb{D})}{n \boldsymbol{D}} Z_{1}(t)
$$

$$
\begin{align*}
& +\mathrm{O}_{\epsilon}\left(x ^ { t } \left\{t^{A_{1}} H_{1}(x ; \mathfrak{i})(\log x)^{A_{2}}\right.\right. \tag{1.12}\\
& \left.+2^{n \nu(N t)} x^{-2 \epsilon /(n+1)}\left(1+z_{1}(t)+\xi_{1}(0 ; \mathfrak{f}) \frac{t Z_{1}(t)}{\log x}\right\}\right)
\end{align*}
$$

uniformly in x, t, and \mathfrak{f} for t outside the interval $(1,1+\epsilon)$ for arbitrary $\epsilon>0$.

The particular interest of (1.12) is that if $2<t$, then ϵ can be chosen larger than 1 so that if $\nu(N \mathbf{t}) \ll(2 / n(n+1)) \log x$, the last term of the O-term of (1.12) is dominant to yield

$$
\left.\begin{array}{rl}
\psi\left(x^{t}, x ; \boldsymbol{t}\right)= & h \lambda x^{t} \quad \sum_{\text {b|t }} \frac{q(\mathfrak{d})}{N \mathrm{~d}} \mathrm{Z}_{1}(t) \tag{1.13}\\
& +\mathrm{O}_{\epsilon}\left(x^{t} \log 2 N \mathbf{l o g} \log 3 N \mathbb{t Z _ { 1 } (t)} \log x\right.
\end{array}\right)
$$

Specifically, if $\mathbf{i}=(1)$ and $2<t \leqq(\log x)^{1 / 2}$, then

$$
\begin{equation*}
\psi\left(x^{t}, x ; \mathfrak{l}\right)=h \lambda x^{t} Z_{1}(t)+\mathrm{O}_{\epsilon}\left(x^{t} \frac{t Z_{1}(t)}{\log x}\right) \tag{1.14}
\end{equation*}
$$

to improve (1.2).
For the function $\boldsymbol{\Phi}\left(x^{t}, x ; \mathbf{f}\right)$, we obtain the following asymptotic estimate using Lemma 3.2.

Theorem 2. If \mathfrak{f} an integral ideal of $O, \neq(0), x \geqq 1, t \geqq 0$, then

$$
\begin{equation*}
\phi\left(x^{t}, x ; \boldsymbol{t}\right)=\int_{1}^{t} Z_{2}^{\prime}(u) x^{u} d u+\mathrm{O}\left(x^{t} t^{A_{1}} H_{1}(x ; \boldsymbol{t})(\log x)^{A_{2}}\right) \tag{1.15}
\end{equation*}
$$

uniformly in x, t, and for absolute constants A_{1} and A_{2} where $Z_{2}(t)$ is de Bruijn's function satisfying the equation

$$
\begin{equation*}
t Z_{2}{ }^{\prime}(t)=Z_{2}(t-1) \tag{1.16}
\end{equation*}
$$

with initial condition $Z_{2}(t)=1$ for $0 \leqq t \leqq 1$.
2. The General Question. After the manner of B. V. Levin and A. S. Fainleib [6] and [3], [4], we let $x \geqq 1$ and fix

$$
\begin{equation*}
0=B_{0}<B_{1}<\cdots<B_{k-1}<B_{k}=+\infty \tag{2.1}
\end{equation*}
$$

for some natural number k. We say that an ideal \mathfrak{a} belongs to \mathfrak{M}_{m} for $1 \leqq m \leqq k$ if either $\mathfrak{a}=(1)$ or if all the prime ideal factors of \mathfrak{a} have norms greater than $x^{B_{m-1}}$ but not exceeding $x^{B_{m}}$. Thus any integral ideal \mathfrak{a} can be uniquely expressed in the form

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}_{1} \cdot \cdots \mathfrak{a}_{k}, \quad \mathfrak{a}_{m} \in \mathfrak{M}_{m}, \quad 1 \leqq m \leqq k \tag{2.2}
\end{equation*}
$$

We let $f_{m}, \mathbf{l} \leqq m \leqq k$, denote completely multiplicative functions. Then for $t \geqq 0$, we define

$$
\begin{equation*}
m_{f}\left(x^{t}\right)=\sum_{N a \leq x^{t}} f(N \mathfrak{a})=\sum_{\substack{N a \leq x^{t} \\ \mathfrak{a}=\mathfrak{a}_{1} \cdots \mathfrak{a}_{k}}} f_{1}\left(N \mathfrak{a}_{1}\right) \cdots f_{k}\left(N \mathfrak{a}_{k}\right) . \tag{2.3}
\end{equation*}
$$

If $k=2, B_{1}=1$, and

$$
\begin{align*}
& f_{1}(N \mathfrak{a})= \begin{cases}1 & \text { if } N \mathfrak{a}=1 \\
0 & \text { otherwise }\end{cases} \tag{2.4}\\
& f_{2}(N \mathfrak{a})= \begin{cases}1 & \text { if }(\mathfrak{a}, \mathfrak{\mathfrak { l }})=(1) \\
0 & \text { otherwise }\end{cases} \tag{2.5}
\end{align*}
$$

then $m_{f}\left(x^{t}\right)={ }^{\prime} \psi\left(x^{t}, x ; i\right)$.
Of course, the object is now to estimate the sum $m_{f}\left(x^{t}\right)$. To do this, we define for each function f_{m}, the function $\lambda_{f_{m}}$ by the following rule:

$$
\begin{equation*}
f_{m}(N \mathfrak{a}) \log N \mathfrak{a}=\sum_{\mathfrak{b} \mid \mathfrak{a}} f_{m}(N \mathfrak{b}) \lambda_{f_{m}}\left(N \frac{\mathfrak{a}}{\mathfrak{b}}\right) . \tag{2.6}
\end{equation*}
$$

Since the functions f_{m} are completely multiplicative, $\lambda_{f_{m}}$ can be characterized as follows:

$$
\lambda_{f_{m}}(N \mathfrak{a})=\left\{\begin{array}{cl}
\log N \mathfrak{a} f(N \mathfrak{a}) & \text { if } \mathfrak{a}=\mathfrak{p}^{r} \tag{2.7}\\
0 & \text { otherwise } .
\end{array}\right.
$$

Obviously, there must be some restriction on the functions f_{m} in order to estimate $m_{f}\left(x^{t}\right)$. We shall study the behavior of $m_{f}\left(x^{t}\right)$ for two classes of functions f_{m}. For $x \geqq 0, y \geqq 0$ the first class is determined by the conditional existence of the following functions:

$$
\begin{equation*}
L_{f_{m}}(x, y)=\sum_{\substack{N v^{r} \leq x \\ N v \leq y}} \lambda_{f_{m}}\left(N \mathfrak{p}^{r}\right)=\sum_{\substack{N p^{r} \leq x \\ N v \leq y}} \log N \mathfrak{p} f_{m}\left(N \mathfrak{p}^{r}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{f_{m}}(x)=\prod_{N a \leqq x}\left(1+\sum_{r=1}^{\infty}\left|f_{m}\left(N_{\mathfrak{p}^{r}}\right)\right|\right) . \tag{2.9}
\end{equation*}
$$

The alternate class of functions will be determined by conditions on the functions:

$$
\begin{align*}
L_{f_{m}}^{*}(x, y) & =\sum_{\substack{N v^{\prime} \leq x \\
N \mathfrak{p} \leq y}} \lambda f_{m}\left(N \mathfrak{p}^{r}\right) N \mathfrak{p}^{-r} \\
& =\sum_{\substack{N p^{r} \leq x \\
N \mathfrak{p} \leq y}} \log N \mathfrak{p} f_{m}\left(N \mathfrak{p}^{r}\right) N \mathfrak{p}^{-r} \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
\Pi_{f_{m}}^{*}(x) \prod_{N v \leq x}=\left(1+\sum_{r=1}^{\infty}\left|f_{m}\left(N \mathfrak{p}^{r}\right)\right| N \mathfrak{p}^{-r}\right) . \tag{2.11}
\end{equation*}
$$

Now we define a class of functions Ω as those functions $f_{m}, 1 \leqq m \leqq$ k satisfying the following requirements:

$$
\begin{equation*}
L_{f_{m}}(x, y)=\tau_{m} \log (\min (x, y))+D_{m}+h_{m}(x, y) \tag{2.12}
\end{equation*}
$$

where τ_{m} is a complex number, D_{m} is an absolute constant, and $h_{m}(x, y)$ $=\mathrm{O}(H(x)+H(y)), H(x)$ is a nonincreasing, nonnegative function; and

$$
\begin{equation*}
\prod_{f_{m}}(x)=\mathrm{O}\left(\log ^{\Lambda_{m}} x\right) \tag{2.13}
\end{equation*}
$$

where A_{m} is an absolute constant.

Similarly, we define the class of functions Ω^{*} with equivalent conditions on $L_{f_{m}}^{*}(x, y)$ and $\prod_{f_{m}}^{*}(x)$.

The condition (2.13) will be necessary only if the functions f_{m} have negative values.

We are now ready to state the basic general result necessary to estimate $m_{f}\left(x^{t}\right)$. The proof is omitted since it is similar to the proof of Lemma 4 of [4].

Fundamental Lemma. Suppose the completely multiplicative functions $f_{m}, 1 \leqq m \leqq k$, satisfy (2.12) and (2.13). Then $m_{f}\left(x^{t}\right)$ as defined by (2.3) satisfies the following equation:

$$
t m_{f}\left(x^{t}\right)-\int_{0}^{t} m_{f}\left(x^{u}\right) d u=\sum_{m=1}^{k} \tau_{m} \int_{t-B_{m}}^{t-B_{m-1}} m_{f}\left(x^{u}\right) d u
$$

$$
\begin{equation*}
+\frac{D_{1}}{\log x} m_{f}\left(x^{t}\right) \tag{2.14}
\end{equation*}
$$

$$
\begin{aligned}
& +\frac{1}{\log x} \sum_{N a \leq x^{t}} f(N \mathfrak{a}) h_{1}\left(\frac{x^{t}}{N \mathfrak{a}}, x^{B_{1}}\right) \\
& +\frac{1}{\log x} \sum_{m=2}^{k} \sum_{N a \leq x^{t-B_{m-1}}} f(N \mathfrak{a})\left\{h_{m}\left(\frac{x^{t}}{N \mathfrak{a}}, x^{B_{m}}\right)\right. \\
& \left.-h_{m}\left(\frac{x^{t}}{N \mathfrak{a}}, x^{B_{m-1}}\right)\right\} .
\end{aligned}
$$

To conclude this section on the general question, we shall also state a result that is proved in Levin and Fainleib [6]:
(Lemma 1.2.1 of [6]) Let $R(t, x)$ be a complex valued function of real variables t and x, integrable with respect to t; let a and b_{1}, \cdots, b_{m} be complex numbers, $C_{1} \geqq 0$, and $0 \leqq B_{0}<B_{1}<\cdots<B_{m}<+\infty$. Suppose further that $R(t, x)=0$ for $t \leqq 0$ and that

$$
\begin{align*}
& t R(t, x)-(a+1) \int_{0}^{t} R(u, x) d u+\sum_{s=1}^{m} b_{s} \int_{t-B_{s}}^{t-B_{s-1}} R(u, x) d u \\
&=O\left(t^{C_{\mathbf{t}}}\right) \tag{2.15}
\end{align*}
$$

uniformly in x. If

$$
\begin{equation*}
\int_{0}^{-n}|R(u, x)| d u=\mathrm{O}(1) \tag{2.16}
\end{equation*}
$$

uniformly in x, where η is a positive constant, then there exists a constant $C_{2}>0$ such that for all $t \geqq \eta$

$$
\begin{equation*}
R(t, x)=O\left(t^{C \hat{z}}\right) \tag{2.17}
\end{equation*}
$$

uniformly in x.
3. The General Case with $\boldsymbol{k}=2$. For all our further considerations, we fix $k=2$ and $B_{1}=1$. Further we let g be a completely multiplicative function, $\neq(0)$ an ideal of O, and define the completely multiplicative function G by the following rule:

$$
G(N \mathfrak{a})=\left\{\begin{array}{cl}
g(N \mathfrak{a}) & \text { if }(\mathfrak{a}, \mathfrak{t})=(1) \tag{3.1}\\
0 & \text { otherwise }
\end{array}\right.
$$

We shall now prove our first asymptotic estimate for the special case of $m_{f}\left(x^{t}\right)$ defined in Section 2.

Lemma 3.1. Let G be a function defined by (3.1) where g is in Ω with $H(x)=\exp \left(-A(\log x)^{a}\right), A>0, a>0$. If $x \geqq 1$ and $t \geqq 0$, then
uniformly in x, t, and where A_{1} and A_{2} are absolute constants,

$$
\begin{equation*}
H(\boldsymbol{x} ; \mathfrak{t})=(n \nu(N \mathfrak{i})+1) \exp \left(-A / 2(\log x)^{a}\right), \tag{3.3}
\end{equation*}
$$

and $\mathrm{Z}(t)$ satisfies the equation

$$
\begin{equation*}
t Z^{\prime}(t)=\tau Z(t-1) \tag{3.4}
\end{equation*}
$$

with initial condition $Z(t)=1$ for $0 \leqq t \leqq 1$.
Proof. Let f_{1} be defined by (2.4) and $f_{2}=G$. It is a straight forward argument similar to the proof of Lemma 2 of [4] that the conditions of the Fundamental Lemma are satisfied with

$$
m_{f}\left(x^{t}\right)=\sum_{\substack{N a \leq x^{t} \\ v \mid a \in N b}} G(N \mathfrak{a}),
$$

i.e.,

$$
L_{f_{1}}(x, y)=1
$$

and

$$
\begin{equation*}
L_{f_{\mathbf{2}}}(x, y)=\tau \log \min (x, y)+D(\mathfrak{l})+h(x, y ; \mathfrak{i}) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
D(\mathfrak{k})=D-\sum_{\mathfrak{p} \mid \mathfrak{t}} \sum_{r=1}^{\infty} \lambda_{g}\left(N \mathfrak{w}^{r}\right) \tag{3.6}
\end{equation*}
$$

and

$$
h(x, y ; \mathfrak{f})=h(x, y)+\sum_{\substack{p \mid f \\ N p^{r}>x}} \lambda_{g}\left(N \mathfrak{p}^{r}\right)+\sum_{\substack{\mathfrak{p} \mid \mathfrak{q} \\ N \mathfrak{p}>y}} \lambda_{g}\left(N \mathfrak{p}^{r}\right)-\sum_{\substack{\mathfrak{p} \mid \mathfrak{p} \\ N p^{r}>x \\ N \mathfrak{p}>y}} \lambda_{g}\left(N \mathfrak{p}^{r}\right)
$$

In particular,

$$
\begin{equation*}
h(x, y ; \mathfrak{f})=\mathrm{O}\left((n \nu(N)+1) \exp \left(-A / 2(\log \min (x, y))^{a}\right)\right. \tag{3.8}
\end{equation*}
$$

Hence

$$
\begin{align*}
\operatorname{tm}_{f}\left(x^{t}\right)-\int_{0}^{t} m_{f}\left(x^{u}\right) d u= & \tau \int_{0}^{t-1} m_{f}\left(x^{u}\right) d u \\
& +\frac{1}{\log x} \sum_{N \mathfrak{a} \leqq x^{t-1}} f(N \mathfrak{a})\left\{h\left(x^{t}, \frac{x^{t}}{N \mathfrak{a}} ; \mathfrak{l}\right)\right. \tag{3.9}\\
& \left.-h\left(\frac{x^{t}}{N \mathfrak{a}}, x ; \mathfrak{l}\right)\right\}
\end{align*}
$$

since $\tau_{1}=D_{1}=0$ and $\tau_{2}=\tau, D_{2}=D(\mathfrak{p})$.
Now G satisfies (2.13) so that

$$
\sum_{N \mathfrak{a} \leqq x^{t}}|G(N \mathfrak{a})|=\mathrm{O}\left(t^{A} \log ^{A} x\right)
$$

Thus (3.9) becomes

$$
\begin{gather*}
t m_{f}\left(x^{t}\right)-\int_{0}^{t} m_{f}\left(x^{u}\right) d u-\tau \int_{0}^{t-1} m_{f}\left(x^{u}\right) d u \\
=\mathrm{O}\left(t^{A} H(x ; \mathfrak{k})(\log x)^{A-1}\right) \tag{3.10}
\end{gather*}
$$

uniformly in x, t, and \boldsymbol{f}.
Now we let $R(t, x ; f)$ be a function such that

$$
\begin{equation*}
m_{f}\left(x^{t}\right)=Z(t)+R(t, x ; \mathfrak{f}) H(x ; \mathfrak{f})(\log x)^{A-1} \tag{3.11}
\end{equation*}
$$

and substitute into (3.10) to get

$$
\begin{aligned}
t Z(t) & -\int_{0}^{t} Z(u) d u-\tau \int_{0}^{t-1} Z(u) d u+t R(t, x ; \mathfrak{i}) H(x ; \mathfrak{i})(\log x)^{A-1} \\
& -\int_{0}^{t} R(u, x ; \mathfrak{f}) H(x ; \mathfrak{i})(\log x)^{A-1} d u
\end{aligned}
$$

$$
\begin{aligned}
& -\tau \int_{0}^{t-1} R(u, x ; \mathfrak{t}) H(x ; \mathfrak{t})(\log x)^{A-1} d u \\
= & \mathrm{O}\left(t^{A} H(x ; \mathfrak{t})(\log x)^{A-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
t \mathbf{R}(t, x ; \mathfrak{t})-\int_{0}^{t} R(u, x ; \mathfrak{t}) d u-\tau \int_{0}^{t-1} R(u, x ; \mathfrak{i}) d u=\mathrm{O}\left(t^{A}\right) \tag{3.12}
\end{equation*}
$$

uniformly in x, t, and \boldsymbol{f}.
We also note that if $t=1$, then $\int_{0}^{1}|R(u, x ; f)| d u=O(1)$. Thus, using the Levin and Fainleib result at the end of Section 2, there exists a constant $A_{1}>0$ such that $R(t, x ; \mathfrak{i})=O\left(t^{A_{1}}\right)$ uniformly in x, t, and \mathfrak{q}, so that (3.11) implies (3.2) to prove Lemma 3.1.

Using Abel's summation on (3.2) we can prove the following lemma where g is in Ω^{*}. In particular, if $g(N a)=1$, we shall see in Section 4 that $\tau=1$ and $H(x)=\exp \left(-a l\left(2 n^{1 / 2}\right)(\log x)^{1 / 2}\right)$ so that (3.13) implies (1.15) to prove Theorem 2.

Lemma 3.2. Let G be a function defined by (3.1) where g is in Ω^{*} with $H(x)=\exp \left(-A(\log x)^{a}\right), A>0, a>0$. If $x \geqq 1$ and $t \geqq 0$, then

$$
\begin{align*}
& =\int_{1}^{t} Z^{\prime}(u) x^{u} d u+\mathrm{O}\left(x^{t} t^{A 1} H(x ; \mathfrak{f})(\log x)^{A_{2}}\right) \tag{3.13}
\end{align*}
$$

uniformly in x, t, and \ddagger.
Now we let

$$
\begin{equation*}
S\left(x^{t} ; \mathfrak{i}\right)=\sum_{N a \leq x^{t}} G(N a)=\sum_{\substack{\begin{subarray}{c}{a \leq \leq x^{t} \\
(a, t)=(1)} }}\end{subarray}} g(N \mathfrak{a}) \tag{3.14}
\end{equation*}
$$

and let $f_{1}=G$ and f_{2} be defined by (2.4). Then

$$
\begin{equation*}
m_{f}\left(x^{t}\right)=\sum_{\substack{N a \leq x^{t} \\ \mathfrak{D} \mid \mathfrak{a}=N \mathfrak{N}>x}} G(N \mathfrak{a})=\sum_{\substack{N a \leq x^{t} \leq x \\ \mathfrak{D} \mid \vec{a}=N b=1 \\(a, t)=(1)}} g(N \mathfrak{a}) . \tag{3.15}
\end{equation*}
$$

The object of the next lemma is to write (3.15) in terms of (3.14) so that we will need only a good estimate for (3.14) to get one for (3.15).

Lemma 3.3. Let G be a function defined by (3.1) where g is in Ω with $H(x)=\exp \left(-A(\log x)^{a}\right), A>0, a>0$. If $x \geqq 1$ and $t \geqq 0$, then

$$
\begin{align*}
& =S\left(x^{t} ; \mathfrak{t}\right)+\int_{0}^{t} Z^{\prime}(t-u) \mathbf{S}\left(x^{u} ; \boldsymbol{i}\right) d u \tag{3.16}\\
& +\mathrm{O}\left(t^{A_{3}} H(x ; \mathfrak{i})(\log x)^{A_{4}}\right)
\end{align*}
$$

uniformly in x, t, and where $Z(t)$ satisfies the equation

$$
\begin{equation*}
t Z^{\prime}(t)=-\tau Z(t-1) \tag{3.17}
\end{equation*}
$$

with initial condition $Z(t)=1$ for $0 \leqq t \leqq 1$ and A_{3} and A_{4} are absolute constants.

Proof. Now recall from (3.15) that

$$
m_{f}\left(x^{t}\right)=\sum_{\substack{N \mathfrak{a} \leq x^{t} \\ \mathfrak{a}=\mathfrak{a}_{1} \cdot \mathfrak{a}_{2}}} f_{1}\left(N \mathfrak{a}_{1}\right) f_{2}\left(N \mathfrak{a}_{2}\right)=\sum_{\substack{\operatorname{Na} \leq x^{t} \\ \mathfrak{n} \mid(\underset{a}{ }=N \leq x \leq x \\(a, t)=(1)}} g(N \mathfrak{a}) .
$$

We define functions \hat{f}_{1} and \hat{f}_{2} by the relations

$$
\begin{equation*}
\sum_{\mathfrak{b} / f} f_{m}(N \mathfrak{d}) \hat{f_{m}}(N \mathfrak{a} / \mathfrak{b})=f_{1}(N \mathfrak{a}), m=1,2 . \tag{3.18}
\end{equation*}
$$

It is easy to see that (3.18) implies that $\hat{f_{1}}$ is defined by (2.4) and $\hat{f_{2}}=f_{1}$. Hence by Lemma 3.1

$$
\begin{equation*}
m_{f}\left(x^{t}\right)=\hat{\mathrm{Z}}(t)+\mathrm{O}\left(t^{\boldsymbol{A}_{1}} H(x ; \mathfrak{f})(\log x)^{\boldsymbol{A}_{2}}\right) \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
t \hat{\mathbf{Z}}^{\prime}(t)=\tau \hat{\mathbf{Z}}(t-1) \tag{3.20}
\end{equation*}
$$

with initial condition $\hat{Z}(t)=1$ for $0 \leqq t \leqq 1$.
Now using essentially the same argument as used in the proof of Theorem 1 of [3] and the fact that

$$
\begin{equation*}
\int_{0}^{t} Z^{\prime}(t-u) \hat{Z}^{\prime}(u) d u+Z^{\prime}(t)+\hat{Z}^{\prime}(t)=0 \tag{3.21}
\end{equation*}
$$

we prove that

$$
\mathrm{S}\left(x^{t} ; \mathfrak{i}\right)=m_{f}\left(x^{t}\right)-\int_{0}^{t} Z^{\prime}(t-u) \mathrm{S}\left(x^{u} ; \mathfrak{l}\right)+\mathrm{O}\left(t^{A_{3}} H(x ; \mathfrak{t})(\log x)^{A_{4}}\right)
$$

which is (3.16) to prove Lemma 3.3.

Again using Abel's summation, we prove Lemma 3.4 where g is in Ω^{*}. This functional equation (3.22) will be the initial step toward proving Theorem 1.

Lemma 3.4. Let G be a function defined by (3.1) where g is in Ω^{*} with $H(x)=\exp \left(-A(\log x)^{\alpha}\right), A>0, a>0$. If $x \geqq 1$ and $t \geqq 0$, then

$$
\begin{align*}
= & \mathrm{S}\left(x^{t} ; \mathfrak{i}\right)+\int_{0}^{t} x^{t-u} Z^{\prime}(t-u) \mathrm{S}\left(x^{u} ; \mathfrak{i}\right) d u \tag{3.22}\\
& +\mathrm{O}\left(x^{t} t^{A_{3}} H(x ; \mathfrak{t})(\log x)^{A_{4}}\right)
\end{align*}
$$

uniformly in x, t, and where $Z(t)$ satisfies (3.17), and A_{3} and A_{4} are absolute constants.
4. The Proof of Theorem 1. If we define the function $g=1$ in (3.1), then

From Theorem 190 of Landau [5],

$$
\begin{equation*}
\sum_{N_{a} \leq x} \log N \mathfrak{p}=x+\mathrm{O}\left(x \exp \left(-a / n^{1 / 2}(\log x)^{1 / 2}\right)\right) \tag{4.2}
\end{equation*}
$$

where $a>0$ is an absolute constant and n is the degree of K. Thus it is easy to see that

$$
\begin{equation*}
\sum_{N a \leq x} \frac{\log N \mathfrak{p}}{N \mathfrak{p}}=\log x+D+\mathrm{O}\left(\exp \left(-a / 2 n^{1 / 2}(\log x)^{1 / 2}\right)\right) \tag{4.3}
\end{equation*}
$$

where D is an absolute constant.
Hence with $g=1$

$$
\begin{equation*}
L_{\mathrm{g}}^{*}(x, y)=\log (\min (x, y))+D_{1}+h_{1}(x, y) \tag{4.4}
\end{equation*}
$$

where D_{1} is an absolute constant and

$$
\begin{equation*}
h_{1}(x, y)=\mathrm{O}\left(H_{1}(x)+H_{1}(y)\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{1}(x)=\exp \left(-a /\left(2 n^{1 / 2}\right)(\log x)^{1 / 2}\right) \tag{4.6}
\end{equation*}
$$

Further, we note that

$$
\begin{equation*}
\Pi_{g}^{*}(x)=\prod_{N_{\mathfrak{p}} \leqq x}\left(1+\sum_{r=1}^{\infty} N_{\mathfrak{p}^{-r}}\right)=\mathrm{O}(\log x) . \tag{4.7}
\end{equation*}
$$

Therefore the conditions of Lemma 3.4 are satisfied with $g=1$ so that

$$
\begin{align*}
\psi\left(x^{t}, x ; \mathfrak{t}\right)= & \mathrm{S}_{1}\left(x^{t} ; \mathfrak{t}\right)+\int_{0}^{t} x^{t-u} Z_{1}{ }^{\prime}(t-u) \mathrm{S}_{1}\left(x^{u} ; \mathfrak{t}\right) d u \\
& +\mathrm{O}\left(x^{t} t^{A_{1}} H_{1}(x ; \mathfrak{t})(\log x)^{A_{2}}\right) \tag{4.8}
\end{align*}
$$

uniformly in x, t, and where A_{1} and A_{2} are absolute constants, $H_{1}(x ; \boldsymbol{t})$ is given by (1.10), $Z_{1}(t)$ by (1.3), and

$$
\begin{equation*}
S_{1}\left(x^{t} ; \mathfrak{t}\right)=\sum_{\substack{N_{a} \leq x^{t} \\(a, t)=(1)}} 1 . \tag{4.9}
\end{equation*}
$$

As stated previously, a good estimate for $S_{1}\left(x^{t} ; \mathfrak{i}\right)$ will yield a good estimate for $\psi\left(x^{t}, x ; \mathfrak{t}\right)$. For the estimate for $S_{1}\left(x^{t} ; \boldsymbol{t}\right)$ we define the following functions:

$$
\begin{equation*}
\mathrm{S}_{1}(x)=\sum_{N_{0} \leqq x} 1 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{1}(x)=(h \lambda x)^{-1}\left\{h \lambda x-S_{1}(x)\right\} \tag{4.11}
\end{equation*}
$$

where h is the number of ideal classes of K and λ is the constant given by (1.1).

From Theorem 210 of Landau [5],

$$
\begin{equation*}
R_{1}(x)=\mathrm{O}\left(x^{-2 /(n+1)}\right) \tag{4.12}
\end{equation*}
$$

where n is the degree of K.
Using the function q given by (1.4), we see that

$$
\begin{aligned}
\mathrm{S}_{1}\left(x^{t} ; \mathfrak{i}\right) & =\sum_{\mathrm{b} \mid \mathrm{t}} q(\mathrm{~d}) \mathrm{S}_{1}\left(x^{t} / N \mathfrak{b}\right) \\
& =h \lambda x^{t} \quad\left\{\sum_{\mathrm{b} \mid \mathfrak{i}} \frac{q(\mathfrak{d})}{N \mathrm{~d}}-\sum_{\mathrm{b} \mid \mathrm{t}} \frac{q(\mathfrak{D})}{N \mathrm{~d}} R_{1}\left(x^{t} / N \mathfrak{D}\right)\right\} .
\end{aligned}
$$

We define

$$
\begin{equation*}
R_{1}\left(x^{t} ; \mathfrak{l}\right)=\sum_{b / \mathfrak{l}} \frac{q(\mathfrak{d})}{N \mathfrak{D}} R_{1}\left(x^{t} / N \mathfrak{b}\right) \tag{4.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{S}_{1}\left(x^{t} ; \mathfrak{i}\right)=h \lambda x^{t}\left\{\sum_{\mathfrak{b} \mid \mathfrak{t}} \frac{q(\mathfrak{b})}{N \mathrm{D}}-R_{1}\left(x^{t} ; \mathfrak{i}\right)\right\} \tag{4.14}
\end{equation*}
$$

Substituting (4.14) in (4.8) we then use basically the same argument beginning with (7.7) of [3] to show that

$$
\begin{aligned}
& \psi\left(x^{t}, x ; \mathfrak{t}\right)=h \lambda x^{t} \quad\left\{\sum_{\mathfrak{b} \mid t} \frac{q(\mathfrak{b})}{N \mathrm{D}} \mathrm{Z}_{1}(t)\right. \\
& \left.-\sum_{m=0}^{M-1} \frac{(-1)^{m}}{m!} \frac{Z_{1}^{(m+1)}(t)}{(\log x)^{m+1}} \int_{1}^{\infty} \frac{(\log u)^{m} R_{1}(u ; i)}{u} d u\right\} \\
& +\mathrm{O}_{M i \epsilon}\left(x ^ { t } \left\{t^{A_{1}} H_{1}(x ; i)(\log x)^{A_{2}}+2^{n \nu(N t)} x^{-2 \epsilon /(n+1)}\left(1+Z_{1}(t)\right)\right.\right. \\
& \left.\left.+\frac{t \mathbf{Z}_{1}{ }^{(M)}(t)}{(\log x)^{M+1}} \int_{1}^{\infty} \frac{(\log u)^{M}\left|R_{1}(u ; \boldsymbol{i})\right|}{u} d u\right\}\right) .
\end{aligned}
$$

To conclude the proof of Theorem 1 we must show

$$
\begin{equation*}
\xi_{0}(m ; \mathfrak{t})=\int_{1}^{\infty} \frac{(\log u)^{m} R_{1}(u ; \mathfrak{t})}{u} d u \tag{4.16}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
\xi_{1}(M ; \boldsymbol{i})=\int_{1}^{\infty} \frac{(\log u)^{M}\left|R_{1}(u ; \mathbf{i})\right|}{u} d u \tag{4.17}
\end{equation*}
$$

To accomplish this, we use the following argument. Using (4.13) we see that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{(\log u)^{m} R_{1}(u ; \mathbf{t})}{u} d u=\sum_{\mathrm{b} \mid \mathrm{t}} \frac{q(\mathrm{~b})}{N \mathrm{D}} \int_{1}^{\infty} \frac{(\log u)^{m} R_{1}(u / N \mathrm{D})}{u} d u \tag{4.18}
\end{equation*}
$$ and changing the variable of integration the right hand side of (4.18) is equal to

$$
\begin{equation*}
\sum_{\mathfrak{b} \mid \boldsymbol{t}} \frac{q(b)}{N \mathrm{~b}} \sum_{s=0}^{m}\binom{m}{s}(\log N \mathfrak{b})^{m-s} \int_{1 / N b}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u . \tag{4.19}
\end{equation*}
$$

Breaking the integral in (4.19) into two parts we have
(4.20) $\int_{1 / N \downarrow}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u=\frac{(-1)^{s}(\log N \mathrm{~b})^{s+1}}{s+1}+\int_{1}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u$.

By Abel's summation for s a nonnegative integer,

$$
\begin{aligned}
& \sum_{N \mathfrak{a} \leqq x} \frac{(\log N \mathfrak{a})^{s}}{N \mathfrak{a}}=\frac{h \lambda(\log x)^{s+1}}{s+1}-h \lambda(\log x)^{s} R_{1}(x) \\
& \quad+\operatorname{sh\lambda } \int_{1}^{x} \frac{(\log u)^{s-1} R_{1}(u)}{u} d u-h \lambda \int_{1}^{x} \frac{(\log u)^{s} R_{1}(u)}{u} d u
\end{aligned}
$$

and using (4.12) we have for an arbitrary constant $\epsilon>0$

$$
\begin{aligned}
h \lambda \int_{x}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{x} d u & =\mathrm{O}\left(x^{-\epsilon}\right) \\
\operatorname{sh\lambda } \int_{x}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u & =\mathrm{O}_{s}\left(x^{-\epsilon}\right)
\end{aligned}
$$

and

$$
h \lambda(\log x)^{s} R_{1}(x)=\mathrm{O}\left(x^{-\epsilon}\right)
$$

Hence for s fixed, we see that

$$
\begin{align*}
& \lim _{x \rightarrow \infty}\left\{\sum_{N a \leq x} \frac{(\log N \mathfrak{a})^{s}}{N a}-\frac{h \lambda(\log x)^{s+1}}{s+1}\right\} \tag{4.21}\\
& =\operatorname{sh} \lambda \int_{1}^{\infty} \frac{(\log u)^{s-1} R_{1}(u)}{u} d u-h \lambda \int_{1}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u
\end{align*}
$$

but from this and (1.8) we see that

$$
\begin{equation*}
\Gamma_{s}(K)=\operatorname{sh} \lambda \int_{1}^{\infty} \frac{(\log u)^{s-1} R_{1}(u)}{u} d u \tag{4.22}
\end{equation*}
$$

$$
-h \lambda \int_{1}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u
$$

If we extend the definition (1.7) to $C_{-1}(K)=-1$, we can ser from (4.22) that

$$
\begin{equation*}
\frac{(-1)^{s}}{s!} \int_{1}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u=(-1)^{s}(h \lambda)^{-1}\left\{1-\sum_{m=0}^{s} \frac{\Gamma_{m}(K)}{m!}\right\} \tag{4.23}
\end{equation*}
$$

so that $C_{s}(K)$ as defined by (1.7) is equal to

$$
\begin{equation*}
\frac{(-1)^{s}}{s!} \int_{1}^{\infty} \frac{(\log u)^{s} R_{1}(u)}{u} d u \tag{4.24}
\end{equation*}
$$

Using (4.24) and (4.20) in (4.18) we have (4.16).
Finally we shall prove (1.9) that

$$
\left.\xi_{r}(m ; \mathfrak{f})=\mathrm{O}_{\boldsymbol{m}}(\log 2 N \mathfrak{q} \log \log 3 N \mathfrak{q})^{m+1}\right) .
$$

To do this we define the function

$$
\begin{equation*}
h_{r}(z)=\sum_{\mathfrak{p} / \mathfrak{z}}\left(-\log N_{\mathfrak{p}}\right) \frac{q_{r}(\mathfrak{p})}{\left(N_{p^{z}}+q_{r}(\mathfrak{p})\right)} \tag{4.25}
\end{equation*}
$$

for any complex number $z, r=0$ or 1 , and q_{r} defined by (1.6). Then for any natural number m, there exists integers $a_{m j}, 1 \leqq j \leqq m+1$ with $a_{m 1}=1$ such that
(4.26) $h_{r}^{(m)}(z)=\sum_{\mathfrak{p} \mid f}(-\log N \mathfrak{p})^{m+1} q_{r}(\mathfrak{p}) \sum_{j=1}^{m+1} \frac{a_{m j}}{\left(N \mathfrak{p}^{z}+q_{r}(\mathfrak{p})\right)^{j}}$
where $h_{r}{ }^{(m)}(z)$ denotes the m-th derivative of $h_{r}(z)$ with respect to z.
This is seen by a straightforward argument using induction on m.
Now we consider the function

$$
\begin{equation*}
g_{r}(z)=\sum_{b / f} q_{r}(\mathfrak{b}) N \mathfrak{b}^{-z}=\prod_{\mathfrak{p} / \mathfrak{l}}\left(1+q_{r}(\mathfrak{b}) N \mathfrak{b}^{-z}\right) . \tag{4.27}
\end{equation*}
$$

Taking the logarithmic derivative

$$
\begin{equation*}
g_{r}^{\prime}(z)=h_{r}(z) g_{r}(z) \tag{4.28}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{r^{\prime}}^{\prime}(z)=\sum_{\mathfrak{b} \mid f} q_{r}(\mathfrak{b}) N \mathfrak{b}^{-z}(-\log N \mathfrak{b}) . \tag{4.29}
\end{equation*}
$$

Using Leibnitz's rule we have

$$
\begin{equation*}
\sum_{\mathfrak{b} \mid \mathfrak{t}} \frac{q_{r}(\mathfrak{b})}{N \mathfrak{D}}(\log N \mathfrak{D})^{m} \tag{4.30}
\end{equation*}
$$

$$
=\sum_{s=0}^{m-1}\binom{m-1}{s}\left(\sum_{\mathrm{b} \mid \mathrm{f}} \frac{q_{r}(\mathfrak{b})}{N \mathrm{~d}}(\log N \mathfrak{d})^{s}\right)(-1)^{m-s} h_{r}^{(m-s-1)(1)}
$$

and

$$
\begin{align*}
h_{r}^{(s)}(1) & =\mathrm{O}\left(\sum_{p / f} \frac{(\log N \mathfrak{p})^{s+1}}{N \mathfrak{p}}\right) \\
& =\mathrm{O}_{s}\left((\log \log 3 N \mathfrak{z})^{s+1}\right) . \tag{4.31}
\end{align*}
$$

Hence from (4.28), (4.30), and (4.31) we see that

$$
\begin{equation*}
\sum_{\mathfrak{b} \mid \mathfrak{f}} \frac{q_{r}(\mathfrak{b})}{N \mathfrak{b}}(\log N \mathfrak{D})^{m}=\mathrm{O}_{m}\left(g_{r}(1)(\log \log 3 N \mathbf{t})^{m+1}\right) \tag{4.32}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{r}(1)=\mathrm{O}(\log 2 N t) . \tag{4.33}
\end{equation*}
$$

Therefore writing $\xi_{r}(m ; \mathfrak{i})$ as

$$
\begin{align*}
& \frac{1}{m+1} \sum_{\mathfrak{b} \mid \boldsymbol{t}} \frac{q_{r}(\mathfrak{b})}{N \mathrm{D}}(\log N \mathrm{D})^{m+1} \tag{4.34}\\
+ & \sum_{s=0}^{m} \frac{m!}{(m-s)!} C_{s}(k) \sum_{\mathfrak{b} \mid \boldsymbol{t}} \frac{q_{r}(\mathfrak{b})}{N \mathrm{D}}(\log N \mathrm{D})^{m-s}
\end{align*}
$$

we see that $\xi_{r}(m ; \mathfrak{i})$ is $\mathrm{O}_{m}\left(\log 2 N \mathbf{t}(\log \log 3 N \mathbf{t})^{m+1}\right)$ to prove (1.9).

Bibliography

1. J. B. Friedlander, On the number of ideals free from large prime divisors, J. Reine Angew. Math., 255 (1972), 1-7.
2. J. R. Gillett, On the largest prime divisors of ideals in fields of degree n, Duke Math. J., 37 (1970), 589-600.
3. D. G. Hazlewood, Sums over positive integers with few prime factors, J. Number Theory, 7 (1975), no. 2, 189-207.
4. ——, On sums over Gaussian integers, Trans. Amer. Math. Soc., 209 (1975), 295-309.
5. E. Landau, Einfuhrung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea Pub. Co., New York, 1949.
6. B. V. Levin and A. S. Fainleib, Application of some integral equations to problems of number theory, Uspehi Mat. Nauk, 22 (1967), no. 3 (135), 119-197 (= Russian Math. Surveys, 22 (1967) no. 3, 119-204).

Southwest Texas State University, San Marcos, Texas 78666.

