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PONTRYAGIN DUALITY FOR PRODUCTS 
AND COPRODUCTS OF ABELIAN fc-GROUPS 

W. F. LAMARTIN 

ABSTRACT. The fc-group dual G of a T2 abelian fc-group 
G is the group of all k-group morphisms from G into the circle 
group, provided with the fc-refinement of the compact-open 
topology. We shall quite easily show that the dual of the co-
product of a collection of T2 k -groups is the product of the 
respective duals. The fact that the dual of the product of the 
collection is the coproduct of the respective duals requires a 
more lengthy proof. Saying that G satisfies duality when 
G = G via the canonical map, as a simple corollary to these 
two results we get that the product and the coproduct of any 
collection of fc-groups, each of which satisfies duality, also 
satisfy duality. 

Introduction. The fc-group dual GA of a T2 abelian fc-group G is the 
group of all fc-group morphisms from G into the circle group, provided 
with the fc-refinement of the compact-open topology. We shall quite 
easily show that the dual of the coproduct of a collection of T2 k-
groups is the product of the respective duals. The fact that the dual of 
the product of the collection is the coproduct of the respective duals 
requires a more lengthy proof. Saying that G satisfies duality when 
G=GAA via the canonical map, as a simple corollary to these two 
results we get that the product and coproduct of any collection of 
fc-groups, each of which satisfies duality, also satisfy duality. 

This last result is analogous to one for abelian topological groups 
proved by Kaplan in [ 1]. One should note, however, the dissimilarity 
of the proofs required for the results in the case of topological groups 
and those for fc-groups. Indeed, theorems for topological groups do 
not transfer well to fc-groups; and the reason for this is that the multi­
plication is not necessarily continuous on the topological product for 
fc-groups. Even when the same result is true for fc-groups as for topo­
logical groups, a completely different proof is often required. 

Preliminaries. We begin with some background material on T2 k-
spaces. For a Hausdorff (T2) topological space X, let kX denote the 
space with the same underlying set as X and the topology consisting of 
all fc-open sets, where U is /c-open if U D C is open in C for all com­
pact C in X. The space kX is called the fc-refinement of X; if X = kX 
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via the identity, then X is called a fc-space. 
Examples of T2 spaces which are also fc-spaces include those that 

are locally compact, first countable, or fc „-spaces. For information re­
garding T2 fc-spaces see [5]; for information concerning non-
Hausdorfffc-spaces as well see [3]. 

A T2 fc-group is a group with a T2 fc-topology such that inversion is 
continuous and such that multiplication is continuous on the fc-
product — instead of the topological product as is the case for topo­
logical groups. One notes that if H is a topological group, then 
kH is a fc-group. For examples of fc-groups which are not topological 
groups see [3]. Unlike topological groups, T2 fc-groups may not be 
regular, hence not completely regular. In what follows all groups are 
T2 and abelian, and their identities will be denoted by 0. 

If {Gi | i G 7} is any collection of T2 abelian fc-groups, J\ÌGI Q W*11 

denote the fc-product of the collection, which is the product provided 
with the fc-refmement of the usual product topology, a finer topology, 
in general, than the product topology. The coproduct of the collection 
will be denoted by Jl^e/ *-*«• Algebraically the coproduct is just the 
direct sum of the collection, and with a bit of work one can verify 
that its topology is the fc-refinement of the restriction to the direct sum 
of the box topology on the product. Since we shall not need this 
explicit description of the coproduct's topology, we leave the verifica­
tion of this to the reader. One easily has that finite products and co-
products are the same, and we record this as lemma 1. 

LEMMA 1. For any finite F C I, J\i EF Q = Ji j e F Q-

Since for each finite F , r j i G F G{ is embedded as a closed subgroup in 
n»G/ Q with gi = 0 if i Ç F, for notational convenience we shall con­
sider it as a closed subgroup. 

For T2 fc-spaces X and Y and Kç-oiX, Y) denoting the set of con­
tinuous functions from X into Y, provided with the compact-open 
topology, let K(X, Y) = fc[Kc_0(X, Y)]. One recalls that subbasic open 
sets in the compact-open topology are of the form W(C, U) = 
{/ | /(C) C U} where C is compact in X and U is open in Y. From 
[3], for example, the function <p : K(X, K(Y, Z))-> K(Y, K(X, Z)) given 
by <p(f)(y)(x) = f(x)(y) *s a topological isomorphism, natural in X and 
Y. 

Letting \G\ denote the underlying fc-space of the T2 abelian fc-group 
G, one checks that the inclusion KG(G, H) —> K(\G\, \H\) is a closed em­
bedding, where KG(G, H) is the group (since H is abelian) of all fc-
group morphisms from G into H. A proof of this is given in [3], where 
it is also shown that the functor K(X, _) : K—» K preserves closed 
embeddings. 
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For any abelian fc-group G, its fc-group dual is GA = KG(G, S1), where 
S1 is the circle with its usual compact group topology. Note that GA 

is T2 since S1 is T2; in fact, since the continuous real-valued functions 
separate the points of S1 the same is true for GA. Then, for any two 
abelian fc-groups G and H, because of the remarks in the previous 
paragraph, the vertical arrows in the following diagram are closed em-
beddings. It follows, therefore, that the induced bijection <p' is, in 
fact, a topological isomorphism. 

<p' 
KG(H. GA) -> KG(G. HA) 

i i 
K(|H|, |GA|) K(\G\,\HA\) 

1 V> i 
K(|H|,K(|G|,|Si|)) >K(|G|,K(|H|, IS1!)) 

Restating this categorically, with KG denoting the category of T2 

abelian fc-groups, we have: 

PROPOSITION 2. The junctor A : KG-» KGop is K-lefi adjoint to A : 
KG°*>->KG. 

One notes for the unit 17 of this adjunction that each t)G : G—> GAA is 
given by J)G(g){ß) = ß(g) f°r e a c r i g £ G and j 8 £ G A . Each r)G is a fc-
group morphism. If, in fact, r)G is an isomorphism so that G = GAA, we 
say that G satisfies fc-group duality. This, of course, is in analogy to 
the case for topological groups, where H is said to satisfy Pontryagin 
duality if H = f/vv via the canonical map, and Hv = TGC_0(H, S1), the 
group of all topological group morphisms from H into S1. 

If G is locally compact, it is well known that G satisfies Pontryagin 
duality. Also, if G is locally compact, Gv is locally compact and, there­
fore, Gv = GA, and it follows that G satisfies fc-group duality as well. 

The Main Theorem. In [ 1] Kaplan proved that if each member of 
a collection of T2 topological groups satisfies Pontryagin duality, then 
their product also satisfies Pontryagin duality. Our objective is to 
prove a stronger result for fc-group duality. Specifically, we shall 
prove: 

THEOREM 3. For any collection {GÌ \ i E 1} of T2 abelian k-groups, 
[ìliGÌ GÌ] A = n » e / QA and []\iGI Q] A = UiGI QA. 

Before proving this, however, we note the following corollary, 
which is the fc-group analog of Kaplan's result. 
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THEOREM 4. If {GA i G 1} is a collection of T2 abelian k-groups, 
each satisfying k-grçup duality, then the product and the coproduct 
of the collection also satisfy k-group duality. 

PROOF. Using theorem 3 we have [ f^ez Q] AA = [lLiGI QA] A = 
H» e/ QA A which equals J^i G7 G{ since G{ = G{

AA for each i. In a similar 
manner the coproduct is shown to satisfy duality. 

We proceed now with the proof of theorem 3. Since A : KG-» KG0? 
is a left adjoint, it turns coproducts in KG into products in KG, and we 
record this as: 

PROPOSITION 5. [ JL» Gz GJ A = Y\isi QA-

The proof of the second part of theorem 3 is somewhat more com­
plicated. We begin with the following lemma. 

LEMMA 6. For each finite F = {ily • • -, fn} C 7, [ü tEF Q] A is em­
bedded as a closed subgroup in [fji e/ GJ A via (f^ •+• • • * + fn) (XÌ)Ì Gj 
= /i,K) + • • • + fjxj. 

PROOF. Consider the following commuting diagram 

where eF is the canonical embedding and qF is the canonical quotient. 
Applying the functor A to this we have 

[ n G ] 
*" iGF ^*i J 

[ n G J 
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That qF
A is a closed embedding and the map required by the lemma is 

now obvious. 
In particular, each G*A is embedded into [ J\ÌGI Q] A- Therefore, by 

the universal property of coproducts there is a unique fc-group mor-
phism ^ : Jii e/ QA —• [ Ü» ez Q] *>anc* **is e a s y t o s e e t n a t ^(/*i + ' ' ' 
+ jÜ(&)«ei =/i,(&i) + ' • • + A(g<„). The remainder of the paper 
consists of showing that ^ is a fc-group isomorphism. Since it is a k-
group morphism, ty is certainly continuous. 

LEMMA 7. tfß is one-to-one. 

PROOF. Let +(/,, + • • • + fj = 0. Then * ( £ + • • • + /;n)(gi);Gz 
= 0 for all (g,),€l; that is £(g4) + • • • + / in(g,J = 0. Define (g,),6I 

by g, = 0 except for i = ix. Then 0 = £ ( & ) + • • • + /„(&„) 
= ^(g«,) for all g4l G Q r Thus / i f = 0; similarly fik = 0 for k = 2, 
• • -,n. 

Before showing that ^ is surjective we need the following lemma. 
There is an analogous result for topological groups, and it is instruc­
tive to compare the standard proof for topological groups with the 
proof presented here for fc-groups. 

LEMMA 8. For any / G \J\i ei Q] A there exists a finite FOI with 
/(G i) = 0 t / f $ F . 

PROOF. Assume that this is false and that there is, therefore, an 
infinite AC I with /(G<) ^ 0 if i G A. Let U be any open set in S1 con­
taining 0 which contains no non-trivial subgroups. Then, for each 
i G A there exists g* G G* with /(g*) ($: 17. Since / is continuous on 
the fc-product, it is continuous on compact subsets of the topological 
product. In particular, it is continuous on the compact subset Y\Ì$A {0} 
x n»eA {0> &}> a n d there is, therefore, a finite / C A with (0)iG7 G 

n ^ A { 0 } X n < q / { 0 } X n « 6 A N j { 0 , g i j C / " 1 ^ ) . But this requires 
that f(gi) G C7 for all i G A\J; therefore, /(gf) G 17 for an infinite num­
ber of the i in A, and this is a contradiction to the fact that /(g*) (£ 17 
when i G A. 

For each / in [ H e / Q ] A let sup(/) = { ( & ) Ì E / I / ( ( & ) Ì E / ) ^ 0}. 
Lemma 8 says that sup(/) C JJ* e F G{ for some finite FUI. 

LEMMA 9. tfß is surjective. 

PROOF. For / G [ I L e / Q ] * with sup(f) Ol\iEF G{ and F = ft, 
••• , in}, l e t / * = / | Q 1 + • • • + / | G V Then / * G i l i G 7 G,*, and 
clearly «/*(/*) = / 

To see that i/r ~1 is continuous it is sufficient to show that it is con-
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tinuous on compact subsets since [f^ie/ ^J A is a T2 fc-space. The fol­
lowing lemma is the key step in accomplishing this. 

LEMMA 10. For any compact C in []\ÌGI Q] \ U {sup(c) | c £ C } 
C II* GF Gifor some finite F G I. 

PROOF. Assume that the lemma is false. We, then, can choose 
c0 G C and F0 C I with sup(c0) C J\i GF0 Q; n e x t w e c a n choose 
CiGC and Fx C 7 with supfo) (f n*eF0 Q> supfo) C TUEF, Q> and 
F0 ^ F'i. And in general we have cnG C with sup(cn) Ç | | ÌEF„-I Q> 
sup(cn) C Yl leFn Q> and F^x^F». Thus for each non-negative 
integer n, there exists fn G Fn\Fn_l with cn(Gtn) 7̂  0. Now let 17 be 
any neighborhood of 0 in S1 containing no non-trivial subgroups. 
Then for each n there is a gin G G*„ with cn(gin) ^ (7. Since C is com­
pact the cn have an accumulation point c. Let F be a finite subset of 
Zwithsup(c) C l l i E F Q. Now,defineK = ft. eA {g*„, 0} X F U A {0}, 
where A = {i G Z | i = in for some n and i (£ F}. Clearly c(fc) = 0 
for all k G K; thus, C is in the open set W(K, 17). However, cn (f 
W(C, £7) for all n except possibly some finite number of them for which 
in G F. But this is impossible if the cn accumulate at c; therefore, the 
lemma is true. 

LEMMA 11. t^~Y is continuous. 

PROOF. Let C be a compact subset of [ J\i ei Q] A w i t n F a s i n lemma 
10, and consider the following commuting diagram where all maps 
are the canonical ones, and in particular qF

A is the closed embedding 
of lemma 6. 

ii QA * > r n Q1 A 

.X I < : L i<=t J 

a QA=n G/ = r ü Q1 A = r n G(I
 A 

iGF iGF L iGF J L iGF J 

Since aF
A is a closed embedding, it is clear that $~l restricted to 

9 F A ( [ I I Ì G F Q] A) i s continuous and is, therefore, certainly continuous 
on C. Thus I/J-1 is continuous on all compact subsets, hence con­
tinuous. 
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We have now shown that ^ is a fc-group isomorphism, and the proof 
of theorem 3 is complete. 

Throughout the paper, the only property of S1 that was of impor­
tance was that it had no small subgroups. Thus any other T2 abelian 
fc-group with this property would also yield a duality theory in which 
the dual of the product was the coproduct of the respective duals and 
vice versa. 

If one takes an uncountable collection of copies of the reals 
{Ri\i S I}, then \\iei Ri satisfies fc-group duality since each Ri = 
Ri

AA. Furthermore, this is an example of a fc-group satisfying fc-group 
duality which is not a topological group (the ^-product J | i G / G{ is not 
even regular when / is uncountable). This fc-product is, of course, 
the fc-refinement of a topological group which satisfies Pontryagin 
duality, and this prompts one to ask the following: If H satisfies 
Pontryagin duality as a topological group, does kH satisfy fc-group 
duality? 

We should also remark that in [4] Noble gives a different —and 
inequivalent — definition of a fc-group. In particular, all his fc-groups 
are topological groups and need not be fc-spaces. He then proves that 
every closed subgroup of a countable product of locally compact 
groups satisfies Pontryagin duality, and this is an extension of the 
principal theorem in Kaplan's second paper on duality [2]. 
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