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FACTORALITY IN QUOTIENTS OF LINEAR Gm-ACTIONS 
ANDY R. MAGID 

Let fc be an algebraically closed field of characteristic 0 and let 
Gm = GL(1, k) be the multiplicative group of k regarded as an alge­
braic group. Suppose Gm acts rationally on the n-dimensional k vector 
space V. The purpose of this paper is to examine factorality in the 
ring R = k [ V\ Gm of Gm-invariant polynomial functions on V; that is, 
to compute the divisor class group Ci(R). 

We can always choose a basis xu • -, xn of V such that Gm acts 
diagonally with respect to this basis, i.e. t in Gm sends x{ to tKixit For 
example, if n = 2, Xt = 1, and X2 = — 1, then R = fcfoc^] and 
C£(R) = 1. If n = 3, À! = 1, A2 =

 2> a n d X3 = - 4 , then R = 
k[xx

4x3, x2
2x3, Xi2X2*3]> s o hi terms of generators and relations, R is 

generated by a = Xi4x3i b = x2
2x3, c = x^x2x3 subject to the single 

relation c2 = ab. Then Cl(R) = Z/2Z. If n = 4, Xx = \ 2 = 1 and 
X3 = X4 = — 1, then R = k[xxx3, x2x3, xxx4, x2x4] so R is generated by 
a = xxx3, b = x2x3, c = 0^4, d = x2x4, subject to the single relation 
ad = be. Then GL(R) = Z. Thus C£(R), in these examples, is cyclic, 
but it can be infinite cyclic, finite cyclic, or trivial. 

The general result established here is the following: suppose all 
Xj are non-zero with exactly p positive. If p and n — p are larger than 
1, Cl(R) = Z. If p = 1 or n — p = 1, Ci(R) is finite cyclic of com­
putable order—-the computation depends on some number-theoretic 
calculations modulo Xn (if n — p = 1) or Xx (if p = 1). The approach 
to this determination is via a study of the geometric quotient pre-
variety W = (V — 0)/Gm, whose existence we establish, and we show 
that Pic( W) = Z, always. 

For convenience, we establish some notational conventions in the 
beginning of the paper and conserve these throughout for proofs, 
although the theorems are stated without the conventions. 

We assume throughout that k is an algebraically closed field of 
characteristic zero, and all our pre-varieties are over k. We identify 
pre-varieties with their fc-closed points. We use k[W] to stand for 
r(W, Ow) if W is a pre-variety and ( )* to denote the units functor. We 
also use the relative units functor Uk, whose value on the pre-variety 
Wisfc[W]*/fc*. 
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DEFINITION 1. Let n, m, kl9 • • •, Xn+m be positive integers. Then 
[(n, m), Xi, • • -, Xn+m] denotes fc(n+m_1) — 0 with coordinates x1? • • -, 
*n+m a n d Gm action given by x̂ —» £A<xi? 1 ̂  i ^ n, and x f-» Ê-****, 

n + l ^ i ^ n + wi, The action is called reduced if the greatest com­
mon divisor of X1? * • *, Xn+m is 1. 

REMARK. Le td = g.c.d. (X1? • * ',Xn+m) and let A, ' = \Jd. Suppose Z 
is a geometric quotient of [(n, m), X^, • • -, X^+m] by Gm. Then the 
quotient [(n, m), X1? • • -, Xn+m]/Gm exists and equals Z: for l e t / : Gm 

—> Gm be the dth power map. Then Gm acting on [(n, ra), Xx ', • * *, 
^n+m] v i a / i s equivalent to Gm acting on [(n, ra), X^ * * -, Xn + m] . So 
whenever it is convenient we may take the action to be reduced. 

Fix (n,ra), X1? • • -, Xn+W, let V = [(n, m), X1? • • -, Xn+W] and let 
V = [(n, m), 1, • • • , ] . ] . Let <f> : V" -> V send x* to x/ ' . It is trivial to 
verify that 0 is a surjective Gm-equivariant morphism. For any integer 
£, let r(£) denote the group of ith roots of unity in k. Let G = r(Xi) 
X • • • X r(Xn+m). Theng = (al9 • • - ,an + m) inGactson V ' b y g ^ , • • -, 

xn+m) = («i^i> ' * '><Xn+mxn+m)> Th e actions of G and Gm on V commute 
and <j> induces an isomorphism of V'lG with V. For each i = 1, • • -, 
n + ra, let 

y . ' = y' - (Xi = 0) and V, = V - (x, = 0). 

The Vi' are open and Gm-stable in V , and their union covers V . 
Similar remarks apply to the V*. Also, <f>(Vi') = Vi. 

For each i, let W; ' = k(n+m~l) with coordinates x1? • • •,£;, • • -,xn4.m, 
where x{ means x{ is deleted. For each i there are Gm-equivariant 
isomorphisms a{ : Gm X W* ' -» V defined as follows: 

For i g n, afa xl9 • • -, xi? • • -, xn+m) 

= ( fXj , • * ', tX{_l, ly tXi+l, ' ' ' , tXny I Xn+l, ', I Xn+m), 

Fori > n , ^ * , * ! , • • -,*i, • • -,xn+m) 

— (tóCi, ' ' *, fon, £ * n + l> *> ̂  * i - l > ^ *i + l> 

^ i \*1> * ' *? ^ n + m / 

\ * t > X^Xj, ", X\Xn) Xj -*-n + l> " * *5 * i *i> ', Xj Xn+m)' 

For each i, o^ induces an isomorphism of W{ ' with V{ 7Gm. By unique­
ness of geometric quotients, this means that the quotient V'IGm exists 
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and is covered by open sets isomorphic to W{ '. We denote these open 
sets in the quotient by W{ ' also. 

Because the actions of G and Gw commute on V , G acts on V'IGm, 
and each W* ' is G-stable. Thus all G-conjugates of an element of 
V ' IGm lie in an open affine, and the quotient V 'IGnJG exists and is covered 
by the open affines W, = W/IG But W//G = Vi7Grn/G = Vi'IGIGm = 
VjGm, and hence V'IGJG is a quotient of V by Gm. (The above con­
struction is a special case of the technique of [4, 6.1, p. 543].) We 
have now shown: 

THEOREM 2. The geometric quotient [(n, ra), A1? • • -, Xn+m]/Gm 

exists. 

The geometry of the quotient may be quite complicated. We make 
a few remarks regarding it. Let S = {(i, j) | 1 ^ i ^ n, l^j^m}, 
let V = U(Yif H V'J+n) (union over (i,j) in S) and let V0 = Ï7(V< H 
VJ+n). Then V0' and V0 are open Gm-stable subsets of V and V, re­
spectively. Let C0 ' = V07Gm and C0 = V0/Gm. Clearly C0 = C07G. 
To determine C0' , we consider the subset C of fc(nm) with coordi­
nates ^ which is the locus of tijtkl — ti9tkj for all pairs (i,j) and (k, £) 
in S. It is easy to see that the morphism V0 ' —» C ' by fy = xixJ-+n de­
fines an isomorphism of C0 ' with C ' — 0, and thus C0 ' is an open subset 
of the affine variety C '. C ' is usually called the Segre cone of signature 
(n, m), because C is the cone in k(nm) lying over the image P^-1) X 
p(m-i) m p(nm-i) u n ( j e r the Segre embedding. The action of G extends 
to C ', and if C = C 7G, C0 is isomorphic to an open subset of C whose 
complement is a single point (the image in C of 0 in C '). 

We now describe the complements of C0 ' and C0. First V — V0' 
= V U Z2', where Z / = (Jfc<»> - 0) X 0 and Z2' = 0 X (fc(~) - 0), 
and V - V0 = Zi U Z2 where 2̂  = 0(Zi '). Now Ẑ  ' is Gm-stable, and 
Zi7Gm = F^-1) and Z27Gm = P^~l\ so V'IGm = C0 ' U P (n-1} U 
p("»-i'\ and VIGm = C0 U P^n~l)IG U P<m-»IG, so the complements of 
C0 ' and C0 are complete and, if n > 1 or m > 1, not affine. (If n = m 
= 1, it is easy to see that V/G m is the affine line with the origin 
doubled so V'lGm is not separated). 

Finally, we note that V7Gm is non-singular since it is covered by the 
non-singular open sets W{ ' and that VIGm is normal since it is covered 
by the open sets W{ = W{ 'IG. 

We now begin the calculation of the Picard groups of the quotients. 

PROPOSITION 3. Pic([(n,m), 1, • • -, 1]/Gm) = Z. 

PROOF. In the established notation, V —• V7Gm is a locally trivial 
fibration with fibre Gm: the inverse image of W{ ' being Gm X W{ '. We 
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employ the exact sequence of [2, Theorem 5], noting that the demon­
stration in the reference does not require separation of the base. Since 
Uk(V) = 1 a n d Pic(V') = 1, the exact sequence gives 1-» Uk(Gm) 
—> Pic (V 7Gm) —> 1 exact, and hence the result. 

To calculate Pic (V/Gm), we use the fact [2, Lemma 2] that Pic (Y) 
= Hl(Y, Gm) = H*(Y, Uk) (cohomology in the Zariski topology). 

THEOREM 4. Pic([(n,ra), A1? • • %An+m]/Gm) = Z. 

PROOF. Let *U be the open cover of VIGm by the W{ and let 7/ ' be 
the open cover of V'IGm by the Wf '. The Cech-to-derived functor co­
homology spectral sequences give rise to the following exact sequences 
of low degree: 

(*) 1 -* H\<U, Uk)-* H\VIGm, Uk) -> H°(T4 Pic) 

(**) l - > Hi(T/', Uk)^H\V'IG^ Uk)-+ H°(T/',Pic) 

We begin by analyzing (**). P i c ( W / ) = l for each i, hence 
H°(74 Pic) = 1 and H\<U'9 Uk) = H\V'IGm, Uk) = Pic(V7Gm) = Z, 
using proposition 3. 

Next we calculate H^Hl, Uk). We have the following commutative 
diagrams: 

l - > Bl(<U, Uk)^> Z\<U, C7fc)-» H 1 ^ I/*)-* 1 

(***) 4 4 i 
l - > BH^' , Uk)^Z\<U', Uk)^ H\<U', Uk)^ 1 

(****) 4/ ig 4 
i->z»0fc\ t/fc)->n ^ W n w/)=tn * W n w/ n w*') 

Since W,' = fc(»+«-i) and W< = Wi'/G, C/^W/) = [/fc(Wf) = 1. Thus 
in (***), B\<U, Uk)=B1{riL', Uk) = 1, and hence Z 1 ^ , C7fc) = 
H 1 ^ I7fc) and Z\<U ', Uk) = ff i(«fc ', Uk) = Z. Now Uk(W{ ' D W / ) = 
Z, and C7jfc(Wj D W,) is a non-trivial subgroup of Uk(Wi ' D Wrf '), since 
W, H Wj = (Wj' fi W j ' y c Similarly, Uk(Wi H W,- fi Wk) is contained 
in C7fc(W4' n w / n Wfc')- Now in the diagram (****), the vertical 
maps are injections, and the cokernel of / injects into the cokernel of 
g. But the cokernel of g is torsion by the above remarks, and hence 
the cokernel of / is torsion, hence Zl(fU, Uk) is infinite cyclic. Thus 

H\m, uk) = z. 
Now we return to the sequence (*). For each i, W{ is affine and 

Pic(Wj) is contained in Cfc(Wi). Since W< = W{'IG and Ci(W{') = 1, 
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by [1, 16.1, p. 82] OL(Wi) is contained in the finite group 
H\G9 & [ W / ] * ) = Hom(G, &*). Thus Pic(Wi) is finite, and hence 
H^lX, Pic), which is a subgroup of JJ Pic(W;), is finite. It follows 
from (*) that Hl(VlGm, Uk) is finitely generated of rank one. To com­
plete the proof, we must show that Hl(VIGm, Uk) = Pic(V/Gm) is torsion 
free. But this follows from [3, Lemma 4] (again, we note that the 
reference does not use separation in the proof). 

We can now compute the relevant rings of invariants. We first 
observe that, in the notation of the discussion following Theorem 2, 
fc[V']Gm = f c [ C ' ] . It follows ihsitk[V]Gm= (k[V] G W ) G = k[C']G 

= k[C]. Also, C — C0 and C — C'Q are single points. Since C and 
C have dimension n + m — 1, if n > 1 or m > 1, Cl(C0) = Oi(C). 

THEOREM 5. Suppose n > 1 and m > 1. Then k[ [(n, m), x1? • • -, 
K+m]]Gfn has class group Z. 

PROOF. Let C00 be the non-singular locus of C0. Since C0 is normal, 
codim (C0 — C0o) = 2, so Ci(C0) = C£(C0o), and since C0o is non-
singular, Ol(Coo) = Pic(Coo)- Thus we need to compute Pic(C00). 
Since n > 1 and m > 1, codim (V — V0) = 2, hence Uk(V0) = 1. Let 
V00 be the inverse image of C0o in V0; since C0o = V0JGm and codim 
(Co - C o o ) S 2, codim ( V 0 - V o o ) â 2 , so Uk(V00) = 1. By [3, 
Lemma 4] , Pic(C0o) ^s torsion free. Let C0o be the inverse image of 
CQO i n Co'> s o Qo = CQOIG. Let V0o be the inverse image of C0o in 
V0 ', so Voo/Gm = C00. As before, codim (C0 ' - C00) ^ 2, so C7fc(V£o) 
= 1. Now Vóo—^ Cóo is a fibration with fibre Gm, so, as in Proposition 
3 above, [2, Theorem 5] shows that Pic(C^o) = Z. Now we con­
sider the diagram 

Pic(V/Gm) -» Pic(V7Gm) 
ì Ì 

Pic(Coo) -> Pic(Cóo). 

Since codim (V7Gm - C00) = codim(V/Gm - C00) = 2, the vertical 
arrows are injections, and in the proof of Theorem 4 we saw that the 
top horizontal arrow is an injection. Since Cóo "~* G0o

 = CQJG is 
finite, the bottom horizontal arrow has torsion kernel. But we know 
Pic(Coo) to be torsion free. Since Pic(V/Gm) = Z and Pic(Cóo) = Z, 
it follows that Pic(Coo) is a l s o infinite cyclic, which completes the 
proof. 

In order to treat the case n = 1 or m = 1, we will need the follow­
ing number-theoretic observation 
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LEMMA 6. Let a, b, c be relatively prime positive integers. The 
g.c.d. (b9 c) is the smallest positive integer e such that there is a pos 
Uve integer f with ea + fb = 0 (mod c). 

Since the cases n = 1 and m = 1 are symmetric, we focus on tr 
case m = 1. 

THEOREM 7. Let\i9 • • -, Xn+1 be relatively prime. Thenk[ [(n, 1), A 

• • *, A „ + I ] ] Gm has finite cyclic class group of order N, where N 
defined as follows: lete; = g.c.d. (g.c.d. (X1? • • 'X> ' ' 'lK\K+i) fari = 
1,2, • • -, n. Then N = K+il^i ' ' ' en. 

PROOF. We first consider the case Xn+1 = 1. For i = 1, 2, • • -, \ 
let ti = XiX^+i, and let Y' = [(n, 1), X1? • • -, Xn, 1]. Then it is easy t 
check that k[ Y '] Gm = fc[£1? • • -, £n] is a polynomial ring and hence hi 
trivial class group. Now let Y = [(n,l),\l9 • • *,Xn+1] and let ^ : Y'—• 
be iK*i> • • -, xn+l) = (*!, • • -, xn, x£ïi1')- H = r(Xn+1) acts o n Y ' t 
ß(xi9 • - -, xn+i) = (xu - • -, ßxn+l), and I/J induces an isomorphism < 
Y 7H with Y. Also, ^ is a morphism of spaces with Gm-action, and ti 
actions of H and Gm on Y' commute. Let S = k[Y'] Gm and let R : 

k[Y] G- . It follows that SH = R, so that by [1, 16.1, p. 82] there is a 
exact sequence l - > CfL(R)^> Hl(H, fc*)-> Div(S)H/Div(R)-> 1; tl 
right hand 1 coming from the fact that Ci(S) = 1. H is cyclic of ord< 
Xn+1 and hence so is Hl(H, k*): if a is a generator of H, a sends t{ \ 
a^ and since g.c.d. (Xl5 * * -, Xn+1) = 1, H acts faithfully on S. 

We need to compute the order of Div(S)H/Div(R). Choose posith 
integers bx, • • -, bn such that ^ bfa = 1 (Xn+1), and let u = tY

l • • • t^ 
Then a(u) = oca, so M is a primitive element for the quotient field 
S over the quotient field of R, with minimal polynomial / = Td — u 
where d = Xn+1. Then f'(u) = dud~l. By [1, 16.3, p. 84], the heig] 
one primes of S which ramify are among Px = (^), • • - , ? „ = (tn). L 
e{ be the ramification index of Pf. The above exact sequence shows th 
GL(R) is cyclic of order dle1 • • • en. To complete the proof, we mu 
show that e{ is the desired g.c.d. 

Now R is generated over k by invariant monomials, and hence 
is the least positive integer such that there is an invariant monomial 
degree e{ in t{. For convenience, we may assume i = 1, and let w 
tirt2

h2 ' ' • tn
hn be an invariant monomial. Then e^i + ^ ^A» — 

(mod d), so ex is at least as large as g.c.d. (g.c.d. (X2, * * *, Xj , d). If co: 
versely e is that g.c.d., there are positive integers c2, * * ', cn such th 
eXx + ^ c*At s 0(d), and hence w ' = £i%C2" ' ' ' tnCn *s a n invaria 
monomial, s o e ^ e. Thus eY = e and the result follows. 

The assumption in Theorem 7 that g.c.d. (X1? • • -, Xn+1) = 1 is th 
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the action is reduced, and, by the remark following definition 1, this 
can always be assumed. 

We conclude with an illustration of Theorem 7: C£(fc[[(2, 1), 
1, 1, n] ] ) = Z/nZ for any positive n: for g.c.d. (1, n) = 1. A. Geramita 
and M. Krusemeyer (unpublished) have computed generators and 
relations of k[ [(2, 1), 1, 1, n] ] Gfn = R: let S = k[s0, • • -, sn] map to R 
by s0-+x2

nx3, s1^xlx2
n~1x3, • • -, sn_1-*xl

n-lx2x3, sn^> xfx^ This 
is surjective, and the kernel is the ideal generated by the 2 X 2 minors 
of 

L 8^2 * ' ' Sn J 
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