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MINIMAL DEGREE RATIONAL APPROXIMATION 
F. D.K.ROBERTS* 

ABSTRACT. An algorithm is presented for computing a 
rational approximation to a function defined on a finite set of 
points. The method requires the accuracy of the approxima
tion to be specified, and computes the least degree rational 
approximation which achieves this accuracy. Although rational 
approximating functions are nonlinear, the procedure is based 
upon determining the feasibility of a sequence of linear in
equalities, and this is accomplished by the simplex method of 
linear programming. Some numerical results obtained with the 
algorithm are presented. 

1. Introduction. In an earlier paper [8], the problem of determin
ing a minimal degree linear approximation to a function defined on a 
finite set of points was discussed, and an algorithm presented for its 
solution. In this paper, the minimal degree problem is considered for 
approximation by rational functions. 

Given a real valued function / defined on a finite point set X = 
{xl7x29 • • • , % } , and given functions 0 1 ?^ 2 , • • - ,0m , 0 l f ^ 2 , • • -,i/fnalso 
defined on X, we form a rational approximating function 

m n 

(i) R=pjQn= £ ptki^qj+j-

A normalization condition is required on the coefficients pi? qj in the 
rational function. In this paper we impose the normalization 

(2) m a x { | p , | , | 9 i | } = l . 

The classical Chebyshev approximation problem is to determine the 
rational function Pm*IQn* which minimizes the expression 

(3) m a x | / - R | = | | / - R | | „ . 
X 

subject to the condition 

Qn > 0 on X. 
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The rational approximating function (1) is nonlinear in the param
eters qjf and the Chebyshev problem requires an iterative (non-finite) 
algorithm for its solution. Many such algorithms have been proposed. 
A numerical comparison of these methods is given by Lee and Roberts 
[5]. Traditionally the Remes algorithm (see for example Rice [7], 
Ralston [6] ) has been a popular method, although more recently the 
differential correction algorithm (see for example Barrodale, Powell 
and Roberts [1], Cheney and Loeb [2], Kaufman and Taylor [4]) 
has received considerable attention in the literature. 

In Chebyshev approximation, the degrees of numerator and de
nominator are specified in advance, and the accuracy, i.e., the mini
mum value of expression (3), is known only after the best approxima
tion has been computed. However, in many practical problems, the 
precise form of the rational approximating function is unimportant. 
All that is necessary is that a specified accuracy € be achieved. In 
this paper we consider the minimal degree problem in which the 
accuracy e required of the approximation is specified in advance, and 
the least degree rational approximation which achieves this accuracy 
is to be determined. Specifically, the problem may be stated as fol
lows: 

Given a positive tolerance e, determine integers m and n and a 
rational function R = PrJQn f° r which the inequalities 

m a x | / - R\ = | | / - R | | « < e , 
x 

Qn > 0 on X, 

are satisfied with m + n as small as possible, and m — 1 ^ n â m. 
This latter inequality restricts the rational approximation to be of the 
form PJQm) or Pm+lIQm. 

Although the rational approximating function is nonlinear, the 
minimal degree problem can be formulated in terms of systems of 
linear inequalities, and these can be solved by the finite techniques of 
linear programming. 

A discussion of the formulation is given in the next section, and 
computational details concerning the application of the simplex 
method to the solution of the linear programming problem are pre
sented in the 3rd section. Section 4 contains some sample numerical 
results obtained with the algorithm, and section 5 contains some final 
comments. 

2. Formulation as a Linear Program. Perhaps the obvious approach 
to solving the minimal degree problem is to compute the best Cheby
shev approximation to / by the rational functions PJQi, PJQi* ^V(?2> 
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Fy@2> • • -, until the desired accuracy € is achieved. The disadvantage 
of this approach is that each of these problems is nonlinear and re
quires an iterative (non-finite) algorithm for its solution. However, 
a solution to the problem can be obtained using a finite linear ap
proach. 

The method is based upon determining the feasibility (consistency) 
of the constraints 

\f-PJQn\< * i 
(4) Ç n > o } forallP°ints°f* 

max{\pi\,\qj\}= 1, 

for increasing values of m and n (ra — 1 ^ n ^ m). These constraints 
may be written in the form 

( / + *)Qn - Pm > 0 1 

( - / + c)Çn + Pm > 0 [-for all points of X 

Ç n > 0 J 

maxfl^l, 1^1}= 1. 

Note that since the accuracy e is specified in advance, these inequali
ties are linear in the coefficients of Pm and Qn. The feasibility may thus 
be determined by solving the linear programming problem: 

Minimize w subject to 

for all points of X 

(f+e)Qn-Pm + wììO 

(-f+e)Qn + Pm + w^0 
(6) 

Qn + w ^ 0 J 

The last inequalities are sufficient to ensure the normalization (2). 
Clearly Pm = Qn = 0 provides a feasible solution to (6). If the mini
mum value w* is zero, then no feasible solution to (4) exists, i.e., an 
approximation of degree m over n is not sufficiently powerful to 
achieve the accuracy €. If the minimum value w* is less than zero, 
then the solution PJQn to (6) provides an approximation to / to within 
accuracy €. 

The following result enables us to exclude the nonnegativity con
straints on Qn, and thus reduce the size of the constraint matrix of 
the linear program. 

THEOREM. If the minimum value w* of the following linear program 
is negative, then the nonnegativity constraints Qn > 0 on X are auto-
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matically satisfied: 
Minimize w subject to 

(/+e)Cn-Pm + u ^ 0 j 
(7) ( - / + e )Ç„ + Pm + w è 0 J for all points ofX. 

PROOF. The constraints in (7) may be rewritten in the form 

w + eQn g \fÇn - Pm\ for all points of X. 

Since the right hand side is nonnegative, tv* < 0 implies Qn > 0. 

3. Computational Details. A minimal degree approximation can 
be obtained by solving (7) by the simplex method for increasing values 
of m and n (ra — 1 ^ n ^ ra), until the optimum value w* is negative. 
If a solution to (7) does not provide a minimal degree approximation 
for certain values of ra and n, then it is necessary to re-solve the prob
lem with ra (or n) increased by 1. This new linear program differs 
from the previous one only in the addition of a new variable pm+i 

(or qn+i). However, it is not necessary to solve this new problem com
pletely from the beginning. There is a standard post-optimality tech
nique in linear programming which enables an additional variable 
to be included into an optimal simplex tableau (see for example 
Hadley [3] ). The simplex iterations resume from this point, and a 
substantial reduction in computation can be achieved. 

In practice it is more efficient to deal with the dual linear program. 
Letting <f>ij = <f>i(Xj), ijjij = $i(xj), this may be stated as: 

m+n 

Maximize ^ — u{ — v{ subject to 
i = \ 

2 %(J5 + eWij + £ tji-fj + eWij + ut - v{ = 0, i = 1, • • -, n, 

N N 

(8) E - s/l>ij + 2 *Ai + "i+n - vi+n = 0, i = 1, • • -, ra, 

N N 

E 1 + 2 * = i, 
i = l J = l 

Sj, tj, uiy Vi è 0. 

The addition of a new variable in the primal corresponds to the 
addition of a new constraint in the dual. Thus the introduction of the 
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new variable pm+i (say) is equivalent to the addition of the new 
constraint 

N N 

(9) 2 , ~ tyj>m+lj + 2 *î m + l j + Mm+n+l ~ ^m+n + 1 = 0 

in the dual. This constraint may be added to an optimal simplex 
tableau to (8) by eliminating the coefficients of the basic vectors (see 
for example Hadley [3] ). The variable wm+n+i or vm+n+i provides an 
additional basic vector, and thus no artificial vector is required. 
Further simplex iterations are then performed until an optimum solu
tion to the new linear program is obtained. The addition of a new 
variable qn+l is treated in a similar fashion. 

The algorithm proceeds then by first solving (8) for m = n = 1. 
The vectors ux and u2 form part of the initial basis, and so only one 
artificial variable is required. This is pivoted out of the basis at the 
first iteration and thereafter normal simplex iterations are performed 
until an optimal solution is obtained. If the value of the objective 
function is negative, the algorithm stops and the approximation 
PJQi produced is a minimal degree approximation. If the value of 
the objective function is zero, a new constraint (9) corresponding to 
the additional variable p2 is included, and the simplex iterations 
resume. If the value of the objective function is still zero, a new con
straint corresponding to the variable q2 is included. The procedure 
continues alternately adding constraints corresponding to additional 
variables in numerator and denominator until an optimal solution to 
(8) is obtained with a negative value of the objective function. At 
this point the algorithm terminates, and the rational approximation 
PfJQn s o produced solves the minimal degree problem. 

4. Numerical Results. The algorithm was coded in FORTRAN, 
and tested on a Burroughs B6700 computer using both single and 
double precision arithmetic (about 11 and 23 digits respectively). The 
method was tested on a variety of different problems. Listed below 
are some typical results obtained with the algorithm. 

Table I lists eight standard functions which were approximated by 
rational functions of the form 

m 

S Pi*1'1 

fl(*) = •*? 
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In each case 101 equally spaced points in the interval [0,1] were used, 
and the accuracy € required of the approximation was chosed as 10 ~6. 
The degree of the rational approximation required to achieve this 
accuracy is given in the table, together with the error achieved by 
this minimal degree approximation. 

The approximation obtained by the algorithm is not the best Cheby
shev approximation in the sense of minimizing expression (3). All 
that is required of the minimal degree approximation is that the 
accuracy € be achieved. If the minimal degree approximation with 
least error is required, then this can be obtained for example by the 
differential correction algorithm (see for example Kaufman and Taylor 
[4]) using as a starting point the approximation obtained by the 
minimal degree algorithm. Since the minimal degree approximation is 
usually close to the best Chebyshev approximation, the convergence 
of this nonlinear algorithm is typically quite rapid. The error of this 
best minimal degree approximation is also included in the table. 

The same set of functions were approximated by trigonometric 
rationals of the form 

Vl + p 2 c o s ( y ) + p3sin( y ) + p 4 c o s ( - ^ ) + • • • 

qi + 92cos (^Y)+ 9 3 s i n ( ^ ) + ct^QOS{ri~) + " ' 

The results for this case are also given in table I. 
One of the advantages of a discrete approximation algorithm is that 

it can be used to compute multi-dimensional approximations. Since 
the approximation is obtained on only a finite set of points, the dimen
sion of the problem presents no difficulty. As an example of a two-
dimensional approximation, the functions exyl4, sin (x + t//2), 
e-(x +y )/2 w e r e approximated on the 11 X 11 grid x = 0(.1)1, y 
= 0(.l) 1 by the function 

= Pl + p2x + p3y + p4x* + pgxy + ••• 

<7i + <72* + q3y + <?4*2 + q5xy + • • •' 

The accuracy of the approximation was specified as 10 ~3. The 
algorithm produced approximation of degrees (5,4), (6,5), (7,6) and 
errors .665150(-3), .746464(-3), .655787(-3), respectively. The 
errors of the best minimal degree approximations computed by the 
differential correction algorithm are .640776(-3), .712340(-3), 
.514046(-3). 



Table I. Sample results obtained with the algorithm 

Polynomial rational approximation Trigonometric rational approximation 
Function 

FM 

(1 + x)1'2 

sin(rrx/2) 
ex 

log(l + x) 
sinh(x) 
r(2 + x) 
erf(x) 
g-* 2 /2 

Minimal degree 
(m,n) 

(3,3) 
(5,4) 
(4,3) 
(4,3) 
(4,3) 
(4,4) 
(5,4) 
(4,4) 

Error of minimal 
degree 
approximation 

.788257(-6) 

.176377(-6) 

.329174(-6) 

.565583(-6) 

.379963(-6) 

.175174(-6) 

.207914(-6) 

.422584(-6) 

Error of best 
minimal degree 
approximation 

.716218(-6) 

.415115(-7) 

.112018(-6) 

.888585(-7) 

.364797(-6) 

.102236(-6) 

.721495(-7) 

.387183(-6) 

Minimal degree 
(m, n) 

(4,4) 
(3,2) 
(5,4) 
(4,4) 
(4,4) 
(4,4) 
(5,4) 
(4,4) 

Error of minimal 
degree 
approxmiamtion 

.447982(-6) 
0 
.528322(-6) 
.715657(-6) 
.686327(-6) 
.749728(-6) 
.385888(-6) 
.405673(-6) 

Error of best 
minimal degree 
approximation 

.400783(-6) 
0 
.109934(-6) 
.680203(-6) 
.646034(-6) 
.677444(-6) 
.252509(-6) 
.102532(-6) 

§ 
> 
r 
> 

> 
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5. Comments. We conclude by pointing out four advantages of 
minimal degree rational approximations over best Chebyshev approxi
mations: 

1. In many practical problems, the accuracy of the approximation 
is specified in advance rather than the precise degree of the rational 
approximating function. Thus minimal degree techniques are more 
appropriate in these cases. 

2. A solution to the minimal degree problem is guaranteed to exist. 
The Chebyshev problem may have no solution. 

3. Degeneracy and near degeneracy can cause serious problems 
when computing Chebyshev approximations. These are not problems 
with minimal degree approximations. 

4. The Chebyshev approximation problem is nonlinear and requires 
an iterative (non-finite) algorithm for its solution. The minimal degree 
rational problem is linear and can be solved by the finite techniques 
of linear programming. 
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