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ORTHOGONALITY AND THE HEWITT-YOSIDA 
THEOREM IN SPACES OF MEASURES 

RUSSELL G. BILYEU AND PAUL W. LEWIS 

1. Introduction. This paper is concerned with a study of the rela
tionship between the Hewitt-Yosida decomposition theorem and ortho
gonal decompositions and unique nearest point maps for Banach 
spaces of measures. During the course of this study, questions relating 
to the differentiability of the norm in spaces of measures arise. Results 
of Appling are used to establish connections between the differen
tiability of this norm and absolute continuity in the concluding section 
of this paper. 

The general setting follows. Let X be a real (R) Banach space, let 
2 be an algebra of subsets of a universal space S, and let fca(2, X) 
be the Banach space of bounded finitely additive X-valued set 
functions /x : 2 -* X equipped with the semivariation norm \\fi\\ = 
sup{|z*/x,|(S) : z* G X*, ||z*|| ^ 1}, where |«*/x|(A) denotes the total 
variation of £*/ut on A. The countably additive members of ba(2, X) 
are denoted by ca(2, X); if X = R, then we shorten the notation to 
ba(2) and ca(2). If /n G ba(2, X), then we say that fx is s-additive ( = 
strongly additive) if ti(Ai) —> 0 for each disjoint infinite sequence 
(Ai) C 2 , and we denote the set of «-additive measures by sa( 2 , X). The 
space sa(2) has been studied by several authors. In particular, we note 
the papers by Brooks [3] and Uhi [12] and extract from them the 
following result. 

1.1. THEOREM. Let fx G ba(2, X). Then the following are equiva
lent: 

(a) LI <K kfor some 0 ^ X G ba(2); 
(b) ii has conditionally weakly compact range; 
(c) M E s a ( 2 , X ) . 

Furthermore, if /ut is countably additive, then the above conditions are 
equivalent to the statement that p has a necessarily unique countably 
additive extension to a( 2). 

If /A G ba(2), then /ut is said to be purely finitely additive (pfa) if 
0 ^ £ SS | JA| and £ G ca(2) imply that f = 0. The space pfa(2) was 
studied by Hewitt and Yosida in [13]. In this paper it is shown that 
each fi Gba(2) can be written uniquely as fic + fjif, where LLC G 
ca(2) and fif G pfa(2)- The Hewitt-Yosida theorem has been general
ized by Brooks [3], Uhi [12], and Huff [8]. (A short version of 
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the existence portion of Huffs proof will be presented at the end of 
the next section.) Specifically, we state the following version of Uhl's 
theorem [12, p. 675]. 

1.2. THEOREM. Let \L G sa(2, X). Then there exist unique vector 
measure fic and \L$ such that fic is countably additive, x*fjLf is purely 
finitely additive for each x* G X*, and /x = fxc + fx/. Further, 
M*,M/esa(2,X). 

If Y is a Banach space and x, y G Y, then we say that x is orthogonal 
to y(x _L y) if ||x|| = inf{||x + ty\\ : t G R}. If A C Y, then b y x l A 
we mean that x 1 y for each y G Y. Orthogonality has been studied 
by James [9], [10]. Also, let Y*x denote the closed unit ball of 
Y*. 

2. Orthogonality. 

2.1. LEMMA. Let /x,Gba(2). Then ^ G p f a ( 2 ) iff /üt lca(S) . 
Furthermore, the projection P : ba(2)-> ca(S) defined by P(/x) = /xc 

is a unique nearest-point map. 

PROOF. Suppose that O g ^ i Ë pfe(2) and v G ca(2). Then ||/x - *>|| 
è ||JA - |i/|||. But since /ut A |„| = 0, we know that ||/i - \v\\ = 
||/i + IHK = UHI + IMI = UHI- Therefore p 1 ca(2). For the general 
case we note that if |/x| Gpfa(S), then ||pt||'= |MII = I M - M|| 
g ||/ut - p|| for each */ G ca(2). Thus \k 1 ca(£). 

Conversely, suppose that /x, JL ca(X), and let /x+ and \L~ be the 
positive and negative variations, respectively, of /*,. Suppose that 
0 ^ f ^ )UL+ and that f G ca(2). If f(S) > 0, then ||jx - f|| S (/A+ -
f)(S) + /üt-(S) < /üt+(S) + /i-(S) = (I/Lt||, a contradiction. Therefore p+ 

G pfa(2). In a similar way one can show that fi~ G pfa(2) and con
sequently fi G pfa(2)-

Now suppose that ji = (jic + /n/) Gba(2) . If i /£ca(X) , then 
I / » - HI = Il M / " ( v - 1 ^ ) 1 0 | / i y | . Thus | M - Mc|| = ||M/|| = 
distance (/x, ca(2)). In fact, it follows that \kc is the unique nearest 
point. 

The following result shows that this lemma does not extend in 
general to ba(2, X). 

2.2. LEMMA. J / * G ba(2, X) and x*4> G pfa(X) for each x* G 
X*(4> G pfa(X, X)), then 4> ± ca(£, X). However the converse is false 
even for finite dimensional X. 

PROOF. Let <D Gpfa(£, X). By definition, ||*|| = sup{||x*<I>|| : x* 
G X*i}. But if x* G X*i, then \\x*Q\\ ^ \\x*& + x*v\\ for each v G 
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ca(2,X) by Lemma 2.1. Therefore ||*|| ^ ||$ + v\\ for each v G 
ca(2,X),and<D ± c a ( 2 , X ) . 

To establish the last assertion of the lemma, let X be 2-dimensional 
Euclidean space equipped with the sup norm, and let X be any algebra 
for which each of ca(2) and pfa(S) is non-trivial. Then there is a non-
negative purely finitely measure \L in ba(2) so that ||/LL|| = 1 and there 
is 0 ^ f G ca(2) so that ||£|| = 1. Then define ß : î - > X by fi(A) 
= (2/i(A), /ut(A)). It follows that £ G p f a ( 2 , X ) , i / = / i + ( 0 , f ) is 
orthogonal to ca( 2, X), and v is not purely finitely additive. 

The pathology in the preceding lemma occurs because elements of 
pfa(2, X) do not necessarily have unique nearest points in ca(X, X). 
The following theorems and corollaries show that this aberrance is not 
possible in a fairly general setting. 

If x belongs to the Banach space Y, then we say that x is a smooth 
point if the norm is Gateaux differentiable at x, and we call Y smooth if 
each point on the surface of the unit ball is a smooth point. We use 
the notation D(x, y)(D+(x, y), D~(x, y)) to denote the Gateaux deriva
tive (one sided derivatives) of the norm function at the point x in the 
direction y. 

2.3. THEOREM. Suppose that /x, G ba(2, X), z* G X*l9 |j*V|| = 
||/üt||, and z* is a smooth point Then D(Z*IL, y*fi) = 0 whenever 
D(z*,t/*) = 0. 

PROOF. Suppose that D(z*, t/*) = 0,letp(f) = (z* + ty*)l\\z* + ty% 
t G R, and set F(t) = ||p(*)/4 Then F(t) = \\p(t)p\\ ^ ||p|| = 
F(0) for each t 

Further, the function p is differentiable at t = 0; in fact, p '(0) = t/*. 
Then by two applications of the chain rule, 

F ' (0+) = D+(p(0)n,p'(Q)ix) = D+(*Vî /V)> 

and 

F' (O-) = D-{p{0)iL,P
,{Q)lL) = D - ( z V y V ) . 

Therefore since F(0) is the maximum value of F, D+(%*/m, y*p) = 0 
â D~(z*fi, t/*/ut). But because of the convexity of the norm, 
D~(z*ii,y*n) g D + ( z V * / V ) - ThusD+(zV,t/*) = D"(z*/x,t/V) = °-

2.4. COROLLARY. Suppose that fi G ba(£, X), z* is a smooth point 
o/X*i, and ||«*JA|| = || /x||. Tften x*/ui « z*/it/or each x* G X*. 

PROOF. The existence of D(z*, x*) = /(**) for each x* G X* implies 
that / G X**, and hence ker(/) is a closed maximal subspace of X*. 
Since z*fi is obviously absolutely continuous with respect to z*fi, the 
conclusion then follows from Theorem 3.1, infra. 
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A 
2.5. THEOREM. Suppose that /LÌ, £ TJ G ba(2, X), fi = £ + y, |x*f| 
|t/*rç| = 0 for all **, t/* G X*, and tfia* ||^j = ||*77 J|. Suppose also 

ITJII. Then è = 0. that z* is a smooth point ofX*i so that \\z*r)\\ = ||i 

PROOF. Suppose that fx, £, TJ, and z* satisfy the hypothesis of the 
theorem. Then since |z*£|A|z*| = 0, we see that ||M|| = H^HI 
= ||z*f|| + ||z*i||| = Itou = ||p||. Hence z*{ = 0. And by the preced
ing corollary, x*£ + x*r) = x*fi <SC Z*/JL(=Z*¥)) and x*q <3C 2*17 
for each x* G X*. Therefore |x*f| A [ ^ = 0 and * * £ « : z*rç, 
which implies that x*Ç = 0 for each x*. 

Before establishing our characterization of orthogonality, we need 
a lemma. Let C/(2) be the uniform closure of the real valued simple 
functions over 2 , let T : 1/(2)—» X be an operator (= bounded linear 
map), and let /x : 2 —> X be the unique finitely additive X-valued mea
sure with finite semivariation so that T(f) = ffdfi, / G C/(2). For 
x* G X*, define £(**) to be ||2*/^||; then £ is a seminorm on X*. 

2.6. LEMMA. 77ie operator T is compact iff (X*1? f ) is a compact 
space. 

PROOF. Suppose that (X*x, £) is compact, let (z*n) C X*1? and let z* 
be a {-cluster point of (z*n). Then 

||r*(2*n) - r*(z*)|| 
= sup{|(/, r*(z*„) - r*(z*))| :/<= i/(2), 11/11 ^ i} 
= sup{|(r(/),z*n-z*)|} 
= \\(z*n - z*)M||. 

Therefore T* is compact and hence T is compact. 
Conversely, suppose that T is compact (therefore T* is compact) 

and let (z*a) be a net in X*x. Without loss of generality, suppose that 
z * a ^ z * G X * x . Then by Theorem 6, p. 486, of [6], T*(z*J-» 
T*(z*) in the norm topology. As a consequence of this 

sup{|(T(/),z*a - z*)\ : / G U(X\ 11/11 ^ 1} 

= IK«*« - **)MH —̂  0 with a, 
and (X*1? J) is compact. 

Let £ (2 , X) denote those members of sa(2, X) with conditionally 
compact range; ca d(X9 X) and pfa £ (2 , X) are defined to be the count-
ably additive and purely finitely additive members, respectively, of 

2.7. THEOREM. Suppose that X is a Banach space so that X* is 
smooth. If ix G C(%, X), then fi G pfa C(% X) iff fi ± ca C(%, X). 
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Furthermore, the Hewitt-Yosida projection P : £ (2 , X)—»ca C(X9X) 
is a unique-nearest-point map. 

PROOF. We begin by noting that by Uhl's prooF oF the Hewitt-
Yosida theorem in sa(2, X) [12], it Follows that /xc(2) and fXf(X) are 
subsets oFcö(/üt(2)). ThereFore iF /ut G £(2 , X), then fic, fXf G C(% X). 

Now suppose that /ut _L ca £ (2 , X), and write /x as /uic + /utf. Then 
|| /ut|| = inf{|| /ut + v\ : 1/ E ca £ (2 , X)} = || /ut^. Now since /ut^2) is 
conditionally compact, the operator Tf: U(X)^>X defined by T^g) 
= JgdiAf, g G 1/(2), is compact [6], p. 497. Consequently, iF (y 
is the seminorm associated with Tf by Lemma 2.7, then (X*1? £/) is 
compact. Thus there is some z* G X*x so that ||%*|| = 1 and ||2*jLtf|| 
= ||/ütf||. Hence by Theorem 2.5, /utc = 0, and it Follows that /ut = 
/uLf G pFa £ (2 , X). The converse implication was established in Lemma 
2.2. 

The final assertion in the theorem is that iF /ut = jxc + fXf, then 
||/x— /utc|| = distance (fx, ca £ (2 , X)) and /utc is the unique mem
ber oF C(% X) which produces this equality. Since /ut — /utc = ttf and 
inf{|| /ut + i>|| : i> G ca £(2 , X)} = inf{|| ^ + i/|| : v G ca £(2 , X)} = 
|| /uif||, it Follows that /utc is a nearest point. And iF v G ca £ (2 , X) and 
Il M + HI = II Mf + (Me + *)|| = || fv||, then /utc + v = 0 by the argu
ment in the preceding paragraph. 

In the Following propositions we give alternative constructions oFthe 
Hewitt-Yosida theorem in sa(2, X) and in £ (2 , X). Our approach in 
2.8 uses the operators studied by HufF in [8] and the TychonofF 
theorem directly instead oF appealing to semigroup techniques. Our 
approach in 2.9 is motivated by, and relies upon, a theorem oF D. 
Lewis [11],p. 206. 

We remark that iF /utGba(2)> then /ut is purely finitely additive 
ifF For each e > 0 there is a countable partition (A*) oF S so that 
| 2 M ( A H Ai)\ < € For each A G 2-

2.8. THEOREM. Suppose that /ut G sa(2, X). Then ix can be written 
as /utc + iXf, where /utc is countably additive and x*[Xf is purely finitely 
additive for each x* G X*. 

PROOF. Let P denote the directed set (by refinement) oF all count
able 2-partitions. For a = (Ai) G P and /ut G sa(2, X), let Ta(fx) = 
2/ut ' Ai, where /m • A(B) = /ui(A Pi B). Then Ta(fx) G sa(2, X) since /ut 
is s-additive, and the range oFa/lt(c7M(A) = /ut • A) is conditionally weak
ly compact in sa(2, X) by Theorem 1.1. Further, /ut is countable addi
tive ifF Ta( /ut) = /ut For each aŒP. Let w(crfl) denote the weak closure 
oFa/ll(2), let w denote the weak topology, and let W = U(w(crfl),w), 
/ut G sa(2, X). Then (Ta) is a net in the space W, and by the TychonofF 
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theorem some subnet (suppose the full net), must converge to a point 
T £ W , It follows easily that T : sa(2> X) -* sa(2> X) is a continuous 
linear projection. Further, since Ta(T(fi)) = T(fi) for each a, then T(fji) 
is countably additive. Also if T(n) = 0, x* G X*, and € > 0, then 
there is an OQ G F so that if a = <XQ, then | 2a*'V( A;)| < €. Thus it follows 
that if a = ao and AG. 2 , then 12o**M<(A H A{)| ^ 2c; hence JC*/A is 
purely finitely additive. 

If U and V are Banach spaces, then k will denote the least cross-
norm on U ® V, and (7 ®x V will denote the A-completion of U ® V. 
If T : C7-* X and L : V-> Y are operators, then T ®x L will denote the 
tensor product operator from U ®x V to X ®x Y, e.g., see Holub [7] . 
The canonical mapping of ba(2) ® X into £(2 , X) will be denoted by 
<ï>, <!>! will denote the restriction of 4> to ca(2) ® X, and 4>2 will denote 
the restriction of4> to pfa(2) ® X. 

2.8. PROPOSITION, (i) 4> extends to an isometry of ba(2) ®x X onto 
£(2,X); 

(ii) 4>x extends to an isometry of ca(2) ®x ^ ö n t o c a ^(S, X); 
(iii) <I>2 extends to an isometry o/pfa(2) ®x ^ onto P& ^(2, X); 
(iv) ifP : ba( 2) —* ca( 2) is tfie nearest point projection 

and I : X—> X is the identity, then the mapping 6 of Huff is given by 

PROOF. We establish (i) by showing that $ : ba(2) ® X-> £(2 , X) 
is an isometry with dense range. Let M = 2 ^ ® xif let z* G X*1? and 
let (Aj) be a 2-partition of S. Then 

XjiXiZ^x^^Aj)] ^ |z*(2^x i)|(UA i), 

which implies that || 2 M* ® *i||x = II 2/^11 = ||*(w)||- Conversely, 

2i|z*(2^)^-1 ^ 112̂ (̂ )̂ 11 ^ | |2* ® *l. 
Therefore ||<D(u)|| = ||n||. 

To show that 4> is a dense embedding, let 2 be the Stone algebra, 
let V G ^(2 , X), let !>! be the unique countably additive extension 
of *>x to a (2 ) which is given by Theorem 1.1, and let € > 0. An investi
gation of the argument in Uhi [12] shows that Vl G ca £(a(2), X) 
so that by Theorem 3.1 of D. Lewis [11], there is an element üx in 
ca(cr(2))®X so that ||*(f*i) ~ p i | | <_€- I f * ( ö ) i s t h e restriction 
of <t(ü{) to 2 , t h e n _ * ( ö ) E * ( b a ( 2 ) ® X ) and ||*(ü) - p|| < €. 
Since C(X, X) and £ (2 , x) are canonically isometric, part (i) follows. 

Parts (ii) and (iii) follow from (i) and the observations that 
(a) ca(2) ®x X(ca £ (2 , X)) is a closed subspace of 

ba(2)® x X(£(2 ,X)) , 
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(b) pfa (2) ®x X(pfa C(% X)) is a closed subspace of 
ba(2)®x X(C(J,X)), 

(c) *x maps ca(2) ®x X into ca £(2> X), 
(d) 4>2 maps pfa(2) ®x X into pfa C(X, X), 

and 
(e) ba(2) = caU)©pfa(2). 
For the final assertion, it is clear that P <8>x 7 fixes all of ca(2) ® X 

and therefore all of ca(2) ®x X. Hence Ç = &x • (P <8>x I) • «&1 is a 
projection from £(2,X) onto ca£(2,X). And Ç>(/x) = 0 iff P<8>x 

I ( * - 1 ( M ) ) = 0. But N(P<g>xZ) = pfa(2)®xX, and hence /x, G 
pfa£(2,X). 

3. Differentiability of the Norm and Absolute Continuity. Deriva
tives of the semivariation norm in ba( 2) may be described as refinement-
type integrals of real functions on 2- The definition of the integral is 

J /ut = lim 2 IL(AÌ), 

the limit being taken over all 2-partitions of S, directed by refinement. 
The reader is referred to the papers of Appling, especially [1], [2], 
for further details. We need the formula for the absolutely continuous 
part of v with respect to /i, where v, ji G ba(2)' 

"«(A) = | A (sgn*)Mfl 

= lim J (sgni>)min{|i/( • )|,&|/ui( • )|}. 

We decompose v into va + v89 va <3C fi and \vs\ A | jx,| = 0. 

3.1. THEOREM. Ifv, fi G ba(2), then 

D+(ii,v)= | ( s g n M K + ll^ll, 

and 

D-(ti,v)= J ( s g n / ^ K - ||i>,||. 

Consequently y D( p, v) exists iff v«. /x, in which case D( fi, v) = 
S(sgnn)v. 

PROOF. We first show that D+(/ut, v) — D~(/x, v) = 2||i>s||. Now 

D+(/x, *) - D-(M, I.) = lim (||M + tv\\ + \\fi - tv\\ - 2||/t||)/t 
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= lim f ( M •)+"•(• ) ! 

+ M-)-K-)l-2fc|/*(•)!)• 
This integrand may be written as 

\x + y\ + \x-y\- 2\x\ = 2max{|x|, \y\} - 2\x\} 

= 2(|y|-min{|y|,|x|}). 

Therefore 

D+(p,V)-D-(p,V) 

= 2 1 i m f ( | K - ) | - m i n { | K - ) U l M - ) l } ) 

= 2(|H(S) - lim fmin{K )|, *|M( )|}) 

= 2(|H(S) - H.(S)) 

= 2|HI-
Next we show that 

D+(fi, v) + D-(M, V) = 2 | (sgn M K, 

and our stated conclusions follow at once. 
Now 

D+(M»") + D 1 f t " ) 

= l i m f ( | M - ) + » < - ) | - | M - ) - » < - ) l ) . 

Since |z + y\ - \x - y\ = 2(sgnx)(sgn t/)min{|x|, \y\], 

D+{IL,V) + D-{IL,V) 

= 2 lim I (sgn /x)(sgn v) min{|i/( • )|, k\ jx( • )|}. 

According to the KolmogorofF principle of differential equivalence 
(for example, [2] Cor. 2.K), the last integral is 

J ( s g n M)(sgn v)Çk 

where &(A) = JA min{K ' )l, *l /*( ' )l}> A G 2- Now 
| | & - M«||-»0; hence 

D+(/x, i/) + D-(n, v) = 2 J (sgn M)(sgn i/)M«. 
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A second application of the KolmogorofF principle completes the 
proof. 

The differentiality criterion for absolute continuity is not valid for 
the semivariation norm on ba(£, X). Rather, the variation norm proves 
to be appropriate for extending this criterion. We are able to verify 
the criterion for countably additive set functions of bounded varia
tion defined on a a-algebra and having values in a smooth space with 
RNP. Before proceeding to this verification we offer a counterexample 
inba(2,X). 

EXAMPLE. Let X be two-dimensional Hilbert space and let 2 be 
an algebra such that ba(£) contains disjoint members fix and /x2 of 
unit norm. Then (0, fi2) *s n ° t absolutely continuous with respect to 
( Mi> 0)» ye* D(( fix, 0), (0, fi2)) exists because 

||(|i1,0) + «(0,Ma)|| = (l + O1'2. 

On the other hand, 

( M b ^ ) « (MI,M2), 

D + ( ( M I , M 2 ) , ( M I , M I ) ) = (2) 1 / 2 , 

and 

D~((MI>M2), (MI>MX)) = 0. 

3.2. THEOREM. Suppose X is a Banach space with the Radon-
Nikodym property, X is a a-algebra, and v, /x G cabv(2, y). If D( n, v) 
exists then v <£L |/A|. If X is smooth and p « |/x|, then D(IL9V) 

exists and 

PROOF. Suppose that D(/A, V) exists, and decompose v into va + vs, 
where pa<^\A and \ps\ fi | /x| = 0. Then 

D+(p,v)=D+(ii,pa)+ \\PS\\ 

and 

D-(ß,p)=D-(v,va)-\\ps\\. 

Therefore, since D+( /x, P) = D~( \L, P), we have 

0 ^ D + (^, *a) - D-(/Lt, O = - 2 | H | ; 

hence PS = 0. 
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Now suppose X is smooth and v <3C | fi\. The Radon-Nikodym 
property insures the existence off, g G. Ll(\ ii\, X) such that /Lt(A) 
= Lfdlfil and v(A)= SAgd\v\, A EX- Now ||/(x)|| = 1 almost 
everywhere (|/A|); hence D(f(x), g(x)) exists almost everywhere. 
Define 

P(x, t) = (\\f(x) + tg(x)\\ - \\f(x)\\)lt, t > 0. 

Because of the convexity of the norm, P(x, t) converges monotonically 
to D(f(x), g(x)), whenever the latter exists, as t-* 0+. Also, 

|P(x,t)I^Hg(*)||. 
By the Beppo-Levi Theorem [5], p. 133, 

lim \p(x,t)dti= \D(f(x),g(x))d\v.\. 

This limit is precisely D+(/Lt, v). The same argument, modified 
slightly, shows that D ( \L, V) is also 

JD(f(x),g(x))d\d. 

BIBLIOGRAPHY 

1. William D. L. Appling, Set functions and an extremal prob
lem in absolute continuity, Rend. Circ. Mat. Palermo (2) 14 (1965), 1-10. 

2. , Summability of real valued set Junctions, Riv. Mat. Univ. Parma 
(2) 8 (1967), 77-100. 

3. James K. Brooks, Decomposition theorems for vector measures, Proc. 
Amer. Math. Soc. 21 (1969), 27-29. 

4. , On the existence of a control measure for strongly bounded vector 
measures, Bull. Amer. Math. Soc. 77 (1971), 999-1001. 

5. N. Dinculeanu, Vector Measures, Pergamon Press, Berlin, 1967. 
6. N. Dunford and J. T. Schwartz, Linear Operators: Part I. New York: 

Interscience, 1958. 
7. J. R. Holub, Tensor product mappings, Math. Ann. 188 (1970), 1-12. 
8. Robert E. Huff, The Yosida-Hewitt decomposition as an ergodic theorem. 

Vector and Operator Valued Measures and Applications (edited by D. H. Tucker 
and H. B. Maynard), Academic Press: New York, 1973, 133-139. 

9. R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 
(1945), 291-302. 

10. , Orthogonality and linear Junctionals in normed linear spaces, 
Trans. Amer. Math. Soc. 61 (1947), 265-292. 

11. D. R. Lewis, Conditional weak compactness in certain inductive tensor 
products, Math. Ann. 201 (1973), 201-209. 

12. J. J. Uhi, Jr., Extensions and decompositions of vector measures, J. 
London Math. Soc. (2), 3 (1971), 672-676. 

13. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. 
Soc. 72 (1952), 46-66. 

NORTH TEXAS STATE UNIVERSITY, DENTON, TEXAS 


