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ON THE HESSIAN OF THE CARATHÉODORY METRIC 
JACOB BURBEA 

ABSTRACT. The generalized lower Hessian of an upper 
semi-continuous function / near a point z in Cn is intro
duced (for n = 1 see Heins, Nagoya Math. J. 2L (1962), 
1-60). With this we introduce a "sectional curvature" and we 
prove that the sectional curvature of the Carathéodory-ReifFen 
metric is always ^ — 4. This generalizes a result of Suita 
(Kodai Math. Sem. Rep. 25 (1973), 215-218) in the one 
dimensional case. The sectional curvatures of the ball and 
polydisk are always —4. A few other properties of the 
Hessian of the above metric are shown. 

1. Preliminaries. For a point z = (zi9 • • -, zn) G Cn, we set ||z|| 
= ( 2 7 - 1 l%l2)1/2 and for flEO, r > 0, B(a, r) = {z G C : 
\\z — a\\ < r} denotes the open ball centered at a and with radius r. 
The natural pairing between a contangent vector a and a tangent 
vector v is denoted by (a, v). Especially, iff is a C1 function near the 
point z, and v = (vl9 • • • , !?„)£ O1, then 

<df(z),v)= t-jt-vj. 

Let D be a bounded domain in C" and let U be the unit disk in 
C. H(D : U) designates the family of holomorphic functions from 
D into U. For fixed £ in D we write H{ (D:U)= { / G H(D : U) : /(£) 
= 0}. For each { € D , CD(£; ) is the function defined on the complex 
tangent space of D at £ by 

CD(C; v) = sup{|(df(a v)\:fGH(D: U)} 

(cf. Reiffen [3] ). Evidently, 

CD(C;v) = sup{|<d/(£),t>)| :fGH((D : I/)}. 

CD is called the Carathéodory metric for D. Since H(D : U) is a 
normal family, the supremum in the definition of CD(£; v) is attained 
by some F G Ht (D : C7). Here F(z) = F(z; £, v). By a normal family 
argument CD(£ : t>) is continuous in (£, Ü). For the above mentioned 
properties see [3]. Moreover, CD(£; v) is a locally Lipschitz function 
[!]• 
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We also note that the Carathéodory metric has the "distance-decreas
ing" property that is, if <f> : D—> D* is a holomorphic mapping, then 
CD(4>(z);<f>*(v)) = CD.(z;v). Here [4>*(v)]j = %ml (d<t>Jdzk)vk>j = 1, 
• • % n. Hence CD is invariant under biholomorphic mappings. Clearly 
the Carathéodory metric for the unit disk U is given by 

(Li) C Ü ( Z ;" ) = TH |̂̂  

REMARK. There is no essential loss of generality in restricting our 
attention to bounded domains. The Carathéodory metric may be 
defined on arbitrary complex manifolds, although it may be zero in 
some directions v. 

We have CD(z : v) ^ |M|/8D, where ÔD is the radius of the smallest 
ball surrounding D. On the other hand: 

PROPOSITION 1. CD(z : v) Si ||t;||/d(z), where d(z) is the distance of 
z G Dfrom the boundary ofD. 

PROOF. Consider the ball B(z, r) C D and let / G HZ(D : 17). Let 
v GC* — {0} be fixed. The function <^(w) = f(z + wv) maps the 
disk \w\ < rl\\v\\ into the unit disk U and ^>(0) = 0. Hence, by 
Schwarzs lemma, |<p'(0)| ^ ||i?||/r. But <p'(0) = (df(z),v) and so 
\(df(z), v)\ ^ ||ü||M P u t r = d(z) and the assertion follows. 

PROPOSITION 2. Let v G Cn — {0} be fixed. Then log CD(z; v) is 
plurisubharmonic inz G D. 

PROOF. Recall that if 9 is a family of plurisubharmonic func
tions which are locally uniformly bounded from above, then 
limZf_zsupgeç?g(2;') is plurisubharmonic. Let *? = {log \(df, v)\ : f 
G HZ(D : [/)}. Clearly, the members of S3- are plurisubharmonic and, 
as in the proof of Proposition 1, log \(df(z), v)\ = log ||t?|| — log r in 
the ball B(z, r) C D. Thus, since log CD (z; v) is continuous, 
log CD(z; v) = supgG9g(z) is plurisubharmonic. 

2. The Hessian. Let / be upper semi-continuous near z G Cn and 
let « E C " - {0}. The generalized lower Hessian (or "Laplacian") 
of/ at z along the direction u is defined by 

Kf(z) = 4 1 i m i ( i r /<* + refu)de-f(z)) 
r_»o f \ iar J o / 

(cf. also Heins [2] ). Note that, if / is a C2 function near z, then 
Au/(z) reduces to four times the usual Hessian of / at z along u, 
that is 
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±uf(z) = 4 i -£—f{z)Uiü, 
U « l dzidzj 

In this case, if also n = 1, then Auf{z) = A/(z)|w|2, where A is the 
usual Laplacian. Clearly, if / assumes a local minimum at z then 
Auf(z) = 0 for each direction u. 

Let v G O — {0} and consider F(z) = F(z : £, t>) as before. Define 

M Z , U ; ~ l - | F ( z ) | 2 

Therefore, 
logX(z;u) = \og\(dF(z\u)\ - log(l - F(z)F(z)). 

The first term on the right is pluriharmonic and hence its Hessian 
along any direction (independently of u) is zero. 

Consequently, 

A^log k(z; u) = 4k(z; w)2 

for each direction w SCn and whenever (dF(z), u) j^ 0. Especially 

(2.1) AJog\(i;v) = 4k(t;w)2. 

Note that A(£; v) = CD(£; Ü). 
The following theorem is the n-dimensional generalization of Suita's 

result [5]. 

THEOREM 1. LetÇ G Dandv G O — {0} be fixed. Then 

àJogCD(t;v)^4\(C;u)2 

for each direction w £ C n and thus again log CD(£; v) is plurisub-
harmonic. 

PROOF. We have CD(£; v) = | <dF(£), v)\. Set 

_ F(z) - Ffo) 
^ 1 - F^5F(z) * 

Thus G ŒHV(D; U) and therefore KdQiy), u)\ S CD(*7; w) for each 
direction u. However, \(òG(j)),u)\ = k(r);u). Thus K(r);v)^ 
CD(r); V) and we have equality at rj = £. Near £, Afo; t;) is positive and 
hence log CD(r); v)l\(ri; v) assumes a local minimum at 17 = £ and so 

AulogCD(t;v)^ Aulogk(£;v) 

for each direction u. The theorem now follows from (2.1). 
Let v Ez Cn — {0} and assume that the metric fi(z; v) is a positive 
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upper semi-continuous function at z. The "curvature" of /UL(Z; V) at z 
in the direction v is given by 

3((§i : Z, v) = - i — A, log /i,(z; ©). 

/i,(z; ü) z 

By (2.1) the "curvature" of k(z; v) is —4 at z = J. 

THEOREM 2. The "curvature" ofCD(£; v) is always ^ — 4. 
PROOF. By Theorem 1, A„ log CD(£; t>) = 4X(£; v)2 and, since A(f ; t?) 

= Q>(£; ü), the assertion follows. 
The above theorem was first proved by Suita [5] in the case of 

n = 1. 

3. Examples. 

EXAMPLE 1. Consider the polydiskD = {(z1? • • -, %n) : |z,| < 1,1 ^ 
j^â n}. Then 

(3.1) c i* , . )—,( r bL 1 . - , - r !ay . 
Here CD(z; v) is continuous but obviously not a C ̂ function. 

Although expression (3.1) is a consequence of a general theorem on 
product domains (cf. Roy den [4] ) it is nevertheless instructive to 
prove it here directly. 

Since D = 17 X • • • X U (n copies of the unit disk), it is plain that 
CD{z; v) ^ CU(ZJ; VJ), l=j^n. In fact, let fy: D-*U be given by 
if>j(z) = Zy Then, using the distance-decreasing property, CD(z; v) ^ 
Cu(<l>j(z); <f>j*(v)) = CU(ZJ; Vj). On the other hand we may assume, 
because of the homogeneity of D, that z = 0 and It̂ l = max (|t?i|, ' • % 
\vn\) > 0. Consider the holomorphic mapping <f>:U-> D defined by 

<K*i)= (zi>ZT*i> "m*ZTzi)' 
\ Vi Vi / 

A second application of the distance-decreasing property and a use 
of (1.1) show that 

CD(0; v) = CD(<K0); WvJ) ^ Q,(0; vx) = \v,\ 

and hence (3.1) follows. 
We now show that the "curvature" of this metric is always —4. This, 

of course, needs to be proven only for z = 0. We may assume that 
ÇD(0; v) = maxflüxl, • • •, \vn\) = \vx\. A simple calculation then shows 
that 
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C D ( r e " ü ; ü ) = K | / ( l - r 2 K I 2 ) 

for a sufficiently small r. An application of L'Hospital's rule gives 

A . l o g C D ( 0 ; , ) - 4 1 t a £ ( £ £ l o g r Z
J 5 L - 2 ^ - l o g k l ) 

= 4 1 i m 4 l o g ( l - r 2 | ü l | 2 ) = 4 | ü i | 2 . 
„ r 2 

Hence A0 log CD(£; t>) = 4 CD(£; v)2 as asserted. 

EXAMPLE 2. Consider the ball D = {z G C" : ||z|| < 1}. Then 
(cf. [3]) 

cD(*;ü)2= M1 '-&•'» 
i-INI2" d-INIT' 

where (z, ü) = 2 " - i . *#*• H e r e C D ( * ; Ü ) is a real analytic function. 
The "curvature" is always —4. Again, it suffices to show this for z = 0. 
In this case CD(0; v) = \\v\\ and 

c°<^°>-iJ£llt,|»-
Thus, using L'Hospital's rule, 

A„ log CD(0; v) = - 4 l i m - r ^ - 1 * log(l - r2||«||2) dB 

= 4 | | t ; | | 2=4CD(0;ü) 2 . 
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