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ENVELOPING W*-ALGEBRAS 
JOHN DAUNS 

ABSTRACT. Starting witth a C (complex)-algebra R having ä con
jugate linear (idempotent) involution on K, and a set P of positive 
C-linear functional on R (with no topology on R), the C* and W*-
enveloping algebras of R are constructed. They are uniquely deter
mined by universal mapping properties (Theorem IV). 

Let S be an involutive semi-topological semigroup (not neces
sarily locally compact), H any Hilbert space, and L(H) the W*-al
gebra of all bounded operators in the a (ultraweak) topology. As a 
special case with R = CS the semigroup algebra, and with P arising 
from a set of bounded continuous positive definite functions on S, 
the C* and W*-enveloping algebras AS and WS of S are obtained. 
There is a map S-*S/ti, and S^S/Q C AS C WS, where S/0 is 
the image of S in AS. Then WS is uniquely determined by the uni
versal property that any a-continuous representation S-^L(H) fac
tors uniquely through a (a-continuous homomorphism 
S — WS -* L(H) of the W*-algebras WS and L(H). 

0. Introduction. There is such a large number of duality theories for 
various classes of semigroups and groups, some of them overlapping, 
that old ones are as quickly forgotten as new ones are invented. Thus 
any new development that would in some way tend to simplify, unify, 
and generalize these would be welcome. A duality can perhaps be re
garded as a functor from some category of semigroups to some well de
fined category of C* or W*-algebras. For example, in [8] this functor is 
an equivalence of categories. 

Such a functor should preserve as much of the available structure on 
the given category of semigroups or groups as possible. Although the 
direct product of semigroups in itself is of minor interest, its impor
tance lies in the fact that in subsequent generalizations of duality it 
should single out the appropriate subcategory for the equivalence 
among all the W*-algebras, namely those that carry an additional coal
gebra structure/Thus the direct product of semigroups should map into 
a tensor product of W*-algebras. 

Frequently, duality theories ([6] and [9]) use C* and W*-tensor prod
ucts that do not have the usual universal mapping property. Here we 
will be forced to use the categorical W*-tensor product ([7]); others 
simply would not work because they lack the above multiplicative 
property. Also, here the W*-tensor product will have to be defined in 
terms of a (tensor) product on the preduals of W*-algebras. 
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The present paper is motivated by what seems presently an unattain
able objective—to generalize [19] to some bigger class of not neces
sarily locally compact groups by use of the more categorical concepts 
and techniques of [8]. In [19] each locally compact group G is recov
ered from its W*-enveloping algebra W*(G) with the aid of the predual 
of W*(G) by use of a long, technical and difficult argument using L^G) 
and Haar measure. As the latter two are no longer available in the non-
locally compact case, also, all the proofs in [19] would fail. 

In the locally compact case, the indispensable algebra W*G is the 
von-Neumann or W*-enveloping algebra of C*(G), the C*-enveloping 
algebra of G. The algebra C*(G) is constructed from two ingredients: 
an involutive complex algebra L\G) and a set P(G) of positive function
a l on L\G), where P(G) are the continuous, positive definite functions 
on the group G. The usual presently accepted and used C*-enveloping 
algebra C*(G) of G has three drawbacks limiting its usefulness. It does 
not always contain G. Secondly, it contains an identity if and only if G 
is discrete. Lastly, arbitrary continuous homomorphisms of groups G 
—* H, do not induce a map L\G) —* L\H)9 and consequently there is 
no map C*(G)^C*(H). 

A general construction will be given that not only will include the 
above usual C*(G) as a special case, but also simultaneously will be 
used to construct a new C*-enveloping algebra remedying all of the 
above three defects. Moreover, the group G will be replaced by a not 
necessarily locally compact involutive semigroup S, where, in addition, 
multiplication on S need only be separately continuous. The semigroup 
S may contain also a zero element. 

However, the appropriate framework within which to develop the 
subject is to begin with an involutive complex algebra R with no topo
logy, some given set of positive linear functionals P on R, and then 
manufacture a semi-norm on R. In the locally compact group case, take 
R = L^G) and P = P(G). Having chosen P = P(G\ the Z^-norm on 
L\G) becomes superfluous for the purpose of constructing C*(G). 

For a semigroup S, to obtain the universal C* and W*-enveloping al
gebras AS and WS, R is specialized to R = CS, the ordinary (alge
braic) semigroup algebra. Both AS and WS are uniquely determined by 
universal mapping properties. In the locally compact group case when 
S = G, this process will produce the replacement AG of C*(G). Since 
W*(G) also has the universal property uniquely determining WG, it fol
lows that W*(G) ss WG. However, C*(G) ^ AG if and only if G is 
discrete. If G is a locally compact nondiscrete topological group, let Gd 

be G with the discrete topology, and C*(Gd) the usual C*-enveloping 
algebra of Gd ([6; p. 188(1.18)]). Since C*(G) does not contain an iden-
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tity while AG does, AG # C*(G). Furthermore AG ¥* C*(Gd) (see 7.7, 
7.8). With this purpose in mind, one of the aims here is to establish the 
existence on AS and WS all those objects, functions, involutions, and re
lations that are available in the case of S == G, a locally compact group 
as in [6]. However, also some new spaces and functions are defined and 
investigated which also are bound to play a key role in subsequent later 
developments. One such is the co-commutative coalgebra structure on 
AS and WS. 

In this connection it becomes necessary to extend homomorphisms 
and even other simply linear maps from the subalgebra AS of WS to all 
of WS. Although here so far this is easily done simply because WS is 
the double dual WS = (AS)**, it seemed advisable to devise a very 
general method of extending certain linear maps from an ultraweakly 
dense subalgebra to the whole W*-algebra, which is of independent in
terest by itself. 

The reader is cautioned against confusing the symbol "A(G)" as used 
in [6; p. 182, p. 209] with the totally different algebra "AG"used here. 

1. Properties of Arbitrary W*-algebras. This section is of indepen
dent interest from a W*-point of view. First, some facts are summa
rized in a form and in notation in which they later will be used fre
quently. For a W*-algebra N and a subalgebra D C N, a generally 
applicable method of extending a homomorphism defined at first only 
on D, from D to all of N is given. In the usual ultraweak topology a on 
N, N is not complete as a topological space. Another topology y has to 
be used in which N is complete. Since the extended map is to remain 
also a ring homomorphism, continuity of multiplication in the four non-
norm topologies on N has to be considered. 

1.1. If A is any Banach algebra with an involution and an approx
imate bounded identity, then the norm dual A* is an A**-bimodule, 
where A** has the Arens multiplication. There is a natural embedding 
7} :A—+A**. The duality between any space A and any set such as A* 
of linear functional on A will be denoted b y ( , ) : A * x A — C. How
ever, write [ ,]:A** X A * - ^ C for emphasis in order to distinguish 
this particular special case. Let a, b, x E A, / G A*, and F, G £ A**. 
Thus [qa, f\ — (/, a). For any function / whatever on any multi
plicative semigroup A, aft) is defined as (aft), x) = (J, bxa), and sim
ilarly for af, ft). Furthermore 

F / G A * : (Ff, a) = [F, fa] 

/ F E A*: (fF, a) = [F, af\ 

FG G A** : [FG, f\ = [F, Gf\. 
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Always A* will be endowed with the involution (/*, a) — (f, a*)~. If 
in addition A is a C*-algebra, then [F*, f\ = [F, f*]~ defines an in
volution on A**, and in this case FG is also the same as [FG, f\ = [G, 
fF\. Let E be the functor EA = A** For a C "-algebra, A C EA is its 
W*-enveloping algebra. 

1.2. The smallest topology on any topological space A making any 
set of complex-valued functions F on A continuous will be written as 
o(A, F). If F is any subset of a vector space, (F) denotes all finite com
plex linear combinations of elements of F. In this case a(A, F) = o(A, 
£), where B = <F>. 

For A and A* as before in 1.1, let 

A*+ = {f G A* | if 0 ^ a G A, then 0 ^ /(a)} 

and suppose P Q A*+ is any subset closed under multiplication by posi
tive real scalars. The set of semi-norms obtained from 

a^p(a*a), a G A, 

with p G F ranging over any subset such as F induces a topology .y(A, 
F) on A. Write y(A, F) = y (A, B). If in addition to p(a*a), also a -* 
p(aa*) are used, we obtain y*(A, F) = ^*(A, B) with y (A, B) ^ ^ * ( A , 
B). In case A does not vary, abbreviate all of the above as o(B), ^{B), 
and.y*(B). Since A* C (EA)*, replacement of A by EA gives extensions 
of the previous topologies a(EA, B),.y(EA, B), and y *(EA, B) to EA. 

1.3. For any W*-algebra M with predual M*, write y — ^(M, M *),-
y* — y*(M, M*), a = o(M, M *), and T = T (M, M*) where the latter 
is the Mackey topology on M of uniform convergence on absolutely 
convex relatively o(M*, M)—compact subsets of M. 

1.4. For a C*-algebra A, take M = EX = A**. Then M* = A*, y 
= y(A** A*), and y * = ^ ( A * * , A*). The completion of any topo
logical vector space (A, y ) as a set is a topological vector space that 
will be denoted by (A, . y ) - with a topology that will also be denoted 
by.y. It is known that ( A , ^ ) - = (A, S*)~ = A**. 

Some topological facts that are to be used later about the various 
topologies on a W*-algebra are summarized below. 

LEMMA 1.5. Suppose M is any W*-algebra with predual M* and the 
topologies a, y , y * , and r as in 1.3. If K C M is any norm bounded 
set, then 

(i) a C / C / * Ç T. 
(ii) Involution is o, y *, and r-continuous, (but not in y in general). 
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(iii) The hermitian (or self adjoint) elements of M as well as the posi
tive cone M+ is closed in any of o Ç y Ç y * C r. 

(iv) y * and r agree on K. 
(v) If in addition M = A** for some C*-algebra as in 1.4 and 

D C A is an involutive (not necessarily complete) norm dense sub-
algebra such that the set of norm continuous positive linear functional^ 
D*+ on D is precisely D*+ = A*+, then D C A** is dense in any one 
ofaÇSQ-S*Qr. 

PROOF, (i) That a Ç . / ç / * Ç T follows from [13; p. 20, Theorem 
1.8.9]. 

(ii) It is clear that involution is a and y *-continuous while r-continu-
ity is shown in [13; p. 19, Proposition 1.8.5]. 

(iii) In any locally convex Hausdorff topological vector space, such as 
M with the a-topology, the closure of any real convex set is the same 
for any topology between o Ç r , because the dual of M, a is M*. Since 
by [13; p. 14, Lemma 1.7.1], M+ as well as the self adjoint elements of 
M are a-closed, they are also closed in all of the above topologies. 

(iv) Conclusion (iv) is given in [13; p. 21, Remark 1.8.9]. 
(v) Since (D, || ||)- = (A, || ||), we have (D, S)~ = (A, y ) - , while 

(A,.S)~ = A**. By (iii), D is dense in a l l o f a C / C / * C T. 

LEMMA 1.6. With the same notation and hypotheses as in 1.5, multi
plication has the following continuity properties: 

(vi) Multiplication M X M —* M is separately continuous in all topo
logies a X o-+o,sxS'-*s',y* xyp*—y*,andr x T—T. 

(vii) K X M—* M is jointly continuous in y x *f —+-J7 but not M 
X K-*M). 

(viii) K X K -* K is jointly continuous in.jf x / —» f , */**, X -f 
—• .y*, and T X T —» T (but not o X o —+ o). 

PROOF, (vi) Conclusion (vi) follows: 
for a : from [13 | p. 18, Theorem 1.7.8]; 
for.y : from [13 | p. 21, Proposition 1.8.12]; 
f o r y * : —same proof as for y works; and 
for T : from [13 | p. 19, Proposition 1,8.12]. 

(vii) This is shown in [13 | p. 21, Proposition 1.8.5]. 
(viii) Conclusion (vii) for y comes from (vii); while the right hand 

analogue of (vi) establishes it for.y*. Finally for r, it follows from 1.5 
(iv). 

LEMMA 1.7. If U is the unitary group of a W'-algebra M, then 
(i) all the topologies a Ç / Ç y * Ç T agree on U; 
(ii) (U, o) is a topological group. 
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PROOF, (i) Fix F E 17. If F, G E U, fhen (G* - F*)(G - F) = - (G* 
— F*)F — F*(G — F). Since multiplication by a fixed element such as 
F or F* and involution are a-continuous (by 1.6 (vi) and 1.5 (ii)), the 
map (7—M, G— (G* - F*) (G - F) is a-continuous. T h u s ^ * | 17 Ç 
a | U, while always a Ç / * . Consequently a | U = y * | U. By 1.5 (iv), 
y * \U = T*\U and therefore a, y , y*, and T all agree on U. 

(ii) By (1.5) (ii), involution or inversion on U is continuous, while by 
1.6 (viii) multiplication is jointly continuous on U. Hence U is a topolo
gical group. 

For involutive algebras D C M, D+ is defined as the set of all finite 
sums of d*d, d E D. Thus both containments {d*d \ d E D+ } 
C M+ H D are in general proper. 

LEMMA 1.8. Suppose M is any W*-algebra and D C M a not neces
sarily norm closed, self-adjoint and o(M, M*)-dense subalgebra. If K is 

the unit ball of M, then {d*d \ d E D) n K Q M+ D K is dense in 
any one of the topologies a Ç . / ' Ç / * Ç T, and in particular, so is D+ 
fVK. 

PROOF. Let x = t/*y, y E M+ fi K. Since D C M is a-dense, by 
Kaplansky's density theorem ([13; p. 22, Theorem 1.9.1]), D D K C M 
H K is T-dense. Thus there is a net {t(a}} C D D K with t(a)—+ y in 

T. Since involution and multiplication are r-continuous on K, 
t(a)*t(a) —+ x in T. But since a Ç / C . / ' * Ç T, convergence in T implies 
convergence in all of these topologies. Hence the closures of both of 
the sets {d*d \ d E D) Ç D+ fi K are equal to M+ H K in any one of 
the topologies o, f, •/*, and T. 

COROLLARY 1.9. Wifh D C M as in 1.7, i/ x G M+ u;#h ||x|| = 1, 
then there exists a net (t(a)} Ç D with \\t(ci)\\ = 1 such that 
t(a)*t(a) —• x in any one of the topologies a Ç / Ç y * Ç T. 

LEMMA 1.10. A positive y-continuous real linear map T-.M—+N of 
W*-algebras M and N is also o-continuous. 

PROOF. A linear map T.M—+N is normal if (i) Tm = 0 if m = 0 
and (ii) T preserves least upper bounds of uniformly order bounded di
rected sets of self adjoint elements ([12; p. 1.52 Definition 10.2]) A nor
mal linear map T:M-^N is a-continuous by [12; p. 1.53, Proposition 
10.3]. Alternatively the latter can also be proved directly by using [13; 
p. 28, Theorem 1.13.2] to show that the adjoint T* of T satisfies 
T*N* CM*. Thus let -¥~ Q M be any upper directed net of self adjoint 
elements (indexed by itself) bounded above by a self adjoint element. It 
may be assumed without loss of generality that j ^ ~ is also bounded be
low, that ||ra|| ^ 1, and that - e ^ m ^ e for all m E ^ (see [16; p. 7, 
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Lemma 1]). Any upper directed net j ^ of self adjoint elements which 
are bounded above by a self adjoint element in a W*-algebra converges 
i n . y to x — \.\ib.9~ ([16; p. 7, Lemma 1]). Since T is positive, T(m*) 
= (7m)* = Tm if m = m*. Thus {Tm \ m E 9~) -> t/ = l.u.b. ( 7 ^ ) in 
Z7 in AT. Since T is .^-continuous, also Tm —• Tx; so Tx = y. Thus T is 
normal and hence a-continuous. 

REMARK 1.11. Any topology, such as o, y , y*y or T induced by a set 
of seminorms is obtained from a uniform structure. The ^-uniform 
structure is {{(*, y) E M X M | p((x - y)*(x - y)) < 1}; 
0 ^ p G M * + ) . 

Note that in the next theorem T(D D M+) Ç N+ is a conclusion, not 
a hypothesis. 

THEOREM 1.12. Suppose that M, N are W*-algebras, D C M an in
volution closed a-dense subalgebra {which is neither assumed norm 
closed nor to contain the identity of M), and T: D—+ N an jf-contin
uous, positive {i.e., T{d*d) ^ 0 for all d E D), complex {real, or complex 
conjugate) linear map. Then T extends to a complex {real, or complex 
conjugate) linear 

(i) unique positive map T : M —• N {which is involution preserving if 
T is) such that 

(ii) T is continuous in both the a or f topologies on M and N. 
(iii) Furthermore, if T is an algebra homomorphism, then T is a homo-

morphism of W*-algebras. 

PROOF, (i) and (ii). Note that M is .^-complete and denote the .^-clo
sure or completion of any set such as D+ = {2d*d \ d E D) by cl(D+). 

Since a uniformly continuous map of uniform spaces extends to a uni
formly continuous map of their completions, it follows that T extends 
to a uniformly continuous T : {M,./) —* (N, .f). Then since f is .^-con
tinuous, T(cl(D+)) Ç cl T(D+). But T(D+) C N+, and N+ C N is .y-
closed ([13; p. 14, Lemma 1.7.1]). Thus cl T(D+) Ç 2V+. Since the clo
sure of D in M in any topology between a and T is the same, D C M is 
a-dense. Now by 1.8 or 1.9, cl(D+) = M+. Thus T{M+) C N+, or f is a 
positive /-continuous map. Hence by 1.10 T is also a-continuous. Since 
D C M is dense, any two continuous extensions of T to M agree 

(ii) Since ring multiplication is separately ^-continuous, it follows 
that T is a ring homomorphism. 

2. Enveloping Algebras. Starting with an algebra R over the com
plexes C with an involution, and a set P of positive functional on R, a 
semi-norm "||- • ||" is constructed on R. After forming D = R/I, where 
/ C R is the ideal of elements of zero norm, the completion of D yields 
a C*-algebra A. 

file:///./ib.9~


596 J. DAUNS 

2.1. Consider an algebra R over the complexes C with a conjugate 
linear involution "*". The positive cone R+ of any algebra R will al
ways be defined as the set of all sums of elements of the form d*d. 
Suppose that (w(A)} is a net of self adjoint (u(\)* — u(\)) elements in
dexed by some upper directed index set {X}. In case R has an identity 
e, assume that e* = e and that u(X) = e identically for all X. 

2.2. A complex linear functional p on R is positive if for all d E R, 
p(d*d) ^ 0. Denote this by 0 ^ p. Define ||p|| by ||p|| = lim p(u)X) if 
the limit exists. For p ^ 0 consider the following axioms or properties 
which are to hold for all d E R: 

(al) p(u(X)) -+ \\p\\; 0 ^ p(u(X)) ^ llpll for all X; 
(a2) p(u(X)*) - * HP»; 
(a3) p(u(X)d) — p(d), p(du(X)) — p(d); 
(a4) p(d*u(X)d) — p(d*d); 0 ^ p(d*u{X)d) ^ p(d*d) for all X; 
(a5) p(d*u(X)2d) — p(d*d); 
(a6) p(b*u(X)d*du(X)b)-+ p{b*d*db) for all M E f i . 

Note that (al)-(a6) are completely trivial if e E R. 

REMARK 2.3. Let 0 ^ p satisfy (al)-(a5) and let a, b E R be arbi
trary. Then p(b*a), p(b*u(X)a), and p(b*u(X)2a) are three sesqui-linear 
positive forms. It follows from the polarization identity that p(au(X)b) 
—* p(flfo) and p(au(X)2b) —» p(afr) for all Ö, fo E R. 

2.4. Suppose that F is some given set of positive C-linear functionals 
on R closed under multiplication by positive real scalars. From now on 
it will always be assumed that in addition to (al)-(a5), P also satisfies 

(Al) dpd* E P for any p E ?, d E R. 

Note that if (al)-(a4) and Al hold for P, then (a5) also holds. For 
d G R define ||d|| only in case it is finite by 

||df = sup{p(d*d) I p G P, Up! = 1} 

Sometimes it will be necessary to assume also that 

(A2) 3||d|| for all d E R. 

For F as above (satisfying (al)-(a5) and Al), define I as Z = { d G ß | 

PI = o}. 
The proof of the next lemma can be considerably simplified ([5; p. 

22, Proposition 2.1.5]) if R is a Banach algebra. Inequalities like 2.5 
(vii) below will be assumed to hold in case ||a|| is undefined, i.e., in
finite. 
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LEMMA 2.5. If 0 ^ p satisfies (al)-(a5), then the following hold for 
all a, b E fi: 

(i) p(ö*5 = p(a); 
(ii) |p(a)|2 ^ HPII mm[p(a*a), p{aa*)}; 

(iii) HpII = 0 <=> p = 0; 
(iv) \\bpb*\\ = p{b*b); p{b*b) = 0 <=* p(fo*fifc) = (0). 
(v) \p{b*ab)\2 ^ p(b*b)(bpb*)(a*a) 

If || • • • |j on fi is defined by some P as in 2.4 with p G P, then: 
(vi) |p(fc*afe)|2 g p(fe*fc)2||af 

(vii) / / (a(i)} C K wif/i ||ö(*)|| = 1 w fl nef suc/* fhaf |p(a(i))| —* 
||p||, fhen afeo p(a(i)*a(i)) -> \\p\\. 

PROOF, (i) Since p(b*a) = p(a*fe) for all, a, b G R, (i) follows by (a3) 
with fo = M(A). 

(ii) and (iii) By the Cauchy-Schwartz inequality, \p(u(X)a)\2 ^ 
p(a*a)p(u(Kf). Taking limits on both sides, we get (ii) |p(a)|2 = p(a*a) 
HpII by (a2). Conclusion (iii) now follows from (ii). 

(iv) By (al) and (a4), ||fcpfc*|| = lim bpb*(u(\)) = p(b*b). Now by 
(iii), p(b*b) = 0 implies that p(b*ab) = 0, for all a e fi. 

(v) If p(b*b) = 0, (v) holds. So let p(fo*fo) # 0 and set / = 
bpb*/p(b*b). By (iv), ||/]| = 1. Application of (ii) to / gives \f(a)\2 ^ 
\\f\\f{a*a\ and hence (v) 

|p(fc*afo)|2 ^ p(b*b)p(b*a*ab). 

(vi) Again, if p(b*b) = 0, then (vi) holds by (v). Let p(b*b) ¥= 0. If 
||a|| is not finite, (v) holds. Since / = bpb*/p(b*b) G P and \\f\\ = 1, (vi) 
now follows from (v). 

(vii) If HpII = 0, then p = 0, and (vii) holds. Let ||p|| ¥= 0. Then 
p/||p|| is of norm one, and 

p(a(i)*a(i)) ̂  «PH l|a(i)||2 ^ ||p|| 

by the definition of "||o(i)||" in 2.4. By (ii) and by the last estimate, 
|p(a(i))|2 ë Up! p(a(i)*a(i)) ë ||p||2. Dividing by ||p|| and taking limits, 
we get 

HpII § liminf p(a(i)*a(ï)) 

^ lim sup p(a(i)*a(i)) â ||p||. 

LEMMA 2.6. With P satisfying (al)-(a5), for any p G P, define |||p||| 
by HIPIII = sup{p(fe)/||fc|| | b G fi; 3||fc||, i.e., is /mite; ||6|| + 0). Then 
for any p G P, ||p||| = ||p||. 
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PROOF. If ||p|| = 0, then also p = 0, and |||p||| = 0. So take ||p|| * 0. 
Then by (al), ||M(\)|| ^ 1. Thus \p(u(X))\ ^ \\\p\\\ \\u(X)\\ ̂  \\\p\\\. Again, 
by (al) llpll ^ lupin. 

By 2.4, |p(fo*b)| ^ llpll \\bf, w h i l e 2.5 (ii) shows that |p(fc)|2 ^ 
WW**) f \\bf\W for all b E R. Consequently, |||p||| ^ ||p||. Hence 
IIPlI = UNII or ||---II = |||...|||. 

PROOF 2.7. For a positive functional q on R satisfying (al)-(a5), let L 
be the set of all positive real multiples of {bqb* \ b E R}. Then L satis
fies (al)-(a5) and Al. 

PROOF, (al): By (a4) for q we have 0 ^ bqb*(u(\)) ^ q(b*b), and by 
(a4) for q that q(b*b) — lim bqb*(u(\)) = \\bqb*\\. The rest are obtained 
as follows: 

(a2): by (a5) for q; 
(a3): by (a3) and 1.4; 
(a4); (a5), and Al: from (a4), (a5), and Al. 

REMARK 2.8. With q and L as above in 2.5, A2 holds for L if and 
only if for each d E R the following is finite: 

\\d\\2 = sup{q(b*d*db)/q(b*b) \ b E R, 

q(b*b) * 0) . 

From now on the notation " < " will indicate ideals in a ring. 

2.9. For q and L as in 2.7, in addition to (al)-(a5), Al assume also 
that (a6) holds for q and A2 for L. If N is the left ideal N = 
{b <ER\ q(b*b) = 0} C R, then R/N is a pre-Hilbert space with in
ner product (a + N \ b + N) = q(b*a), whose completion yields a Hil
bert space. Each d E R gives a linear map Trd: R/N —» R/N by 7rd(a 
+ N) = da + N, a E R. (So far A2 was not needed.) If ||d|| is as in 2.4 
and ||7rd|| is the operator norm in the C*-algebra L(H) of all bounded 
operators on H, then 

||d||2 = sup{q(b*d*db)/q(b*b) \ b E R/N) 

= Ml2-
By A2, both are finite and nd extends to nd E L(H). Thus IT : R —» L(H) 
is an involutive isometric ring homomorphism with kernel 

1= {d GÄ| | |d | | = 0} < R . 

Note that also I = {d E R | dR C N) and I = {d | q(b*d*db) = 
OVfr E R}. Here for the first time (a6) is required to show that for any 

file:////bf/W
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b E R, bu(\) + N—* b + iV in the Hilbert space norm in R/N. In par
ticular, if d E J, then JW = dw(A) + N -* d + N, and hence d E JV. 
Thus I QN. 

It follows from \\d\\ = \\^d\\, from kernel IT — I, and K/7 ^É fl-fl C 
L(H), that I* = I and that the seminorm on # induces a C*-algebra 
norm on fl/7 by \\d + 7|| = ||d||, except that R/I need not be complete. 
Since by 2.6 (ii) L vanishes on /, L can be viewed as functionals on 
R/I. It follows either from 2.6 or from 2.5 (vi) that the members of L 
are continuous on R and R/I. 

The previous considerations immediately generalize from one func
tional q as above to a set P of any size. 

THEOREM 2.10. Suppose P satisfies axioms (al)-(a6), Al, and A2 (2.2) 
and that R, ||- • || on R, and I are as previously (see 2.1, 2.4, 2.9). Then 
R is an algebra with an algebra semi-norm, and in particular for a, 
b E R the following hold 

(*) \\àb\\ ^ Ml IN; 
(ii) Kll = HI; 

(iii) \\a*a\\ = H ' : 
(iv) KR;I = {flEfl|||fl|| = 0); 
(v) /* - /; 

(vi) The completion of R/I in the norm \\a + 7|| = ||a|| is a C*-al-
gebra. 

(vii) The functionals of P vanish on I and hence induce functionals 
on R/I; the members of P are continuous on R and R/I. 

COROLLARY 2.11. Under the hypotheses of the previous theorem with 
D = R/I, the following hold 

(i) {u(X}} (or {u(X) + I}) is a bounded, self adjoint approximate iden
tity for R (D). 

(ii) D and P satisfy (al)-(a6) A*> and A2 (with respect to {u(X) + 

I))-
(iii) The set I defined for D (by 2.4) is zero. 

PROOF. Conclusions (ii) and (iii) are clear, while for (i) it suffices to 
show that for d E R, both \\u(X)d - d|| -> 0 and that \\du(X) - d\\ -> 0 
in R. The first follows from (a5), the second from (a6). 

COROLLARY 2.12. With the same notation and hypotheses as in the 
previous theorem, if A is the C*-algebra obtained by completing R/I in 
its norm (2.10 (vi)), then: 

(i) 3 1 = e E A<==> {u(\) + /} C R/I C A is a Cauchy net. 
(ii) 3 1 = e E A => \\u(X) + / - e\\ — 0. 

REMARKS 2.13. 1. There does not seem to be a straightforward way of 
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proving 2.10 (ii) and 2.10 (iii) directly without 2.9. 
2. Alternatively, perhaps the condition 2.10(ii) could perhaps be 

used to replace some of the axioms (al)-(a6), Al, and A2. 
3. The second parts of axioms (al) and (a4) could be omitted at the 

expense of having to abandon 2.6. 

3. Functorial and Universal Properties of Enveloping Algebras. The 
completion A of the algebra R/I of the previous section is the C^en
veloping algebra of R, while A** is its W*-enveloping algebra. Both A 
and A** are uniquely characterized by their universal mapping proper
ties. Eight functors are associated with R. The notation of the previous 
two sections is continued without further explanations. 

3.1. Under the above hypotheses (al)-(a6), Al, and A2, define D — 
R/I. The completion of D in its norm is a C*-algebra A. Set W = E A 
_ ^** jkg i m e a r functional induced by P on D, A, as well as A** 
will for all of these be denoted by P. All finite, complex linear com
binations of any subset such as P of any vector space will be denoted 
<P>. For P as above define R = <P>. A gain, view R Ç A* so that 
P Ç A*+ is in the positive cone of the norm dual of A. Let B be the 
norm closure of R in A*. Thus P Ç ß Ç B Ç A* The algebras A and W 
will be called the C* and W*-enveloping algebras of R. 

3.2. Sometimes J; D, A, W; P, R, B, A* will be regarded as functors, 
in which case an index R will be written after each of these, i.e. 

IR; DR CAR Q WR; PR C RR Ç BR Ç A*R. 

Regarding PR as functional on D, by 2.11 (ii) we have 

I(DR) = 0; D(R/IR) = DR, 

and hence the functors D, A, W; P, R, R and A* agree on R and DR. 
Consequently, DR — D(R/IR) and AR = ADR will sometimes be iden
tified, and similarly for the other functors in place of A. 

3.3. Consider an (i) involutive, normed, not necessarily complete al
gebra D over C with norm | • • • | (\ab\ = \a\\b\ and \a*\ = \a\ for all a, 
b E D). Assume that (ii) D has an approximate, bounded two sided 
identity, and that the continuous positive linear functionals P = D*+ of 
D separate the points of D. Then (al)-(a6), Al, and A2 hold, the ideal I 
for D is zero and || || is a norm. If in addition, (iv) D is complete in | |, 
then it is known that A*+ = P and B = R = A*. If (iv) holds, then || || 
^ | | and A is the C*-enveloping algebra of D. Since A = (D, || ||)~, it 
follows from 1.4 that 

(D,.y)~ = (D,.S*)~ = A**. 
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3.4. Suppose R, Ç are algebras as in 2.1; PR, PC their associated 
linear functional; and {u(X}} C R, {w(y)} C Ç the approximate identi
ties satisfying (al)-(a6), Al, and A2. All such algebras and involution 
preserving, norm continuous, algebra homomorphisms <j> : R —> Ç form 
a category. Since IR = {d G R | ||d|| = 0), <f>IR Q IQ. 

LEMMA 3.5. For R, Ç as above suppose <£> : R —* Ç is merely an alge
braic homomorphism such that <t>*(PQ) = {q<t> \ q G PC) Q PR. Then <f> 
will be norm decreasing provided any one of the conditions (i), or (ii) 
holds: 

(i) H^ll ^ ||9|| Vq G PQ; 
(ii) {<t>(u(\))} C (w(Y)}. 

PROOF, (i) If d G R, q G PÇ, then 

||*rf||» = sap{q((4rf)**d))\ M ^ 1}. 

But since q((<j>d)*<l>d) = q(<i>(d*d)), and \\q<j>\\ ^ ||qr|| ^ 1, and q<j> G PK, it 
follows that \\<j>d\\2 = ||d||2. (ii) Condition (ii) guarantees (i). 

THEOREM 3.6. Suppose R, Ç are algebras with associated positive 
junctionals PR, PC in the category in 3.4, and that $ : R —> Q is an al
gebra homomorphism as in 3.5 (i). Then the following hold: 

(i) I, D, A, W; P, B, B, and A* (see 3.2) are functors. 
(ii) D<j), A<j>, and W$ are ring homomorphisms in the above category 

(see 3.4; all algebras DR, AR, WR have the same associated functional^ 
PR); A* is a C* and W<j> a W*-map. 

(iii) There is a commutative diagram where all the vertical maps ex
cept R —* DR and Q —* DC are natural inclusions, and all horizontal 
maps are positive. 

P$ 
IR » IQ PÇ > PR 

J Ó J J B e + 
R * Q BQ —-U BR 

^ Dé ^ J Bó J 
DR • DQ BÇ — U BR 

* A* * * A** 1 
Ai* > AÇ A*Ç> —-+ A*fl 

1 Wé 1 
WR —-> WÇ 

PROOF, (ii) Since 0IR Ç JÇ>, the latter induces D<j>, which in turn ex
tends to a norm continuous C*-homomorphism A*. Define A** to be 
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the usual adjoint A*<j> = (A<J>)* of A<j> and let B£, B<j>, and P<j> be its re
strictions and corestrictions. Finally set W<j> = (A*<f>)*. The rest is clear. 

COROLLARY 3.7. In the above theorem, [u(X) -f 1} is a self adjoint, 
bounded, approximate identity for DR, AR, and Wfi. (It converges in 
norm to 1, in case 1 G DR, or 1 Ei AR; always 1 G Wfi.) 

COROLLARY 3.8. If in the previous theorem Q = DR and <j> : R —* DR 
is the natural projection, then all horizontal maps except <J> in the dia
gram (3.5 (iii)) are isomorphisms, (i.e., D<j>, A<f>, W<f>; P<j>, B<j>, Ify, and 

From now on homomorphisms of algebras and semigroups will mean 
involution preserving (unless stated otherwise). In the next theorem a 
and ß need not be identity preserving maps. In fact, the C*-algebra N 
need not even contain an identity. 

THEOREM 3.9. (Universal mapping property). Consider an involutive 
algebra R over C as in 1.2 and P a set of functionals on R satisfying 
(al)-(a6), Al , A2. For a C*-algebra N, and a W*-algebra M = M** 
with the topology o = o(M, M*) (see 1.3), where M* is the predual of 
M, if a : R —> N and ß : R —• M are involutive algebra homomorphisms 
and N* is the norm dual of N, then: 

(i) Conditions (a) and (b) are equivalent, i.e., (a) <=> (b): 
(a) a (or ß) is norm continuous with the norm topology on N (or M); 

(b) {qa | q e N*} Ç A*fi (or {qß | q G M*} G A*fi) respectively. 

Now, in addition assume (i) (a) or (b) throughout. Then a and ß ex

tend to unique C* and W*-maps (i.e., ß is o-continuous): 

(ii) R • > f i (iii) RK > Wfi 

/ ß 

(iv) Both AR and Wfi are uniquely determined by (i) and (ii) up to 
an automorphism leaving R/IR (see 3.2 and 2.4) in 

R — R/IR C Afi C Wfi 

element-wise fixed. 

PROOF, (i) Clearly, (a) => (b); the converse (b) => (a) is a consequence 
of ||y||2 = sup{/(y*t/) | 0 ë / G N*+- \\f\\ = 1} for any y G N. 

(ii) Since Afi = (R, || ||)~, a extends. 
(iii) By (i), ß extends to a C*-map Afi - * M, (see [3; 3.21) and bv the 

universal property of E, the latter lifts to a unique W*-map ß : E(AR) 
— M. 
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(iv) follows from (i) and (ii). 

COROLLARY 3.10. Suppose R is an involutive algebra over C with 
{u(X}} C R as in 2.1 and P, L any two given sets of positive function
al on R satisfying (al)-(a6), Al, A2. Let W(Ä, P) and W(Ä, L) be the 
W*-enveloping algebras formed with respect to P and L. If L C P, then 
there is a commutative diagram of continuous maps 

R • W(Ä, P) 

W(K,L) 

COROLLARY 3.11. For R as in the last corollary and g : ü - > C o posi
tive linear functional satisfying (al)-(a6), and 2.8: 

(i) There exists a homomorphism \p : R —*M = M** into a W*-al-
gebra M. 

(ii) Furthermore, q = f\p for some 0 = / E M*+. 
(iii) kernel x^= {b ER\ q(d*b*bd) = 0 Yd E Ä}. 
(iv) If q EL P, then \p is norm continuous. 
(v) If q E P, then \p factors through W(R, P) by a W*-map. 

PROOF. The set L = {dqd* \d E R} satisfies (al)-(a6), Al, and A2. 
Set M — W(JR, L) and let \p : R —* M be the canonical map. 

4. The Enveloping Algebras of Semigroups. Consider a semitopologi-
cal semigroup S where the multiplication need be only separately con
tinuous, and with a given continuous involution "*" on S with 
(st)* = t*s* for 5, t E S. 

The general constructions should be at least sufficiently flexible to 
handle as special cases, for example, multiplicative semigroups S of lin
ear contraction operators on a Hilbert space. For these the possibility 
must be allowed for that some, but not necessarily all, elements of S 
may be multiplied by some complex or real scalars. In representing 
such semigroups S, it may be possible to map S into a C*-algebra so 
that the scalar multiplication in the C*-algebra does not agree with the 
naturally given scalar multiplication in S, and so that the zero element 
of S maps onto a non-zero element. The latter perhaps might be the 
case for the special case when the algebra is the so-called universal en
veloping algebra. However, the general construction is sufficiently flex
ible so that the naturally given partial algebraic operations defined on 
some subsets of S, or polynomial identities, could be preserved in the 
representation of S in a C*-algebra. For example, the self-adjoint ele
ments of S could be closed under real convex linear combinations. 
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4.1. Since it is always possible to adjoin an identity element e to S 
so that multiplication remains separately continuous, without loss of 
generality assume from now on that e = e* = 1 G S. Provided it exists, 
0 = 0* G S will denote the zero of S. 

4.2. The elements of the ordinary semigroup algebra CS are finitely 
nonzero valued functions a, ß : S —* C with pointwise addition, scalar 
multiplication, but the following product and involution, a*: 

aß(ü) = 2{a(«)j8(t) | (s, t) G S X S, u = st}. 

a*(s) — a(s*)~ = â(s*), 

where â~ is the complex conjugate. Alternatively CS consists of all fi
nite, formal, C-linear combinations a — 2a(s)s out of S with a* = 
2a(s)s*. Identify S = [Is \ s GS} C CS and thus e G S C CS becomes 
the identity of CS. Even if there is a zero 0 G S, 0 = 10 # 0 G CS. 
Note that a(s) G C while as G CS. 

4.3. A complex valued function p on S is positive definite if its lin
ear extension (i.e., p(a) — 2a(s)p(s)) is a positive linear functional, i.e., 
if for all a G CS, 

p(a*a) = 2{a(t)a(»)p(t**) | ( U ) e S x S } ^ 0. 

Sums, products, positive real multiples, and complex conjugates p of 
positive definite functions are positive definite. 

4.4. Set R — CS. Suppose that P = PR is some definite given set of 
continuous positive definite functions p on S (or functionals on R) satis
fying Al (of 2.4) and such that 

(1) \p(s)\ ^ p{e) for all s G S. Thus R = CS and ? satisfy all the ax
ioms (al)-(a6), Al, and A2 trivially. 

4.5. Hence also 2.5 (iv) and (vi) apply, and they may be used to 
show that the set 

a s = {(*,*) GSxS\ypEP, 

p((s - t)*(s - t)) = 0} 

is a semigroup congruence. When S is fixed, abbreviate Œ = ŒS and I 
= IR. Define 77 : S — S/ß, by ITS = {t G S | (s, t) G Q}, where S/ß has 
the biggest topology making 77 continuous. Since (s, t) G ß if and only 
if (5*, £*) G ß, also S/ß has a continuous involution. There is a linear 
extension 7r : CS —* C(S/ß) to the semigroup algebras. 

4.6. In case S = G is a group, even for a non-continuous positive 
definite function p, 4.4(1), i.e., |p(g)| ^ p(e) and pig'1) = pTIT holds for 
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all g G G. As usual, define K <\G as the normal subgroup 
K = {st-11 (s, t) G Q}. Note that 

K = (fc G G I (*, e) G ß} 

= {fcGG|vpeP,p(*) = p(«)}. 

Hence K C G is closed. 

4.7. Starting with an arbitrary semigroup S as in 4.1 and functional 
P as in 4.4, the machinery of the previous sections applied to JR = CS 
and P produces D = R/I C A C W and P C B C B Ç A*, where the 
index JR in the functors has been, and will be, omitted. When S = G is 
a group, also write K = KG <G. Define IS by IS ^ IR = /(CS). 
Thus when S = G, ZG = /(CG). 

Let s G S fi IS and t/ E S be arbitrary. By 2.5(ii), p(s) = 0. Since 
IS <3 CS (2.9), ys, sy G JS. (This can also be verified directly by 2.5(v) 
and 2.4 Al). Thus p((s — y)*(s — y)) = p{y*y) because s*y, y*s, and 
s*s G IS. Since for any s, t G SO IS with (s, t) G Û, it follows that 
SO IS Ç 7TS = irt are all in the same equivalence class modulo ß. 
Conversely, for any s E S H IS and any y G S, the above shows that 
(s, y) G ß if and only if y G S H IS. Hence ITS Q S (1 IS. Thus 
Tre = S fi IS G S/ß is a single element. 

For any y G S, ys, sy G IS and TTS my — my ms — mys — ms. Thus if 
S H IS ¥= 0 and s G S H IS, then TTS = S (1 IS G S/ß is a zero ele
ment for the semigroup S/ß, even in case S does not have a zero. 

However if S already has a zero element Ö E S , and under the addi
tional assumption that p(8) = p(0*0) = 0 for any p G P, it follows that 
0 G IS and TT0 = S fi IS = 0 is the zero element of S/ß. 

LEMMA 4.8. For a semigroup S as before (4.4(1)), the following hold: 
(i) ßS = {(s, t) ESxS\s -tG IS}; 

(ii) S/ßS -> (s + IS I s G S}, TTS -* s + IS (wehere 5 G S) is an in-
volution preserving isomorphism of (multiplicative) semi-groups; 

(iii) S H IS ¥= 0 =>3 a zero in S/QS; 
(iv) 77ie kernel of the homomorphism xp : C(S/ßS) —*> CS/IS induced 

by (ii) is mIS. 

(v) For S = G a group, 

KG= {kGG\k-eGlG} 

= {kGG\ pGP,p(k) = p(k*) = p(e)}. 
Hence G fi IG = 0. 

PROOF, (i), (ii), and (iv), are clear; (iii) follows from 4.7. 
(v) By 4.4, \p(k)\ ^ p{e), \p(k*)\ ê p(e). For k - e G IG, 2p(e) - p(k) 
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— p(k*) = 0, and p(k*) — p(fc)~. Thus both p(k), p(k*) are real, and (v) 
follows. 

4.9. For semigroups S, T as in 4.4 with associated functionals PR, PQ 
where R = CS, Q = CT and an (involutive), continuous, (not neces
sarily identity preserving) homomorphism <£ : S —* T, assume that 
{q<t> | q G PC} Ç PR. Hence also <f> is a, ^ and . ^ -con t inuous . By 3.5, 
not only <f>, but also its extension <p : R —* Ç) is norm decreasing. Then 
<f>ffi Ç IÇ), and the induced homomorphism <j> : DK —* D C is also norm 
continuous: 

4.10. Let 0 be the original topology on S. Any topology â on S in 
duces a quotient topology ß ^ on S/ß. Define S/Z to be a multiplicative 
subsemigroup S/7 ^ {s + I \ s G S} of D. By 4.7 (ii), identify S/ß = 
S/I C W, where W = WCS. The smallest topology on S and S/ß 
making S —* S/ß —> W continuous induces the norm, o, jf7, y*> and r 
topologies from W onto S/ß and S. Alternatively, S maps onto 77 : S —» 
S/ß C W and the open sets in S are simply defined to be inverse 
images under 77 of the respective open sets in W. Since S maps into the 
unit ball of W, 2.5 (iv) shows that y * and T agree on S/ß. Then 0 and 
ß ^ contain the induced a, ^ , and ^"- topologies . Lastly, o Q.jf Q^* 
Qr Q0 are all contained in the norm topology on S (and similarly for 

4.11. For S, R = CS, P = PK, and D = K / I as before, the elements 
of P can also be viewed as positive linear functionals on D, and hence 
also on S / ß C D. Set P(C(S/ß)) = {pir \ p <E P) and identify 
P(C(S/ß)) = P. 

Furthermore, since ß ^ is the smallest topology on S/ß making 77 
continuous, the elements of P(C(S/ß)) are continuous and satisfy 4.4 (1). 
Since 77 : S — S/ß is epic, its adjoint 77* : P(C(S/ß)) — P, /1 - * hir is 
monic. Thus the above identification of P(C(S/ß)) with P is given more 
precisely by the isomorphism 77* as 77*P(C(S/ß)) = P. 

Although every result of the previous section now could be stated for 
the special case of a semigroup algebra R — CS and further informa
tion extracted from the additional semigroup as well as topological 
structure, this will only be done for two theorems. 

THEOREM 4.12. Consider a not necesssarily identity preserving morph-
ism § : S —* T of involutive semi-topological semigroups S, T as in 4.1 
and 4.2 (1); their semigroup rings R = CS, Q - CT; their functionals 
PR, PQ; and the C* and W*-enveloping algebras AR, AÇ, WJR, WÇ) in 
the norm and o-topologies. If {h<j> \ h G PQ] Q PR, then 

(i) S —* AH, S —•* W ß are continuous, 
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(ii) there is a commutative diagram where all the horizontal maps are 
continuous homomorphisms 

<> 
S > T 

I J 
AR > AC 

WR >WÇ> 

COROLLARY 4.13. With the same hypotheses as in he last theorem, the 
multiplication and involution on the image S/SIS (see 4.5, 4.8 (ii)) of S 
in S —» S/SIS C AR C WJR has the following continuity properties: 

(i) involution: norm, a, and J**-continuous; 
(ii) multiplication separately continuous: all topologies—norm, o, .jf, 

f* (./* and T agree on S/SIS); 
(in) multiplication jointly continuous: norm, J*, </"*-
(v) The original topology of S (or S/SIS) contains the induced o, y , 

andy*-topologies (see 4.10). 

Below, the possibility that SI = SIS is trivial and S _; S/Sl, while ICS 
# 0 should not be ruled out. 

COROLLARY 4.14. With S, Si = SIS, R = CS, and PR as in the pre
vious theorem (i.e., satisfying 4.2 (1)); with S /IR, TT : S —> S/Sl (4.5), and 
}p : C(S/Q) - » R/IR (4.8 (ii), (iv)) as previously, define Q - C(S/fl), and 
PQ - 7T*(Ffi) s Ffi (4.11). Then the following hold: 

(i) 77/K = IQ, 7T(IR n s) = (iç) n (s/0); 

(ii) kernel ^ = IQ; 
(in) S/7K, (S /Q) / /Ç , and (S/Q)/__(S/S) are aZZ isomorphic; 
(iv) TTiere is A commutative diagram of continuous morphisms; every 

horizontal map is onto; isomorphisms are indicated by double lines: 

{m)ns > (iQ)n A 

j s s/a 
IR "ß" 7Ç> 

DK _ _ _ _ _ D Ç 
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IR IQ 

CR 

DR 

CÇ 

DQ 

(0) 

DR 

WR WÇ> WR 

DEFINITION 4.15. For any involutive, semitopological semigroup (with 
1 = e E S), PS denotes the real cone of all continuous, positive definite 
functions on S satisfying 

\p(s)\ ̂  p(e) for all s E S 

(then all the other axioms al-a6, Al, A2 also hold.) Application of the 
usual functors to CS gives 

S/flS C DS = CS/IS C AS C WS; 

?S C BS Ç IS Ç A*S, 

where the index "CS" will be abbreviated to "S" only for the above 
special PS. The algebras AS and WS are called the universal C* and 
W*-enveloping algebras of S. 

The significance of the universal algebras is that in Theorem 4.12, 
the additional hypothesis besides the standard axioms may be omitted. 

THEOREM 4.16. With S as in 4.4 (1), let a:S-*N and ß:S-»Mbe 
norm and o-continuous morphisms into a C* and W*-algebra N and M 
(a and ß are not assumed identity preserving). Then 

(i) a and ß extend to unique C* and W*-maps Aa and W/? giving 
commutative diagrams of continuous maps: 

WS 

Vfß 
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(ii) The above universal property (i) determines AS and WS uniquely 
up to automorphisms leaving the image S/fiS of S elementwise fixed in 
S -> S/ttS C AS C WS. 

LEMMA 4.17. For a semigroup S, R = CS, and any P = PR whatever 
satisfying property (i) of 4.4, consider the following point separation 
properties (a) and (b) of P: 

(a) Vn = 0, 1, 2, • • •; Vt/, x(l), • • -, x(n) G S; VA E C: [y * At/*; 
Vi, x(i) ¥= y, t/*, or e] => [3p G P sucfc tfia* p(y) ^ Ap(t/*); p(x(i)) = 0.] 

(b) (1) P is closed under multiplication. 
(2) V j / E $ ^ 3 p G P , p(y) ^ 0 
(3) V i / ^ G S ì V A e C : ^ At/*; x ^ y, t/*, 

or e] => [3p G P, p(t/) * Ap(t/*), p(x) = 0]. 
Then (i) (b) => (a); 

(Ü) (a) => IR - 0, fi is fhe diagonal, S = S/ß, and DK = CK. 

PROOF. For n = 0, A = 0 we have (a) <=> (b) (2). Secondly, (b) (2) and 
(b) (3) <=> (a) for n = 0 and n = 1. 

(i) If n = 2 in (b), take p in (b)(3) with p(y) ¥= Xp(y)~ * 0, and 
p(x(l)) = 0. Then take q G P by (b) (3) with qr(x(2)) = 0, and </(t/) * 
jti</(t/*) for /x = Ap(t/*)/p(t/). Thus pg(t/) ^ Xpq(y*). The rest is clear. 

4.18. Suppose that S, R = CS, PR and T, Q ^ CT, PC are two semi
groups, each one satisfying 4.4(1) and 4.17(a). Define RQ as RÇ = 
C(S X T) and define (PR)(PQ) to be 

(PK)(PÇ>) = { / g : S x r - C | / 6 f f l , g 6 PC, 

fg(s, t) = f(s)g(t) for , GS, * G P } . 

Assume that P(fiQ) is some given set of functionals such that 4.4(1) 
holds for S x T and with (PR)(PQ) C P(RQ). Then 

(i) P(RQ) satisfies 4.17(a) a n d S x T ^ W(RQ) is monic. 
(ii) (PR)(PQ) satisfies 4.4(1), 4.17(a), and 4.17(b). 

REMARK 4.19. Suppose that S is a semitopological semigroup with 
some of the following possible additional structure. 

(1) Complex multiplication: D = {A G C| |A| < 1}, there is a sepa
rately continuous map D x S —> S, (A, s) —* A« G S such that (Ac)s = 
A(cs), A(s*) = (Xs)t = s(A*), (As)* = Äs*; A, c G C; s, t G S. 

(2) Multiplication b y { A G R | - l ^ A ^ l } . 
(3) 3 d G S. 
First, form R = CS, PS, AS, and WS as in 4.15. Let Ç C PS be that 

subset which preserves one or several of (l)-(3); e.g., p(Xs) = Xp(s) for 
s G S, A G C and/or p(ß) — 0. Assume that Ç satisfies 4.4. 
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Next apply the process of 2.10 and 3.2 to CS with Q (not P) to yield 
its C*-enveloping algebra A(R, Q) and W*-enveloping algebra W(H, Q) 
with respect to Q. It follows from 4.16 (see also 3.10) that there are 
commutative diagrams of norm and a-continuous maps respectively. 

S > AS S > WS 

A(K, Q) W(Ä, Q) 

It is conjectured that an analogous result holds for semigroups S hav
ing the following possible additional structure which would first have to 
be rigorously defined: 

(4) Closed under convex real linear combinations; 
(5) Closed under a Jordan (xy + yx)/2, or a Lie product (xy — yx)/2 

x, y G S. 
(6) Only the self adjoint elements are closed under (4), and/ or (5). 

5. Tensor Products and Multiplicative Categories. The results needed 
about various tensor products are briefly summarized and four multi
plicative categories are introduced. 

5.1. If A and B are C*-algebras, their usual algebraic tensor product 
is denoted by A O B and their categorical C*-tensor product by A O B, 
where the latter is simply the closure of A O B with respect to a cer
tain ([3; p. 440, 2.1]) C*-crossnorm p. If both A and B have identities, 
then write A 0 B — A O B and A © B = A Ö By the distinction being 
that for "—©—", A, B, C A 0 B while the latter need not necessarily 
hold for "—Ö—". Then A Ö B is uniquely determined by the universal 
property that any C*-maps a : A —* D and ß : B —» D with elementwise 
commuting images in a C*-algebra D extend to a unique C*-map 
<j> : AÖ B — D such that (aa)(ßb) = <$>(a O b) for all a G A, b G B. 

5.2. The norm p induces always a dual norm p* on A* O B* ([3; 
2.3]); the p*-completion of the latter will be denoted by A* Ö B*. If 
1 G A and also l G ß , write A* 0 B* = A* Ö B*. 

5.3. W e give an alternative description of A O R If y denotes the 
greatest crossnorm ([8; p. 6]), then let A O B denote the y-completion of 
the algebraic tensor product of two Banach spaces A, B. Then it can be 
shown directly that A O B has the universal property of A O B, and 
thus A Ô B * A Ö B. The latter also follows from [8; p . 38]. 
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5.4. If in addition A and B are W*-algebras with preduals A*, B* 
then A * A B * c ( A © B * is defined as the set of all linear functionals 
T GIA&B)* such t h a t j r ( - © tyj^A* „and T(a®~-) E B* for all 
a E A, '6 E JB. The annihilator (A* A B*)x c (A ©B)*^ of A* A B* 
C. A © B*'' is a direct summand and a non-Neumann subalgebra of 
(A ®B)**. Then the W*-tensor product of A and B is denoted by 
A V B and is defined as 

AV B = (A® B)^/(A*AB*)± 

Note that by its very definition, A V B = (A*AB*)*. Again, A V B is 
uniquely determined by the usual universal property for tensor prod
ucts. 

For any subspaces V C A*, W C B* (not assumed closed^ in p*), 
VA W C A © B)* is defined the same way. Also, write A* © B* = 
A * ö B* for preduals A* and B*. 

5.5. The functor E is multiplicative or product preserving, i.e., for 
C*-algebras A, B, we have E(A © B) ^ EA V EB, or s (A ® B)** ^ 
(A* A B*)*. Consequently, (A © B)* gg A* A B*. 

The basic definitions and facts used about multiplicative categories 
may be found in [8] and [14]. Four multiplicative categories will play a 
useful role. 

5.6. First is the category (Sgrps, x ) of involutive semitopological 
semigroups (satisfying an additional hypothesis 6.2) with identity, direct 
product, and morphisms that need not preserve the identity. 

Secondly, (C*, ®) is the category of C*-algebras (i) with identity; (ii) 
but with not necessarily identity preserving morphisms and the product 
"S>". The map S —> AS as in 4.15 gives a functor A : Sgps —•* C*. 

The W*-algebras with normal (i.e., a-continuous), involutive, not nec
essarily identity preserving homomorphisms form a multiplicative cate
gory (W* V). The functor E : (C*, ®) — (W* V) is multiplicative. 
Set W = EA. 

Lastly, the preduals M*, N* of W*-algebras M = M**, N = N** form 
a multiplicative category (ßl9 A) that is contravariantly isomorphic to 
(W* V). 

Let F be the functor that assigns to spaces M*, their duals FM* = 
M**. The morphisms of S) are maps \p :N*—+ M* such that their 
adjoints \p* : M—* N are W*-maps, and F\p = \p*. Then F(M* A N*) = 
(FM*) V (FN*), and F : (ß9 A) -» (W* V) is a multiplicative, contra-
variant equivalence of categories. Furthermore, so is F - 1 : (W*, V) 
—> (0 , A), where F-^Vi is the predual F~XM = M* of M. 

For a proof of 5.7, see [4; p. 469]. 
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5.7. For any algebras (with or without identities) over a field (of ar
bitrary characteristic) and any ideals I <A, J < B, 

(i) A O B/(I O B + A 0 7 ) ^ A / / 0 B/J; 
(ii) for C*-algebras A and B, (i) also holds for the C*-tensor product 

"—Ö—" in place of "—O—". 

5.8. In case A, B are any C*-algebras with or without identities, then 
define A1 — A when 1 E A; otherwise when 1 $ A, then A1 = C X A 
is the C*-algebra obtained by adjoining the identity (1, 0) to A and 
A Ä {0} 4= A <A* as usual. If 1 $ A, 1 = (1, 0) GA1 and A = (A, 
0) E A1 for X E C may be written without ambiguity. Now A ® B is 
defined a s A 0 ß = A 1 O ß + A O ß 1 (see [3; p. 449, 5.4]), while its 
p-closure is A© B = A1 Ö B + A Ö B 1 ([3: p. 450, 5.5]). There_are 
natural embeddings A, B C A ® B as A ^ A 0 1 C A © B , 
ß ^ l © ß C A 0 ß a n d A Ö ß < A 0 ß i s a closed ideal By [3; 5.7 
Theorem II], E(A ® B) — EA V ££. Hence there are natural embed
dings A C A © BC EA V £B, similarly for B, and A C EA C 
£A V Eß, where A ® B H EA = A. 

LEMMA 5.9. For any Q**-algebras A, B, (witfi or without identities) 
and any 0 ^ / 6 A * + , O ^ g E B*+, fhere exista a W*-algebra 
M — M** and C*-homomorphisms <f> : A —> M, ^/:B —* M such that 
there also exists a 0 ^ fi E M* witfi ||g|[f = /i<̂  and ||/]|g = fak 

PROOF. There is a C*-map a : A —• L(H) into the bounded operators 
on a Hilbert space H such that for some x E//, /(a) = (aax | x), ||x||2 = 
ll/ll, and «Ax Ç /f is dense, a E A. There are similar objects ß : B —• 
L(K), t/ E K for B and g. Form the ordinary Hilbert space tensor prod
uct H ® K, set M = L(tf © K), and take £ = x 0 t/ EH 0 K. Now de
fine <J> : A — M by <j>a = aa ® 1 E M, and i// : B —• M by \pb = 
1 © j86. Then defined h as ft(m) = (m£ | £) for m E M. Thus 

M*z = (aax | x)(» | y) = f(a)\\g\\, 

Hb = (x | x)(ßby | y) = \\f\\g(b) a E A, b E B. 

PROPOSITION 5.10. Consider C*-algebras A, B (u;itfi or without identi
ties) and any 0 ^ / E A*, O ^ g G B*, where as in 5.8 u;e foat>e: 

0 * / E(EA)* = A * ; 0 / g G (EB)* = B*; 

A , ß C A ® B CEA V EB; and 

A C EA, B C EB. 

Then there exist / © g E(A © B)* and f A g (E (EA V EB)* = A* A B* 
such tfiötf t/ieir restrictions satisfy the following: 
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( i ) / ® g | A = / , / ® g | B = g, 

( i i ) / A g | E A = / , / A g | E B = g, 

(iii) / A g | A ( x J B = / 3 > g , 

(iv) / / 1 e A and 1 E B, then / © g and f A g are unique. 

PROOF. Let <t> : A —• M, ;// : B —• M, and n : M —• C be as previously in 
5.9. By the universal property of E ([3; 3.2]), <J> factors through EA by 
E<f> = </>**: EA —* M. Set <J> = E<J>. By the universal properties of —®— 
and —V— ([3; 5.5] and [3; 4.8 Theorem I]), </> and i// give unique maps 
<j> <§ ^ and E</> V Eip. Set E<t> V E\P - <j> V if/. First assume that 0 < /, 
and 0 < g. Thus except for /, g, and h all maps are C* and W*-maps 
respectively in the following commutative diagrams 

Set fi= W H llgll)- T h u s f ® g = l^(<J>®^ / ® g = MM*®'/')* 
£nd /Ag = jun(</> V ^). In general, / or g is a complex linear com
bination of four positive linear functional. Hence / ® g, / ® g, and 
/ A g in the general case will be a complex linear combination of six
teen or less terms of the above kind with different /x's and h's. 

If 1 G A and 1 E B, then AO B = A® B CA®B is norm dense, 
and / O g has a unique extension / © g. Again, because A ® B C 
EA V EB is a-dense ([3; p. 451, 5.8]), also / A g is unique. 
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6. The Coalgebra of a Semigroup. Although CS is a so-called bial-
gebra with an anti-pode (see [8], [14]), it does not seem to be possible 
to extend all of these operations to a-continuous maps on WS. 

NOTATION 6.1. Throughout this section S and T will be involutive 
semi-topological semigroups with an identity. Since only universal en
veloping algebras will be considered, 4.4 (1) holds automatically as a 
consequence of definition 4.15. 

Define S O T as the multiplicative subsemigroup 

SOT = {sOt\s <ES,t ET} CCSOCT. 

Thus S x r = S O T , (s, t) —» s O t induces a ring isomorphism 
C ( S x ï ) = C S O CT. 

It will be assumed throughout this section unless explicitly stated oth
erwise that (in addition to property (1) of 4.4) the following holds: 

(2) IS = 0, IT = 0, and I(S X T) = 0 

It will be convenient to identify CS = DS and 

C(S X T) = CS O CT = D(S X T). 

If S is fixed, the index S will be omitted in the following algebras 
and spaces of functional 

D = DS C A s AS C W s WS; 

P= PS GB = BS QB= BS CA* = A*S. 

The same objects for the semigroup S X S are denoted by D 2 C A2 C 
W 2 and P2 C B2 Ç B2 Ç A*2, likewise a2 C . y 2 ç . y « Ç r2 will be 

the topologies on W2 . 

6.2. If S, T; PS, PT satisfy 4.17 (a) or (b) then IS = 0, IT = 0, and 
also I(S X T) = 0 by 4.18 (i). For a continuous map <j> : S —* T, 
4>*(PT) C PS. Thus the class of all such semigroups and maps form a 
category closed under direct products satisfying our hypotheses 4.4 (1) 
and 6.1 (2). 

6.3. The complex numbers C with C* + = R + satisfy DC = 
AC = W C = C; since R+ are exactly all the positive functional on 
the trivial one element semigroup (1 ) , also 

D{1} = A{1} = W{1} = C . 

Lastly, a, ,f, . / * , and T on C all are equal to the norm topology. 
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6.4. There are three isometric involutions f, /, and if: D—*D; a—+ia, 
a —* fa, and a —* if a defined by 

ia(s) = a(s% ja(s) — a\s\ if a 

— fia = a* s G S; a G D 

In particular, is = 5* = i/s and thus if is the main, natural involution to 
be used throughout. Note that ia = ai is the composition of the two 
functions i : D —* D, a : D —* C. 

6.5. Since, first i, / are isometries; secondly, iD = jD — D; and 
thirdly D C A is norm dense, it follows that there are isometric exten
sions i, f : A —» A with iA = /A = A. 

Next, the adjoints i* : A * - ^ A*, /* : A* - * A* define involutions on 
A*; the double adjoints 

i = ***, / = /**, if = (if)** : W — W 

on W = A**. 
For any isometric maps i, f : A —* A of any Banach spaces A, i*, f are 

also isometric, provided that i and / are onto. Since f = f = 1, also 
i*2 - f2 - I are idempotent, and hence i*A* = /*A* = A*. Repetition 
of this shows that i, /, and if are isometric involutions of W with fW 
= /W = W. 

6.6. To avoid confusion later, the above process can be summarized 
for the standard involution ij or "*" as follows. The involutions on A 
are given first, and the ones on A* and W will be always completely 
determined from their restrictions to A by 

( f * , a > = / ( a * ) -

[F* f\ = F(f*)~ a G A, f G A*, F G W. 

Note that the above imply that \\f*\\ = \\f\\ and ||F*|| = ||F||, provided 
Ha*!! = ||a|| or all a G A. 

6.7. Suppose that y : S —* S X T is any semigroup map such that 
777 = 1 is the identity on S for the natural projection IT : S X T —* S 
onto the first factor. Since y is one to one and TT onto, their adjoints 
Y*(P(S xT))={hy\hG P(S X T)} = PS and TT*(PS) C P(S X T) are 
epic and monic. The latter implies by 3.5, that the linear extensions 
y : DS —* D(S X T) and TT :D{S X T)—*DS are norm decreasing. Now 
Theorem 3.6 applied to y and IT yield the sequences of maps below, 
which will be shown to be one to one on the left, non-exact in general 
in the middle, and onto on the right: 
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S r- > S x î — — S 

DS > D(S X T) » DS 

AS > A(S X T) > AS 

WS > W(S x T) » WS 
Wy WTT 

77* V * 

PS > P(S x T) Ï » PS 

BS » £(S X T) > BS 

BS > B(S x T) > BS 

A*S > A*(S X T) > A*S 
A*77 A*y 

6.8. Since Dy, D77 are norm decreasing with D*nDy = 1, so are also 
Ay, A77 and A^rAy — 1. Thus Ay is an isometry as well as the restric
tion of A77 to yAS. Note that 

{(s, t)-(s,l)<ED(SxT)\sES,t<ET}C kernel 77 

will not be in the image of y if T has two or more elements. Since Ay 
is one to one, the range of A*y is dense in the weak-A topology, and 
Wy is again one to one. Again, W7ry = 1 shows that Wy is an iso
metry, while W77 is isometric on y(WS). Because Ay, AIT are norm 
decreasing, A*77, A*y are norm increasing. Since y77 = 1, A*(y7r) 
= (A*y)(A*7r) = 1, A*77 is an isometry, and so is A*y on the image 
Of A*77. 

6.9. For simplicity, abbreviate Wy = y, Ay = y, Dy = y, A*y = y*, 
etc. Because a double adjoint y** is always a-continuous, 
WS s yWS C W(S X T) is a W*-subalgebra, i.e., the restriction of the 
a-topology of W(S X T) to WS ^ y(WS) is the natural a-topology of 
WS. For 1 = (1, 1) G S XT, 77(1, 1) = 1 G S implies that A*T7 pre
serves functionals that are equal to one at the identity. The isometry 77* 
gives A*S s 77*AS C A*(S x T). 

6.10. The special case y : S ^ S X T, y s = (s, 1) gives natural em-
beddings S CDS C D(S X T) as well as WS C W(S X T) by the iden
tification S = yS-C C(S X {1}) CD(S X T) Similarly, T^ SxT,t-+ 
(1, t), gives W T C W(S X T). Later, in this special case only, y will be 
replaced by an inclusion as above. 
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6.11. Set T = S and ys — (s, s); for s e S define 8 and e by 8 = y, 
es = 1. Theorem 3.6 gives isometric (on left) and epic (in the middle, on 
the right) ring homomorphisms 8= Wô = 8**, e = We = e**# 

S > S x S » S - > {1} 

D > D2 • D » C 

A * A2 > A > C 

W > W2 > W • C 

Only on D, the restrictions ô — 8\D, e= e\D satisfy 

c: D — C , €« = 2 {a(s)| « (ES) 

8: D-+D2,8a(s,t) = 0 iî t * s 

8<x(s, t) - a(s) ift = s a G D; s, t G S; 

e(S)= {!}, e GPS C A*S 

8\D is monic; 8D Ç D2 

(i) e28= e 

(ii) 8 preserves all three involutions: 

Si = i2ô, 5/ = fS, 8(ij) = (f/)2ô; 

(iii) êi = c; c/ = e. 

6.12. Next, by 6.8, 8:W—*W2 is an isometry. Secondly, since 
D C A, D2 C A2 are norm dense, also 8A C A2. Thirdly, the density of 
D C A, D2 C A2, the continuity of c, c2, 8, i, i2, f on A, A2; the (sepa
rate) continuity of multiplication on A, A2 imply that the equations 
(i)-(iii) remain true on A also. Lastly, by the same method, steps (1), (2), 
and (3) imply that (i)—(iii) remain valid on W: 

(1) A C W, A2 C W2 are a, a2-dense. 
(2) All the functions in (i)—(iii) are continuous on W, W2 (not merely 

on A, A2). 
(3) Algebraic operations involved in (i)—(iii) are separately a, ^-con

tinuous. 

REMARKS 6.13. 1. a Ç / Q.y* C r are given by uniform structures; 
multiplication is separately continuous in all of them. 
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2. In general, W is not a or r-complete as a uniform topological 
space. 

3. W i s ^ 7 and ^ *-complete as a topological space. 
4. W is the completion of the uniform topological space A in y or 

5. Any uniformly continuous function of uniform spaces extends to a 
uniformly continuous function on the completion of these uniform 
spaces. 

6. Now in 6.12, y or y* could be used in place of a, and 6.11 (2) 
weakened to require uniform continuity only on A, A2. 

7. All the functions in 6.12 (2) above (i.e., i, \, 8, and c) are easily 
seen to be uniformly y (or y*)-continuous on D. 

8. Assume now that D C W is .y-dense. Then by Remark 2, all our 
functions immediately extend to y -continuous functions on W. Theo
rem 1.12 shows that they are all (i.e., i, \, 8, c) also a-continuous. By 
Remark 1, 8 and c remain ring homomorphisms on W. 

9. The above, more general method of extending functions to all of 
W, did not depend on the very specialized nature of W = A**. 

THEOREM 6.14. Consider involutive semitopological semigroups S, T as 
in 6.1 (satisfying 4.4 (1), 6.1 (2)); the functors D, A, W, A* that assign 
to S its semigroup, universal C* and S*'-enveloping algebras, and 
A*S = (AS)* the norm dual (4.15); and the (tensor) products — O—, 
_ 0 _ ? _ v —, — A — (5.1, 5.4). Under the following identification 

SxT=SOT, (s,t) = sOt s GS, t (ET: 

of the two semigroups, there is an inclusion diagram. 

S X T C D(S X T) C A(S x T) c W(S X T) = (A*(S x T))* 

(i) II II II || || 
S O T C D(S O T) C AS © AT e WS V W T = (A*S A A* T) 

A*(S x T) 

A*SAA*T 

If X, Y are semigroups exactly of the same kind as S, T above, and 
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<f> : S—>X \p :T—*Y any involutive semigroup homomorphisms (not as
sumed to be identity preserving), then 

(ii) 3! (unique) W*-map W ^ V W + = W(«f>x *) : WS V WT — 
WX V WY and a commutative diagram of algebra homomorphisms 

S x T C DSODT CAS© AT C WS V WT 

W(<J> X * ) 

* X $ - (A** X *))* 

X x Y c D X O D Y c A X ® X ® AY C WX V WY 

A*S A A*T 

A*(<?> X *) 

A*XAA*Y 

PROOF, (i) By 5.8, it suffices to prove that A(S XT) = AS © AT. 
First proof. Since DS C A S is dense, it follows that D(S X T) = 
DS O DT C AS O AT is dense. Second proof. Use of Theorem 4.16 
easily shows that A(S X T) has the universal property determining the 
C*-tensor product. 

(ii) By 4.14, SxT satisfies 4.13(3). By 6.1(2), D(S x T) = C(S X T). 
Now Theorem 4.12 gives a unique extension of <j> X $ • S X T —• 
X X Y to A(S X T) — A(X X Y). The rest follows from (i). 

THEOREM 6.15. Consider a semigroup S satisfying 6.1 (2) with T = S, 
ite semigroup algebra D — CS, £ne £u>o involutions i, \ as well as the 
customary standard involution if. 

ia — ci; ja(s) — a(s*)9 a G D, s G S; 

and £he semigroup homomorphisms 

8:S-+S X S c :S-

S -* (s, s) 

{1} 

Le£ A C W be the C* and W*-enveloping algebras of S and denote the 
corresponding identical objects for S X S by squares 

i2, f, 82, c2; D2 C A2 C W2. 

The categorical algebraic, C*, and W*-tensor products are denoted by 
— O—, — (*>—, and — V —. Then all of the above five functions ex
tend to W (where they are denoted as before) such that 

(i) i, /, i\ : W —* W; 8 : W —* W2; e:W -* C are a-continuous. 
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There is a commutative diagram below, where: 
(ii) i, /: W —» W are isometric involutions of W onto itself; 
(iii) 8 : W —* W2, c : W —* C are (involutive) homomorphisms of W*-

algebras with 8 an isometry; 
(iv) algebraic equations satisfied on D remain valid on W; i.e., 8 pre

serves all three involutions 

8i — i28, 8j = f8, 8ij — i2f8; and 

ti — 7, ej — c; 

c = e28; 

(v) D2 s D O D, A2 s A © A, W2 s W V W. 
(vi) 

S C D C A C W 

SXS C D2 C A2 C W2 

COROLLARY 6.16. Wïtfi the notation and hypotheses of the previous 
theorem, set W V W2 = W3 ^ W2 V W, let 1 O 8 : D O D -* 
W V W2 be induced by 1x8 : S X S-+ S X S X S, and let T : W 2 -^ 
W2 be the W*-map extending the transpose 

T : S X S— SxS, r(a, b) = (b, a), a, b G S. 

77ien tfiere are commutative diagrams of W*-maps 
(i) 

W2 

« V I 

w3 

1 V« w3 * w2 

8 V 1 1 V « 

w4 

and /or D, — O— in (ii) The diagrams in (i) hoZd /or A, 
place of W, — V —. 

(iii) Furthermore, the diagram for W* restricts to the one for C*, and 
the C*-diagram by restriction to the one for involutive rings. 

Theorem 4.12 together with the last theorem give the next corollary. 

COROLLARY 6.17. Suppose both S and T are semigroups as in the pre
vious theorem (i.e., with S, S and T, T satisfying 6.1 (2)) and <f>:S^>T 
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is a continuous involutive semigroup homomorphism. If k, 9 are the 
maps for T corresponding to c, ô (for S) then there is a diagram of W*-
maps 

(i) where the rectangle is commutative. 
(ii) Furthermore, if <j>e = 1E T is the identity for T where e = 1G S, 

then the whole diagram commutes. 
(iii) Conclusions (i) and (ii) remain valid if first, W, — V — is re

placed by A, — © — and second, by D, — O —. 

WS WS V WS. 
Ax* 

* \ 

W<J> 

\ € 

Wft X *) 

WT wrvwr 
The next theorem emphasizes one important property of the functors 

and tensor products. 

THEOREM 6.18. Consider the multiplicative categories (sgrps, x), (C*, 
S )> (W*, V), and (^, A) of semigroups as in 6.2, C*-algebras, W*-al-
gebras, and their preduals (5.4) (all of these with not necessarily identity 
preserving maps). Then there is a commutative diagram of functors A, 
E, W, A* and F (4.15) of multiplicative categories (i.e., (tensor) products 
in the domain category are mapped into products in the image category 
of the same corresponding objects): 

(Sgrps, x) 

(C* © ) 

(W* V) 

The functor F"1, being contravariant, will turn coalgebras into al
gebras. Finally all the separate parts have been constructed—i.e., 5.10, 
6.15, (v), 6.15 (vi), and 6.17—so that they can be assembled together to 
produce what long has been our objective—the next theorem. 

THEOREM 6.19. With the notation of the last theorem (6.15 and 6.1) 
and the same hypotheses as in the last theorem (6.15), for any f 
g(EA*9formfOg:D2-+Ciwhaef®g G A2* andfAg E A A * 2 ^ 
A*2 = A*AA* have already been formed (5.10). There is a commutative 
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diagram of also commutative normed algebras with an isometric in
volution ((if)*) and multiplication 8* : A* X A * ^ A * : 

(i) 
B2 C B2 c 

B C B C A 

(ii) S C W = (A*S)* are multiplicative linear functional^ on the Ba-
nach algebra A* i.e., (S*(f A g))(s) = f(s)g(s) for s E S. 

(iii) The restriction of / A g to A2 is: / A g | A2 = f® g 
( i v ) / , g e B ^ > / A g | S x S = / O g 
(v) When regarded as c G F C B C A* e is £/ie identity element of 

A*, i.e., 8*(€&j) = 8'*(f Ac) = / . 

PROOF. REMARK: For ß, a = 2a(s)s E D, /(a) = 2a(s)/(«) although 
/ $ B in general. Thus 

(fVg)(a Oß) = Z{a(s)f(s)ß(t)g(t) | (*, t) e S X S}, 

and again / V g $ B2 in general. 
Conclusions (i)-(iv) are clear, (v) For a E D, 8a — 2a(s)s O s and 

8\^f)(a) = (€Ay)(fia) = S a ( # A ^ 0 5 ) ) = 2a(*)c(*ifa) = /(a). 
HenceÔ*(eA/) = /. 

REMARK 6.20. In view of 5.6, this whole section could be generalized 
to the case where 6.1 (2) is replaced by the assumption that I(S X T) — 
IS O CT + CS O IT. Since the functors D, A, W; P, B, % A* agree on 
S and S/US, it could be assumed without loss of generality that 
S = S/12S; the more general case would then follow. 

7. Locally Compact Group. The previous general construction is 
now specialized for the case of a locally compact group. 

7.1. Consider a locally compact topological group G with left in
variant Haar measure and modular function A, i.e., f f(tx) dt — 
A(x)"1 $ f(t) dt for all x E G and f G L1 = L\G). The set of all bound
ed complex Borei measures on G will be denoted by M(G) with 
L\G) C M(G). For JU, *> E M(G) and a measurable set £ C G with char
acteristic function k, define \i *v and /i* E M(G) by 

(1) 0* •?)(£)= SHst)dn(s)dj>(t), 

(2) ju*(E) = ME"1)". 
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For a E G, â E M(G) is defined by ä(x) = 0 if x ¥* a and a(x) = 1 if 
jc = a. The left and/or right translate of a function / e L\G) by a, 
fo E G is denoted by a/fr, where {afb)(x) — f(bxa). Then formulas (1) 
and (2) become 

(3) (3 * *>)(£) = v(a-xE) (v *E)(E) = ^ H r 1 ) 

ä • / = / a " 1 / *S = A(6)"16-1/ 

ä*b = (afe)"". 

7.2. In the special case 3.3 of the general framework of 2.2, set 
R = D = L1(G), take P = F(G) as the continuous positive definite func
tions on G, and | • • • | as the L1-norm. By 3.3, AR is the ordinary C*-
enveloping algebra of G; AJR will be denoted by C*(G) = ALX(G). 
Hence WR is the ordinary W*-enveloping algebra of G, to be denoted 
henceforth by W*(G) = WR. The completion of L\G) = D in either 
y or y * is 

(D, ̂ ) - = (D, y *)- = W*(G). 

Furthermore, (A*R)+ = P, and (C*G)* = B(G) = (W*(G))*. 
7.3. Any strongly (weakly or ultra-weakly; continuous representation 

of G as unitary operators on a Hilbert space extends uniquely to L\G) 
and uniquely to one of C*(G). Conversely, the unitary representations 
of C*(G) come from those of G. Thus subject to containing L\G), the 
latter universal property uniquely characterizes C*(G). 

7.4. Embed G C M(G) by a —» a"; write a = a", and hence 
CG C M(G). If the duality between M(G) in the total variation norm 
and the bounded continuous functions on G is denoted by ( , ) , then 

(ll*P,f)= f f(st)dll(s)dv(t). 

Each a E G induces a Hilbert space isometry 

L2(G) -* L2(G), ^ — a *£ = fa-1. 

Let V(G) denote the double commutant V(G) of these isometries; then 
L\G) C M(G) C V(G) (see 7.1, (3)). Let J^(G) C R(G) be the set of 
those functions having compact support. The predual V(G)* of V(G) 
can be identified in V(G)* C BG as the closure of Jf^(G), as a subset 
^ ( G ) C B(G), in the norm derived from B(G) = (W*(G))*. Since V(G)* 
is translation invariant, its annihilator (Vr(G)*)-L is both an ideal (V(G)*X 

<l W*(G) as well as a W*-subalgebra of W*(G). Hence (V(G)^)-L is a 
direct summand of W*(G); its complementary summand is 

W*(G)/(V(G)*)J- s (V(G)*)* s V(G). 
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Consequently 

V(G)* = B(G) e^ V(G)^ = 0 

<=> G is compact <=> V(G) = W*(G). 

7.5. In the context of 6.1 and 6.2 with S = G and PS = P(G) as be
fore, all the hypotheses hold (6.1 (2), 4.15, and 6.2). Since P(G) induces 
the same norm on CG as that obtained as a subset CG C W*(G), AG is 
the norm closure of CG in W*(G). Since CG C W*(G) is a-dense, 
W*(G) = WCG = WG. The latter can be independently established by 
observing that the universal property determining WCG is also satisfied 
by W*(G). Since (WG)* = A*G, it follows that A*G = BG = B(G). 

7.6. Embed V(G) —— WG as the unique complement of (^G))*-1. 
There is a diagram of natural inclusions that is a commutative diagram 
provided the latter map ( V(G) —-* WG is removed. 

,WG 

AG -^ V(G) C*(G) 
î î t 
G > M(G) » L\G) 

7.7. For any topological group G with a locally compact topology 
â, let Gd be G with the discrete topology, and set f(Gd) = L\Gd). Its 
usual C*-algebra C*(Gd) = A/1(Gd) is obtained by use of the set P(Gd) 
of all (also discontinuous) positive definite functions on G ([6; p. 188, 
(1.18)]). 

Since CGd C i1(Gd) is dense in the L1 or Z^norm, which is smaller 
than the C*-norm 2.4, it follows that AGd = AGd = A/ 1 ^) , or 
AGd = C*(Gd). 

Let AG be as in 4.15. Since P(Gd) D P(G), by 3.9(b) there is a C*-
map C*(Gd)^ AG. By 7.5 the algebras given by 4.15 are equal to those 
given by 7.2, i.e., WGd = W*(Gd) and WG = W*(G). The o-topologies 
induce on G C WGd the discrete and on G C WG the topology â. 
Thus if â is nondiscrete, WG * WGd. But since WG = (AG)** and 
WGd = C*(Gd)**, it follows that also AG * C*(Gd). 

Conclusion (iii) below follows from the fact that the identity 
e E C*(G) if and only if G is discrete (see [1; p. 457, Corollary 1 to 
Theorem 2]). 

7.8. A locally compact group (G, 0) and its discretization Gd satisfy 
the following: 

(i) AGd = C*(Gd); 
(ii) AG = C*(Gd) <=> (G, &) is discrete « W G = W*(Gd); 



ENVELOPING W*-ALGEBRAS 625 

(iii) AG = C*(G) <=^ (G, â) = Gd is discrete. 

8. Locally Compact Abelian Group. These groups provide easy 
examples of W*-algebras A, B with A* ® B* C A* A B* properly. 

NOTATION 8.1. For a locally compact abelian group G, G denotes its 
character group with (G) = G. For / E L1(G) and JU E M(G), as usual, 
the Fourier transforms are functions / : G—* C and fx : G—* C. As be
fore, the C*-norm from (WG)* = B(G) on B(G) is || ||. The greatest and 
least crossnorms on the tensor product of two Banach spaces will be 
denoted by "y" and "A" respectively. 

Some facts to be used later are summarized below. 
8.2. If X, Y are locally compact Hausdorff spaces and M(X), M(Y) the 

bounded complex regular Borei measures with the total variation norm, 
then the measures absolutely continuous with respect to some product 
measure on X X Y can be identified as exactly as the y-closure 

y - cl (M(X) O M(Y)) Q M(X X Y) 

(See [11; p. 370, Theorem 2.2]). If X and Y are non-discrete, then it 
can be shown that the above inclusion is proper. 

8.3. For / E L^G), p E M(G), and b E B(G), the following hold: 
(i) S fig) d&g) = J fh) dtiyl g E G, y E G. 

(ii) The Fourier transform M(G) —* M(G) is an isometry in the total 
variation norm. 

(iii) | |b| |= sup{fc(y) |y E G } . 
(iv) (M(G)) ~= B(G); furthermore M(G) -» M(G) ~= B(G) is an iso

metry for the total variation norm on M(G) and the C*-norm || || on 
B(G). 

8.4. For locally compact abelian groups G, H also WG and W/f are 
abelian as well as AG and AH. But commutative C*-algebras carry only 
one unique C*-tensor product, and the unique C*-cross norm used to 
form the categorical C*-tensor product is the least cross norm X. Then 
WG* ® WH* is the completion in the dual norm X* where 

WG* ® WH* Ç WG* A WH* Ç (WG <§ WH)*. 

But A* equals y, the greatest cross-norm. 

COUNTEREXAMPLE 8.5. For locally compact abelian non-discrete 
groups G and H, set X = G and Y = H. Then WG* = B(G) ^ M(G) 
and similarly for H. Also 

(W(G X H))* = B(G X H) s M(G x H). 

Since WG* A WH* = W(G x H)*, always we have a proper in
clusion BG © BH s y - cl (M(G) O M{H)) c M(G X H) ^ B(G X H), 
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or WG*© WH, C WG, A WH, properly. 

8.6. For any W*-algebras M and N whatever, their non-categorical 
spatial tensor product will be denoted by MffiN. (See [13; p. 67, 
1.22.10-1.22.11] and [12; p. 3.17, Definition 2.2 and Theorem 2.3]). If a 
is the greatest C*-cross norm on N O N, and a* the induced dual norm 
on M* O N*, then the predual of M [xJiV is 

M \x$N* = a* - cl(M* O N*). 
For M and N commutative, there is a unique C*-cross norm a — X = p 
and hence a* = p* = y([12; p. 62, 1.22.5]). 

Now set M = WG, N = WH as in 8.5. Then (WGSWtf)* 
= W G * 0 WH* by the above and (WG EWtf)* ¥= WG* 
A Wtt* by 8.5. Thus WG 0 WH * WG V WH. 
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