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ARITHMETIC PROGRESSIONS IN THE VALUES
OF A QUADRATIC POLYNOMIAL

BENNETT SETZER

ABSTRACT. The following theorem is proved:

THEOREM. Let A, B, C, A ¥= 0 be rational numbers. There do not
exist four unequal rational numbers x1? x2, x3, x4 such that /(Xj),
/(X2)> /(X3)> f(x4) are *n arithmetic progression, where
/(x) = Ax2 + Bx + C.

The proof depends on determining the rational points on a certain
elliptic curve.

This paper is concerned with the proof of the following theorem.

THEOREM. Let A, B, C, A ¥= 0 be rational numbers. There do not exist
four unequal rational numbers xlt x2, x3, x4 such that /(a^), f(x2), f(x3),
f(x4) are in arithmetic progression, where f(x) = Ax2 + Bx -f C.

PROOF. Assuming the contrary, we may normalize the xi and / so that
Xi = 0, 1, a, b while /(O) = 0, /(I) = 1, /(a) = 2, f(b) = 3. For a quad-
ratic polynomial to satisfy these relations, it is necessary that
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SO

(1) a2b - b2a - 3a2 + 2b2 -f 3a - 2b = 0

which in projective form is

(2) a2b - b2a - 3a2c + 2b2c + 3ac2 - 2fcc2 = 0.

The following five points satisfying (1) are seen not to be solutions to
the original problem:

(2, 3), (0, 0), (1, 0), (0, 1), (1, 1).

Neither, of course, can these points at infinity be solutions to the origi-
nal problem:

(0, 1, 0), (1, 0, 0), (1, 1, 0).
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The theorem will be proved if we show that the curve (2) has no other
rational points. This curve is a non-singular cubic, so defines an elliptic
curve. We bring the curve into Weierstrass form by the transformation

~ c \
- 3c / '

y _ a ~ b
~

3n + b

Note here, the line 3a + b — 3c = 0 is triply tangent to the curve at
(1, 0, 1); the line a + fc - c = 0 is doubly tangent at (0, 1, 1) and
passes through (1, 0, 1); the line a — b + c = 0 contains the points
(0, 1, 1), (2, 3, 1), (1, 1, 0). So X has a double pole and Y a triple pole at
(1, 0, 1) and Y is 0 at the three points of order two in the group struc-
ture of the curve while X is 0 at the point of order two (0, 1, 1). From
this, the transformed equation must be of the general form
Y2 = X(X - D)(X - E) F for some constants D, E, F. Using the trans-
formation, the points previously given have the images

(2, -2), (0, 0), (6, 6), (4, 0), (6, -6), (2, 2), (3, 0),

and the point at infinity. The transformed equation is easily seen to be:

(3) Y2 = X(X - 3) (X - 4).

Denote by £(Q) the set of rational points on (3). We will follow the
proof of the Mordell-Weil theorem found in [2] to determine this
group. Unless otherwise indicated, proofs of assertions made in the fol-
lowing are to be found in this reference.

The following functions are group homomorphisms

if P = (X, Y), X ¥= 0

gl(P)= 1 3 ifP = (0,0)
if P = /?, the point at infinity,

' - 4 if P = (X, Y), X * 4

fe(P)= <{ 1 i f ? - (4 ,0 )

if P = S>.

Here, we denote a class in Q*Q*2 by a member of that class. A class in
the image of g1 must contain some divisor of 12. X evidently cannot be
negative. An inspection of the known points on the curve shows that
InXgj) = (1, 2, 3, 6}. Similarly, a class in the image of g2 must contain
a divisor of 4 and Im(g2) = (1, —1, 2, —2}.
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Define a homomorphism g = (gx, q2) : E(Q) -+ Q*/Q*2 X Q*/Q*2.
Then, ker(g) = 2E(Q). So, E(Q)/2E(Q) ^ Im(g). We will show that Im(g)
is precisely {(2, -2), (3, -1), (6,2), (1, 1)}. These are the images of the
known points, thus it is sufficient to show that (3, 1), (3, —2) and
(1, -2) are not in Im(g). Let P — (X, Y) be a finite point with
X ¥= 0, 4 and suppose g(P) = (d1? d2) where di are square-free integers.
Then, it is easily seen that there are integers Ul9 U2, V so that

(4) X = d^VV2, X - 4 =

and gcd(dlUl, V) = gcd(d2U2, V) = 1. We obtain then

(5) d^U2 -4V2 = d2U2
2.

Now, for (dl9 d2) = (3, 1) or (3, —2), this equation is impossible modulo
3, so these points are not in Im(g). For (dl9 d2) — (1, —2), we have, by
standard arguments,

(6) ^ = 2A2- 4B2, U2 = 4AB, V = A2 + 2B2,

where A and B are relatively prime integers and A is odd. From (6), (4)
and (3) we then obtain

(7) A4 - 28A2£2+ 4B4 = -2Z2

for some integer Z. But, this implies that A is even, which con-
tradiction establishes Im(g) as claimed. Thus E(Q)/2E(Q) is order 4.
Now, the eight known points form a group isomorphic to Z/2 X Z/4.
Since E(Q) is finitely generated, there can thus be no points of infinite
order. It remains only to determine the points of finite order.

The curve (3) when reduced either modulo 5 or modulo 7 is a non-
singular cubic with just eight rational points. Thus, there can be no fur-
ther points of finite order than the ones already known, (see [1], p.
112).

The group E(Q) has only the eight given points, which establishes the
theorem.
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