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DISCONTINUITY OF THE ALTERNATING
CHEBYSHEV OPERATOR

ECKARD SCHMIDT* AND C. B. DUNHAM

1. Introduction. Let [a, ft] be a closed interval and || || the Cheby-
shev norm on C[a, ft]. Consider Chebyshev approximation of
/ G C[a, ft] by an approximating function F such that each approx-
imation F(A, •) has a degree p(A) such that F(A, •) is best to / if and
only if f-F(A, •) alternates p(A) times on [a, ft]. Such approximating
functions were first considered in full generality by J. Rice [6, p. 17ff].
The best known examples where p is variable are ordinary rational ap-
proximation and exponential approximation,

n

(0) F(A, *) = 2 ak exp(an+,x).
K — 1

It is known that a best approximation is unique (if it exists). Denote the
best approximation to / by T/, defining the alternating Chebyshev oper-
ator. Even when Tf always exists, T may be discontinuous, as discov-
ered by Maehly and Witzgall [5], who studied approximation by ordi-
nary rational functions. The behavior of T for this family has been
characterized by H. Werner [7], who showed that T is continuous at /
if and only if Tf was of maximum degree or / is an approximant. The
first general continuity results were those of Dunham [1], [3, p. 106],
who proved that T is continuous at / if Tf is "non-degenerate", which
happens if Tf is of maximum degree, or / is an approximant. An ex-
ample is given in [3, p. 106] to show that discontinuity need not occur
if Tf is degenerate and / is not an approximant. Thus it appears that a
solution of the problem of continuity of T will require further hypoth-
eses. Dunham also obtained the first general discontinuity result [3, p.
107]. In the present paper, Schmidt obtains another general dis-
continuity result, using a generalization of the property of irregularity,
first given by Dunham in [2; 4]. By Theorem 3 of [3], a non-degenerate
approximant cannot be (monotone) irregular. It should be noted that E.
Schmidt has studied continuity of T in approximation by exponential
sums (limits of families of the form (0)), for which neither alternation
nor uniqueness hold, in [8].
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Following the text of Cheney [9, 80, 165] we define F(A, •) to be a
strongly unique best approximation to / if there exists a constant y > 0
such that

\\f-F(B, 0|| ^ \\f-F(A, Oil + Y ||F(B, 0 - F(A, Oi l -

The above inequality implies Lipschitz continuity of T at / [9, 82],
which in turn implies continuity of T at /. Hence if T has a dis-
continuity at /, Tf cannot be strongly unique to /. Thus the theorem
following gives sufficient conditions for strong uniqueness to fail.

1. Definitions and Result.

DEFINITION. F is irregular resp. monotone-irregular at A if for any
triple (x, y, e), where a < x ^ /?, y G R, e > 0, there is a parameter B
satisfying the following conditions (i) to (iii) resp. (i) to (iv).

(i) p(B) ̂  p(A) + 1,

(ii) \F(B, a) - y\< c,

(iii) |F(B, t) - F(A, t)\ < € for all t ^ x,

max F(B, t) - max {F(B, a), F(B, x)} ^ e
' !, X]

(iv)
1 min F(B, t) - min (F(B, a), F(B, x)} ^ - e.

Condition (iv) means that F(B, t) is almost monotone in [a, x] in the
sense that putting c = 0 would specify monotonicity. The ordinary ra-
tionals and exponential sums of the form (0) are monotone-irregular
where they are degenerate.

THEOREM. Let A be best for f G C[a, /J], / ^ F(A, •). If F is mono-
tone-irregular at A then T is not continuous at f.

PROOF. For simplicity and without loss of generality we carry out the
proof for a = 0, /? = 1. Assuming /(O) - F(A, 0) ¥= \\f - F(A, -)|| = : TJ
we will construct a sequence of functions fm G C[a, /?], such that
ll/m - /II - 0 and ||r/m - r/|| ^ 0 by having fm - Tfm take the val-
ue ||/m — r/J| at x = 0. An obvious change can be done if /(O) —
F(A, 0) = T,.

Let em > 0 and {cm} be a null-sequence. By uniform continuity of /
and F(A, •) on [0, 1] there is a dm > 0 such that for arbitrary x, t G c
[0, 1] we have
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(1) !/(*) -
and

(2) \F(A, x) - F(A, t)\ ^ cm

whenever \x — t\ ^ dm.
Let Bm be a parameter such that conditions (i) to (iv) are satisfied for

the triple (dm, /(O) - TJ, c J.
We define

iOTt>S,Sd

P)

Let AT" : — p(A), {x0, • • •, XN} be an alternant of / — F(A, •) and

(4) xr: = ^A
^ ^m

We now change fm into a function fm such that /w — F(Bm, • ) has an
alternant {0, aff, • • -, ^} and norm Zm : = /m(0) - F(Bm, 0). Using (1),
(2) and |TJ — lm\ < cm, which is implied by (ii), we have for those in-
dices i where /(a^) — F(A, xj = + 17:

r) - F(Bm, xf) - im\ ̂  I
+ |

+ |F(A, *,) - F(A, xf

hence

(5) |

In the same manner we get for those indices t such that f(xt) — F(A, xt)

(6) |

Let £n(x) : = fm(x) - F(Bm, x) and put

(7) /+: = { i | O S i ^ ] V , 0

and

(8)
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For every i E 7+ with xf E (0, 1) there exists a pair up v{ with
ui < x™ < ui such that

(9)

and

(10) Em(x) ^ £>,) for u,^x^ v,.

We replace now Em(x), ui ^ x ^ vi9 by a quadratic parabola which
interpolates the three points (ui9 E,m(u$)9 (ti9 lm), (viy ^m(o^) with t{ arbi-
trary in (ui9 Vj). A similar construction is done for 7~. Further consid-
eration deserves only x™ since x™ > 0. If x™ — 1 there exists a UN either
as point of intersection of £m with the line lm — 5 cm, such that Em(x)
^ Em(uN) for u^ ^ x ^ 1, or as point of intersection of £m with the
line — lm + 5 CTO such that £m(x) ^ ^m(%) for % ^ x ^ 1. If x% = 1
we replace £m by the straight line connecting (u^ Em(uN)) with (1, lm)
resp. (1, — lm). Furthermore we replace £m(x) by lm if £m(x) > lm and

Considering all these changes in £m as applied to fm we have defined
a function /w which is continuous on [0, 1]. Furthermore (0, x™, • • •, x™}
is an alternant of fm — F(Bm, •). Since by (i) Bm has a degree not great-
er than N + 1 it is best for fm.

We now show that for all x, 0 ^ x ^ 1,

(11) £»(*) - 1. ^ 4 cm

and

(12) £w(x) + /w ^ - 4 cm

which then implies \\fm — fm\\ ^ 5 cm, hence

that is,

(13) \\fm - f\\ - 0 as m -, oo.

Since

(14) max
[0,d

we have for dm = a: = 1

EJ*) - C = /»(*) - F(Bm, ̂  -
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+ fix) - F(A, x)

+ F(A, x] - F(Bm, x) - lm

^ 2 em + T, - lm =i 3 c.

For 0 = x = dm we have by (iv)

m.

g /(O) - min [F(Bm, 0), F(Bm, dm)} + cm - lm.

If the minimum is taken at x = 0 we get

£m(X) -lm^ /(O) - F(Bm, 0) + fm-lm= em.

If the minimum is taken at x — dm we have

Ejx) -lm^ /(O) - fldj

+ fldj - F(A, dm)

+ F(A, dm) - F(B, dj

+ em - lm

^ 3 fm + T, - lm S 4 cro.

This shows the validity of (11); (12) is obtained in a similar way. From
(ii) we have

/(O) - F(Bm, 0) ^ T? as m ̂  oo.

With the assumption /(O) - F(A, 0) ^TJ it follows that

(15) lim F(Bm> 0) * F(A, 0)
-m-»oo

which finishes the proof.
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