DISCONTINUITY OF THE ALTERNATING CHEBYSHEV OPERATOR

ECKARD SCHMIDT* AND C. B. DUNHAM

1. Introduction. Let $[\alpha, \beta]$ be a closed interval and $\| \|$ the Chebyshev norm on $C[\alpha, \beta]$. Consider Chebyshev approximation of $f \in C[\alpha, \beta]$ by an approximating function F such that each approximation $F(A, \cdot)$ has a degree $\rho(A)$ such that $F(A, \cdot)$ is best to f if and only if $f \cdot F(A, \cdot)$ alternates $\rho(A)$ times on $[\alpha, \beta]$. Such approximating functions were first considered in full generality by J. Rice [6, p. 17ff]. The best known examples where ρ is variable are ordinary rational approximation and exponential approximation,

(0)
$$F(A, x) = \sum_{k=1}^{n} a_k \exp(a_{n+k}x).$$

It is known that a best approximation is unique (if it exists). Denote the best approximation to f by Tf, defining the alternating Chebyshev operator. Even when Tf always exists, T may be discontinuous, as discovered by Maehly and Witzgall [5], who studied approximation by ordinary rational functions. The behavior of T for this family has been characterized by H. Werner [7], who showed that T is continuous at fif and only if Tf was of maximum degree or f is an approximant. The first general continuity results were those of Dunham [1], [3, p. 106], who proved that T is continuous at f if Tf is "non-degenerate", which happens if Tf is of maximum degree, or f is an approximant. An example is given in [3, p. 106] to show that discontinuity need not occur if Tf is degenerate and f is not an approximant. Thus it appears that a solution of the problem of continuity of T will require further hypotheses. Dunham also obtained the first general discontinuity result [3, p. 107]. In the present paper, Schmidt obtains another general discontinuity result, using a generalization of the property of *irregularity*, first given by Dunham in [2; 4]. By Theorem 3 of [3], a non-degenerate approximant cannot be (monotone) irregular. It should be noted that E. Schmidt has studied continuity of T in approximation by exponential sums (limits of families of the form (0)), for which neither alternation nor uniqueness hold, in [8].

Copyright © 1979 Rocky Mountain Mathematical Consortium

Received by the editors on February 7, 1977.

^{*}This paper is being published posthumously. Correspondence concerning the paper should be addressed to Charles B. Dunham at the University of Western Ontario.

Following the text of Cheney [9, 80, 165] we define $F(A, \cdot)$ to be a strongly unique best approximation to f if there exists a constant $\gamma > 0$ such that

$$||f - F(B, \cdot)|| \ge ||f - F(A, \cdot)|| + \gamma ||F(B, \cdot) - F(A, \cdot)||.$$

The above inequality implies Lipschitz continuity of T at f [9, 82], which in turn implies continuity of T at f. Hence if T has a discontinuity at f, Tf cannot be strongly unique to f. Thus the theorem following gives sufficient conditions for strong uniqueness to fail.

1. Definitions and Result.

DEFINITION. F is irregular resp. monotone-irregular at A if for any triple (x, y, ϵ) , where $\alpha < x \leq \beta, y \in \mathbb{R}, \epsilon > 0$, there is a parameter B satisfying the following conditions (i) to (iii) resp. (i) to (iv).

(i)
$$\rho(B) \leq \rho(A) + 1$$
,

(ii)
$$|F(B, \alpha) - y| < \epsilon$$
,

(iii) $|F(B, t) - F(A, t)| < \epsilon$ for all $t \ge x$,

(iv)
$$\begin{cases} \max_{\substack{t \in [\alpha, x] \\ t \in [\alpha, x]}} F(B, t) - \max \{F(B, \alpha), F(B, x)\} \leq \epsilon \\ \min_{\substack{t \in [\alpha, x] \\ t \in [\alpha, x]}} F(B, t) - \min \{F(B, \alpha), F(B, x)\} \geq -\epsilon \end{cases}$$

Condition (iv) means that F(B, t) is almost monotone in $[\alpha, x]$ in the sense that putting $\epsilon = 0$ would specify monotonicity. The ordinary rationals and exponential sums of the form (0) are monotone-irregular where they are degenerate.

THEOREM. Let A be best for $f \in C[\alpha, \beta]$, $f \neq F(A, \cdot)$. If F is monotone-irregular at A then T is not continuous at f.

PROOF. For simplicity and without loss of generality we carry out the proof for $\alpha = 0$, $\beta = 1$. Assuming $f(0) - F(A, 0) \neq ||f - F(A, \cdot)|| = : \eta$ we will construct a sequence of functions $f_m \in C[\alpha, \beta]$, such that $||f_m - f|| \rightarrow 0$ and $||Tf_m - Tf|| \not\rightarrow 0$ by having $f_m - Tf_m$ take the value $||f_m - Tf_m||$ at x = 0. An obvious change can be done if $f(0) - F(A, 0) = \eta$.

Let $\epsilon_m > 0$ and $\{\epsilon_m\}$ be a null-sequence. By uniform continuity of f and $F(A, \cdot)$ on [0, 1] there is a $d_m > 0$ such that for arbitrary $x, t \in \epsilon$ [0, 1] we have

(1)
$$|f(\mathbf{x}) - f(t)| \leq \epsilon_m$$

and

$$|F(A, x) - F(A, t)| \leq \epsilon_m$$

whenever $|x - t| \leq d_m$.

Let B_m be a parameter such that conditions (i) to (iv) are satisfied for the triple $(d_m, f(0) - \eta, \epsilon_m)$.

We define

(3)
$$\tilde{f}_m(\mathbf{x}) := \begin{cases} f(0) & \text{for } 0 \leq \mathbf{x} \leq d_m \\ f\left(\frac{\mathbf{x} - d_m}{1 - d_m}\right) & \text{for } d_m \leq \mathbf{x} \leq 1. \end{cases}$$

Let $N := \rho(A)$, $\{x_0, \dots, x_N\}$ be an alternant of $f - F(A, \cdot)$ and

We now change \tilde{f}_m into a function f_m such that $f_m - F(B_m, \cdot)$ has an alternant $\{0, x_0^m, \dots, x_N^m\}$ and norm $l_m := \tilde{f}_m(0) - F(B_m, 0)$. Using (1), (2) and $|\eta - l_m| < \epsilon_m$, which is implied by (ii), we have for those indices *i* where $f(x_i) - F(A, x_i) = + \eta$:

$$\begin{split} |\tilde{f}_m(x_i^m) - F(B_m, x_i^m) - l_m| &\leq |\tilde{f}_m(x_i^m) - f(x_i)| \\ &+ |f(x_i) - F(A, x_i) - l_m| \\ &+ |F(A, x_i) - F(A, x_i^m)| \\ &+ |F(A, x_i^m) - F(B_m, x_i^m)|, \end{split}$$

hence

(5)
$$|\tilde{f}_m(x_i^m) - F(B_m, x_i^m) - l_m| \leq 4 \epsilon_m$$

In the same manner we get for those indices *i* such that $f(x_i) - F(A, x_i) = -\eta$,

(6)
$$|\tilde{f}_m(x_i^m) - F(B_m, x_i^m) + l_m| \leq 4 \epsilon_m.$$

Let $\tilde{E}_m(x) := \tilde{f}_m(x) - F(B_m, x)$ and put (7) $I^+ := \{i \mid 0 \le i \le N, 0 < \tilde{E}_m(x_i^m) < l_m\}$

and

(8)

$$I^{-} := \{i \mid 0 \leq i \leq N, 0 > \tilde{E}_{m}(x_{i}^{m}) > -l_{m}\}.$$

357

For every $i \in I^+$ with $x_i^m \in (0, 1)$ there exists a pair u_i , v_i with $u_i < x_i^m < v_i$ such that

(9)
$$\tilde{E}_m(u_i) = \tilde{E}_m(v_i) = l_m - 5 \epsilon_m$$

and

(10)
$$\tilde{E}_m(x) \ge \tilde{E}_m(u_i)$$
 for $u_i \le x \le v_i$.

We replace now $E_m(x)$, $u_i \leq x \leq v_i$, by a quadratic parabola which interpolates the three points $(u_i, \tilde{E}_m(u_i))$, (t_i, l_m) , $(v_i, \tilde{E}_m(v_i))$ with t_i arbitrary in (u_i, v_i) . A similar construction is done for I^- . Further consideration deserves only x_N^m since $x_0^m > 0$. If $x_N^m = 1$ there exists a u_N either as point of intersection of \tilde{E}_m with the line $l_m - 5 \epsilon_m$, such that $\tilde{E}_m(x)$ $\geq \tilde{E}_m(u_N)$ for $u_N \leq x \leq 1$, or as point of intersection of \tilde{E}_m with the line $-l_m + 5 \epsilon_m$ such that $\tilde{E}_m(x) \leq \tilde{E}_m(u_N)$ for $u_N \leq x \leq 1$. If $x_N^m = 1$ we replace \tilde{E}_m by the straight line connecting $(u_N, \tilde{E}_m(u_N))$ with $(1, l_m)$ resp. $(1, -l_m)$. Furthermore we replace $\tilde{E}_m(x)$ by l_m if $\tilde{E}_m(x) > l_m$ and by $-l_m$ if $\tilde{E}_m(x) < -l_m$.

Considering all these changes in \tilde{E}_m as applied to \tilde{f}_m we have defined a function f_m which is continuous on [0, 1]. Furthermore $\{0, x_0^m, \dots, x_N^m\}$ is an alternant of $f_m - F(B_m, \cdot)$. Since by (i) B_m has a degree not greater than N + 1 it is best for f_m .

We now show that for all $x, 0 \leq x \leq 1$,

(11)
$$\tilde{E}_m(x) - l_m \leq 4 \epsilon_m$$

and

(12)
$$\tilde{E}_m(x) + l_m \geq -4 \epsilon_m$$

which then implies $||f_m - \tilde{f}_m|| \leq 5 \epsilon_m$, hence

$$||f_m - f|| \leq ||f_m - \tilde{f}_m|| + ||f_m - f|| \leq 6 \epsilon_m,$$

that is,

(13)
$$||f_m - f|| \to 0 \text{ as } m \to \infty.$$

Since

(14)
$$\max_{[0,d_m]} \left| \frac{x-d_m}{1-d_m} - x \right| = d_m,$$

we have for $d_m \leq x \leq 1$

$$E_m(\mathbf{x}) - l_m = \tilde{f}_m(\mathbf{x}) - F(B_m, \mathbf{x}) - l_m$$

358

$$= \tilde{f}\left(\begin{array}{c} \frac{x-d_m}{1-d_m}\end{array}\right) - F(B_m, x) - l_m$$

$$= f\left(\begin{array}{c} \frac{s-d_m}{1-d_m}\end{array}\right) - f(x)$$

$$+ f(x) - F(A, x)$$

$$+ F(A, x) - F(B_m, x) - l_m$$

$$\leq 2 \epsilon_m + \eta - l_m \leq 3 \epsilon_m.$$

For $0 \leq x \leq d_m$ we have by (iv)

$$\begin{split} \tilde{E}_m(\mathbf{x}) &- l_m = f(0) - F(B_m, \, \mathbf{x}) - l_m \\ &\leq f(0) - \min_{[0,d_m]} \{F(B_m, \, \mathbf{x})\} - l_m \\ &\leq f(0) - \min \{F(B_m, \, 0), \, F(B_m, \, d_m)\} + \epsilon_m - l_m. \end{split}$$

If the minimum is taken at x = 0 we get

$$\tilde{E}_m(\mathbf{x}) - l_m \leq f(0) - F(B_m, 0) + \epsilon_m - l_m = \epsilon_m.$$

If the minimum is taken at $x = d_m$ we have

$$E_m(\mathbf{x}) - l_m \leq f(0) - f(d_m) + f(d_m) - F(A, d_m) + F(A, d_m) - F(B, d_m) + \epsilon_m - l_m \leq 3 \epsilon_m + \eta - l_m \leq 4 \epsilon_m.$$

This shows the validity of (11); (12) is obtained in a similar way. From (ii) we have

$$f(0) - F(B_m, 0) \rightarrow \eta \text{ as } m \rightarrow \infty.$$

With the assumption $f(0) - F(A, 0) \neq \eta$ it follows that

(15)
$$\lim_{m \to \infty} F(B_m, 0) \neq F(A, 0)$$

which finishes the proof.

References

1. C. Dunham, Continuity of the varisolvent Chebyshev operator, Bull. Amer. Math. Soc. 74 (1968), 606-608.

2. ____, Approximation by alternating families on subsets, Computing 9 (1972), 261-265.

3. ____, Alternating Chebyshev approximation, Trans. Amer. Math. Soc. 178 (1973), 95-109.

4. _____, Nonexistence of best alternating approximations on subsets, Proc. Amer. Math. Soc. 60 (1976), 203–206.

5. H. Maehly and C. Witzgall, Tschebyscheff-Approximation in kleinen Intervallen II, Numer. Math. 2 (1960), 293-307.

6. J. Rice, The approximation of functions, 2, Addison-Wesley, Reading, Mass. 1969.

7. H. Werner, On the rational Tschebyscheff operator, Math. Z. 86 (1964), 317-326.

8. E. Schmidt, Stetigkeitsaussagen bei der Tschebyscheff-Approximation mit Exponentialsummen, Math. Z. 113 (1970), 159–170.

9. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

UNIVERSITY OF CALGARY, CALGARY, ALBERTA UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO