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THE G-TRANSFORM OF GENERALIZED FUNCTIONS
R. S. PATHAK AND J. N. PANDEY

ABSTRACT. The classical G-transform is extended to generalized
functions (distributions). The corresponding inversion formula due to
Kesarwani is shown to be valid in the weak distributional sense. A
structure forumla for a class of generalized functions whose G-trans-
form exists is also given.

1. Introduction. In recent years, quite a variety of integral trans-
forms have been extended to generalized functions. In this paper, we
consider a G-transform, which encompasses a number of integral trans-
forms as special cases, both known as well as unknown. The G-trans-
form with its inversion formula, studied by Kesarwani [8, 9], after a
change of variables

x*Y — X, u2y = Y, v2Y = V and x*(1/2)+1/4"X f(xl/2Y) = F(X),

is represented by

W F/r\ ( Gm'p I xu p' Q }du
V ' Jo p+Q,ra+n V y r d I

^ cm> an '

' J0° GP+Q,m+n { VV <?~av )F(v)dv,

where m, n, p, q are non-negative integers, ap, bQ, cm, dn are complex
numbers and

~m> dn I
is Meijer's G-function [7].

In the present paper, we extend Kesarwani's inversion theorem (cf.
[9], Theorem 1) for the G-transform defined by (1) to generalized func-
tions by interpreting convergence in the weak distributional sense. Our
notations and terminology follow those of [7] and [16]. We shall need
the following formulae (cf. [7], pp. 150-152):

/o\
(2)

/o\(3) p+ltQ+l
_ / l\r- (-1)

q ^ m, a - b = r, r = 0, ± 1, ± 2, • • -,
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Define

(5)

and

(6)

so that by (4)

(7) *>)
and

for each r = 0, 1, 2, • • -. Notice that fc^ac) = fc(x) and h0(ac) = h(x). It
will be assumed throughout that m, n, p, q are non-negative integers
satisfying m — q — n — p > 0 and

afc - c,. ̂  1, 2, 3, • • •, for k - 1, 2, • • -, p, \ = 1,2, • • -, m,

and

dfc - bj * 1, 2, 3, • • -, for fc = 1, 2, • - -, n, / = 1, 2, • • •, 9.

To simplify the analysis, we introduce the following notations. Set

|-a = m - q = n — p,

c, + § d. - ± a,- 26
i i i

)81 = min Re(c-), ; = 1, •-, m,

P2 = min Re( -£*,.), j = I, - • • , n,

a1 = max Re(aj), j = 1, •-, p, a2 = max Re(-fo-), / = ! , - • • , q,

- (1(1 _ a) + A}, ax - !U ,

i (1(1 - a) + A + r}, CTI - 1, - 1 ] ,

r = 0,1, 2, . . - .
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Now, we give asymptotic estimates of k(x), and those of h(x) can be
derived from k(x) by a simple change of parameters.

(i) If p + q ^ ra + n, then

(10) k(x) = 0(x0i), x -* 0 + (cf. [7], p. 145)

(11) h(x) = 0(*H*-0 +.

(ii) If m — q = 1, then as x — » oo,

(12)

2

where A, a, E- are certain constants and a0 = 0 (cf. [7], p. 191 (9)).
Hence we can also write

(13) kjix) = 0(*H x - oo

and

(14) k(x) = O(^), x — oo.

2. An integrodifferential operator. From [7], we know that kernel
k(ax) satisfies the differential equation

(15) [ (- Ifc* JJ (S - Oj + 1) JJ (« - 6, + 1)

m n "l

- Jj (* - c,) JJ (« - d,) J *(«*) - 0

where 5 = x(d/dx) and T — m — q. Using the fact that
(6 + u)/(*) = ^

we can write the above differential equation in the integrodifferential
form

(16)

where the integrodifferential operator A^ is defined by

Ax - x-1 fl ( '̂D-1^-1-^ fl (^'
}-\ j=l

(17)

n
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in which we interpret

• - • dt,
+s \J

3=1

and so on. Note that the operator D~l can be applied successively on
k(az) provided that

(18) Pi > max[Re fl., Re fe,], i = 1, • • -, p, / = 1, • • -, q.

Similarly, it can be seen that the second kernel h(ax) satisfies the in-
tegrodifferential equation

where T is the same as in (15) and the operator Vj. is defined by

3=1 3=1

(20)

The operator Vx can be applied to h(ax) provided that

(21) 02 > max[Re(- a,), Re(- b,)], i = 1, • • •, p, / = 1, • • •, q.

REMARK 1. If for a given k(x) the operator Ax does not involve the
integration operator D~l then the conditions (18) and (21) are treated
as empty. In case p = q = 0 the integration operator is absent and
the aforesaid conditions do not apply. The Hankel transform corre-
sponds to this case.

REMARK 2. The operators A, and vx can be applied on any C°°(H)
function (p any number of times which satisfies the asymptotic orders

), x — 0 +, k = 0, 1, 2, •

where

a > maxdReaJ, |Refc,.|), i = 1, • • -, p, ; = 1,
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Some properties of these operators are described below.

LEMMA 1. Let <p E C°°(R+) with the asymptotic order

<p<*>(x) = 0(r*-*), x -» 0 +, k = 0, 1, 2, - - •,

where a > maxdRea^, |Re fc;.|), i = 1, 2, • • -, p, / = 1, 2, • • •, q. Then
the integration operators (r̂ D"1*-1*0') and (ar^D"1*-"1*0') when acting
on qp in succession are commutative.

PROOF. Assume that

and

/2 = (x-a'D-lx-l

It is easily seen, on using the fact that the differentiation operators

(xl~atDxai and

are commutative, that

and

Hence

so that

/i ~ /2 =

But, /! - /2 = O^) as x -+ 0 -h, where a > maxdReaJ,
1, • • •, p, \ — 1, • • -, q and therefore A = B = 0. Thus, ft = f2.

LEMMA 2. Let cp G C°°(R+) with the asymptotic order

<p<k\x) = 0(*«-*), x — 0 +, k = 0, 1, 2, • • -,

a > maxdReaJ, |Re b,.|), i = 1, 2, • • -, p, ; = 1, 2, • • -, qf. Then
tfie integration operator (x~aiD~lx~l+ai) and the differentiation operator
(xl~diDxd)) when acting on (p in succession are commutative.

PROOF. The proof can be given by a single computation. For details,
see [13, pp. 8-9].
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COROLLARY. The differentiation and integration operators in &x and
Vx when acting on <p G C°%R+) with the asymptotic order

<p<k\x) = ()(*«-*), x — 0 + , k = 0, 1, 2, • • -,

where a > maxdReaJ, |Re fo3-|), i = 1, 2, • • •, p, / = 1, 2, • • -, 9, can
foe switched in any order.

PROOF. Since two differentiation operators are commutative, the re-
sult follows in view of Lemmas 1 and 2.

3. The testing function space Gab. Let / denote the positive half-axis
(0, oo). For a, fo e Rl construct a positive continuous function |a &(ac) on
Rl as follows:

f
- 1

^

x~a 0 < x < I

5 ,
X~b I < X < 00.

Then Ga6 is defined as the space of all infinitely differentiable com-
plex-valued functions <p(x) on 7 such that for each non-negative integer r

(22) Y» - Yoit» - sup |£0t6(*)A^(x)| < oo,
0<J?<oo

where A^ is the integrodifferential operator defined in Section 2. The
operator Ax can be applied to <p(x) provided that for each fc = 0, 1, 2,

(23) <p<*>(x) = 0(x«-*), x -> 0

where a > max^Re^)!, |Re(fo;.)|], i = 1, • • -, p, j = 1, • • -, q. In the
case p = q = 0 condition (23) is treated as empty.

The yr are seminorms on Ga 6 and y0 is a norm. The topology over
Ga6 can be generated by the separating collection of seminorms
{yr}^_0, [16, p. 8] and therefore Ga b is a countably multinormed space.
We may say that a sequence {<?„}*-! where each <pv belongs to Ga6(7)
converges in Ga b(Z) to <p(x) if for each fixed r, yr(<pv — (p) tends to zero
as v — + oo. We say that a sequence [<pv(x)}™=i where each <pv(x) belongs
to Ga 6(Z) is a Cauchy sequence in Gfl 6 if y^qp^ — qpj tends to zero for
any non-negative integer r as /x and j> both tend to infinity independent-
ly of each other. It can be readily seen that Ga b is sequentially com-
plete locally convex, Hausdorff topological vector space. The space
D(/), i.e., the space of infinitely differentiable functions having compact
supports defined over 7(0 < t < oo), is a subspace of Ga b(Z) and the
topology of D(I) [14, Vol. I, p. 65] is stronger than the topology in-
duced on D(I) by Gab(Z) and as such the restriction of any member of
Gaib(I) to D(I) is in D;(I).
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We may compare the space Ga &(7) with other testing function spaces
on which Hankel transformable generalized functions are defined. In-
deed, by suitable change of variables and specialization of parameters it
can be shown that the inversion formulae for the Hankel transform giv-
en by Zemanian [16], Koh and Zemanian [6], Dube and Pandey [1] and
those for the Hardy transforms established by Pathak and Pandey [11,
12] are special cases of the general inversion formula proved in this pa-
per.

LEMMA 3. If m — q — n — p ^ 1, b ^ 17, a ^ /?1? 1 + /^ >
max[Re(ai), Re(b-)], i — 1, • • •, p, j = 1, • • •, q and t > 0, then for
fixed x > 0, k(xt) G Ga ^ where k(x) is defined by (5).

PROOF. The result can be proved by using standard technique. For
details, see [13, p. 11].

4. The G- transform of generalized functions. For/ G G^6, the distri-
butional G-transform can be defined by

(24) %) = <f(*), *(*?,)>

where x, y > 0 and k(x) is the same as defined by (5). From Lemma 3,
we know that for fixed y > 0, k(xy) G Ga &, hence the relation is
meaningful.

THEOREM 1. For y > 0, let F(y) be the G-transform off G G^b (I) as
defined by (24). Assume that a ^ ftl and b ^ X2 where /?x and X2 are
constants defined by (9). Then F(y) is differentiate and

**(</) = ( /(*),^ *(*«/)).

PROOF. The proof is straightforward; for details, see [13, p. 12].

THEOREM 2. Let m — q = n — p > I and let F(y) be the distribu-
tional G-transform of f G G'a >& where b ^ j\, a ^ i / ? 1 > — 1 +
maxtRe^), Re(fo,.)], i = 1, • • •, 'p, j = 1, • • •, q.
Then

0— 0 +

Q^maxta.bJ+s) I/ -» OO,

where s is a non-negative integer.

PROOF. The proof can be given by using the boundedness property of
generalized functions. For details, see [13, p. 14].
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LEMMA 4. Let a ^ /?19 b ^ 77, min(a, fo) + /?2 > — 1 and x, y > 0,
and /^ and /?2 fee constants as defined by (9). Le£ k(x) and h(x) be the
functions as defined by (5) and (6) respectively; then for fixed x > 0

k(ty)h(xy)dy - 0

PROOF. The proof is similar to that of [11, Lemma 4] and is therefore
omitted. For details, see [13, p. 15].

LEMMA 5. Let f G G'a>b under the conditions of Lemma 1. Then, for
fixed x, N > 0 and min(a, fe) + /J2 > - 1,

= f(t\ k(ty)h(xy)dy

PROOF. The proof follows by using Riemann sum technique. For de-
tails see [13, p. 16].

5. Inversion of the distributional G-transform. Let us define

(25) G^tx)- k(ty)h(Xy)dy

where k(x) and h(x) are the same as defined in (5) and (6).

LEMMA 6. Let x, y, N > 0 and m — q = n — p ^ l , /?2> — 1,

Re(a;. - bh) < 1, /' = 1, • • -, p, h = i, - • -, q,

Re(c,. - dh) > - 1, / = 1, • • -, m, h = 1, • • -, n,

— |(1 + a) < min(l -h A - a Re ajy — A + a Re bh),

1=l,-;p,h = l,.-;q.

Define

where

hJx) = L h(u)du =A* ' «xU x '

Then

1 (* < tf)
lim ^Jx, v) = ^

0 (x > y).
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PROOF. We have

ton *,fr y) =

yu
- ~ m>

_ r 10

[7, p. 159 (1)], which is equal to 1 if * < t/ and equal to 0 if x > t/.
For details, see [13, p. 17].

LEMMA 7. Let c and d (d > c) be two positive numbers; then under
the conditions of Lemma 6,

PROOF. In view of Lemma 6, we have

f

= *»(t, d) - *„& c).

If c < d < t, or t < c < d, this tends to 0, and if c < t < d, this
tends to 1, when N — » oo.

LEMMA 8. For 0 < a ^ f ^ fo, 0 < c ^ x ^ d and N > 0, the
function G^t, x) is bounded uniformly for all x, t , N > 0, provided that

ft ^ r, > - 02 - 1, Re(a,. - bfc) < 1

and

— |(1 + a) < min(A - a Re ajt - A + a Re feh),

/ = 1, • • •, p, h = 1, • • -, q.

PROOF. Let us consider at first the case 0 < N ^ 1.

Since for /^ ^ TJ, \z~^k(z)\ is bounded by a positive constant B for all z
> 0, and for c ^ x ^ d and 0 < y ^ 1, (xy)~P2\h(xy)\ is bounded by
another constant D. Therefore,
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)\^B D sup f**0« C*

<BD sup x/32 sup ^ - - <
a^t^b T? + P2 + 1

j being independent of x, t and N. Next, consider the case N > 1.

k(ty)h(Xy)dy + k(ty)h(xy)dy

Since the first integral is bounded by Mj we consider the second. In
view of the asymptotic expansions of k(ty) and h(xy) we can write

k(ty)h(Xy)dy

= Si"

+

i{E' + 0[(xy)-l]}]dy,

where A, A', E, E', a, a' are certain definite constants. Considering
each of the above integrals of the right-hand side separately, it can be
shown that each of them is bounded, the bound being independent of t
and Af provided that

a, + a2< 1, l/a{-f(l + a) + A}

+ a2 < 0, l/o{J<l + a) - A} + ol < 0.

See also [13, p. 20].

COROLLARY. For Q < c ^ a ^ @ ^ d, 0 < a ^ t ^ b and N > 0,

J7 \G^t, x)\ dx < oo.

LEMMA 9. ForQ<28<c<t<b, c > 0 ,

as N — > oo uniformly for c < t < b, provided that al + a2 < 1 and
-(l/2)(a -f 1) < min(- A - aa2, A - aaj.
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PROOF. We have

x)dx = c dx k(ty)h(Xy)dy

r rt-t
dy Jc k(ty)h(Xy)dX

k(ty)h(xy)dx.

Since, by Lemma 7, the first integral on the right-hand side is equal to
zero,

£ ~* G^t, x)dx = - £ dy £~* k(ty)h(Xy)dX.

Now, therefore, we establish the uniform convergence of the integral
on the right. Using the notation of Lemma 6, we have

r * JT *#** = r
Using the asymptotic estimates of k(ty) and h^((t — 8)y) and considering
each of the integrals separately as in Lemma 8, it can be shown that
for 0 < 25 < c < t < b and c > 0, the right-hand side tends to zero
as N — * oo, provided that

cij + <J2 < 1, - |-(a + 1) < - A - aa2,

- l(a + 1) < A - oor

See also [13, pp. 21-22].

LEMMA 10. Let 0 < t < d - 8 and 8 > 0. Then,

as N — * oo uniformly for 0 < t < d — 8 provided that al + a2 < 1
and - (l/2)(a + 1) < min(- A - aa2, A - aoj.

PROOF. Proof is based on the conclusion of Lemma 7 and the tech-
nique is similar to that used in the proof of Lemma 9.

LEMMA 11. Let <p(x) G D(I) and its support be contained in [c, d]
where G < c < d. Let c + 8 ^ t ^ b, S > 0 . Then

G^t, xWAdx - 0
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as N — > oo uniformly for all t G [c + 6, b], provided that al + o2 <
1 and - (l/2)(a + 1) < min(- A — aa2, A - aa^.

PROOF. By Lemma 8, there exists a constant K such that \G^(t, x)\ <
K uniformly for all x G [c, d], f e [c + 5, 6] and AT > 0.

In view of the uniform continuity of <p(z) in c ^ x ^ d, for a given
arbitrary c > 0, we can find a continuous function x(*) such that

The interval (c, t — 8) may be divided into sub-intervals (c, xj, (xl9 x2),
' ' '> (x

n-i> t — 8)9 so chosen that the fluctuation of x(*) m each of
these sub-intervals is less than c/K(fe — 5 — c). Let i//(*) be a function
which, in the interior of each part (xr_l9 xr), where r — 1, 2, • • -, n,
has the constant value cr — x(x

r + ^r-i)/^- ^* tne extremities of the
parts, we take \f/(x) to have the value zero. Thus, i//(x) has the finite set
of values c^ c2, • • • , cn, 0.

Since |x(*) — i//(ac)| < c/K(6 — d — c) everywhere except at the end
points of n sub-intervals of (c, t — 8), we have

and therefore

I \<p(x) — $(x)\dx < —
^ K

Now,

rt-fi
t, x)dx

+

, x) dx

n

I
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Since t lies outside the interval [xr_ly xr] for each r = 1, 2, 3, • • •, in
view of Lemma 10,

C*x~

-*0

independently of t for all t E [c + 8, b] as N —* oo. A positive num-
ber N€ (not depending on x) can be so chosen that

<- , f o r r = 1,2, . - . ,

and for all values of t E [c + 8, b]. Thus, | J t
(r

8q)(x)GN(t, x)dx\ < 3 c,
provided N ^ ATC, for all values of t e [c + 5, b].

LEMMA 12. Let cp(x) €=£)(/) and its support be contained in [c, d],
u;fo?re 0 < c < d. Let 0 < f < d - 8, c > 2 6 > 0. TTien

*W*)dx - 0

as N —> oo uniformly for all t E (0, d — 5) provided that ax + a2 <
1 and (1/2) (a + 1) < min(- A - aa2, A - aa^.

PROOF. Assume at first that <p(z) is an infinitely differentiable real
valued function defined on [t + 8, d\, 0 < t < d — 3. Then <p(x) is a
function of bounded variation on [t + 5, d] [17, p. 118, Ex. b]. Con-
sequently, there exist monotonically increasing functions p(x) and q(x)
on [f + 5, d], with p(f + 8) = (/(d) = 0 such that [17, p. 120, Theo-
rem 6.27]

<p(x) = p(t + 8) 4- p(x) — g(*) (f + 8 = ac = d).

Hence

AZ

8)

The result now can be proved by using mean value theorem of integral
calculus followed by a variation of technique used in the proof of Lem-
mas 9 and 10. For further details, see [13, pp. 25-26].

The proof for infinitely differentiable complex valued function <p(z)
can be given by separating it into its real and imaginary parts.
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LEMMA 13. Suppose that <p(x) G D(7) and its support is contained in
[c, d\. Let the conditions of Lemmas 6 and 8 be satisfied. Then, for /3l

^ j\, b > 7] > - (32 - 1, and a ^ 0,

in Ga & as N —^ oo.

PROOF. Using the properties of the operators A^ and vx, we have

; JT" <p(*M* J7

= &f) <p(x)dx k(ty)vlh(Xy)dy

(integration by parts) where <pr(ac) = A^<p(x).
Therefore, in view of Lemma 7, we need only show that / — > 0 uni-

formly for all t > 0 as N — * oo, where 7 is the expression defined be-
low:

Now, using the standard technique as used in [11], it can be shown that
/ — * 0 as N — > oo uniformly for all t > 0. For further details, see [13,
pp. 27-^32].

THEOREM 3. Assumptions:

(i) a/2 = m — q-n — p^\9

(ii) A - He ( 2 c, + 2 ^ - 2 fl, - 2 fo, ) ,

(iii) Re(a, - foj < 1, / = 1, • • -, p, h = 1, • • -, q,

(iv) Re(S- - dh) > - 1, / = 1, • • -, m, h = 1, • • -, n,

(v) Re c, g max[l/a{(l/2)(l - a) + A}, Re(fli - 1)],
/ = 1, • • - , m, i = 1, • • • , p,

(vi) - (1/2)(1 + a) < min(A - a Re a-, - A -h a Re bh\
/ = 1, • • - , p, fe = 1, • • - , qf,
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(vii) min Re(cfc) > max[Re aiy Re 6J,
h = 1, • • •, m, i = 1, • • -, p, / = 1, - • -, q,

min Re(- dh) > max[Re(- a.), Re (- fef.)],
h = 1, • • - , n, i = 1, • • - , p, / = 1, • • - , q.

The condition (vii) is treated as empty in case p = q = 0.

(viii) a = min(Re cft, 0), h = 1, • • -, m,

b > max[l/a{(l/2)(l - a) -h A),
Re(a;. - ! ) ]>-!- min Re(- dh\
j = 1, • • -, p, h = 1, • • -, n,

min(a, fo) > — min Re(— dft) — 1,
min Re(— dh) > — 1, h = 1, • • •, n,

(ix) F(y) is the distributional G-transform offE: Ga, b defined by

Conclusion: For each <p(t) G D(7),

PROOF. Assume that the support of <p(x) is contained in the interval
[c, d\, d > c > 0. The result (26) will be proved by justifying the steps
in the following manipulations.

(27) F(y)h(Xy)dy, </>(*)

= Jc" JT

(28) - <p(x)dx <f(t), k(ty))h(Xy)dy

(29) = I" /(*)' JT

(30)

(31) = /(f), jTd G^^, x)cp(x)^

(32)
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The equality of expressions (27) and (28) is obvious in view of Theo-
rems 1 and 2. That expression (28) equals (29) follows from Lemma 5.
The fact that expression (29) equals (30) is obvious. By following a tech-
nique very similar to that used in proving Lemma 5, one can show the
equality of (30) and (31). Lastly, expression (31) goes to that in (32) as
N —» oo, by Lemma 13. This completes the proof of the theorem.

An immediate consequence of the above inversion theorem is the fol-
lowing uniqueness theorem.

THEOREM 4. Let the distributional G-transforms of f, g G G'atb(I) be
F(y) and G(y) respectively and assume that F(y) = G(y) for all y > 0.
Then f = g in the sense of equality over D(I).

6. Some special cases of the inversion Theorem 3. By specializing the
parameters in the definition of the kernel k(x), a number of known as
well as unknown inversion theorems can be deduced as corollaries to
Theorem 3. A few of them are cited below. In all of the following
cases, the definition of the space Ga b is to be modified according to the
specialization of the orders and parameters.

Taking p — q, m — n, aj + bj = 0 for / = 1, • • •, p and ch + dh

— 0 for h = 1, • • •, m in Theorem 3, we arrive at the following ex-
tension of the inversion theorem established by Fox [3] for the symme-
tric G-transform.

COROLLARY 1. Assumptions:

(i) a/2 ^ m - p ^ 1,

(ii) Re(a,.) < 1/2, / = 1, - - -, p, Re(cJ > - 1/2, h = 1, • • •, m,

Re^) ^ max[l/2a(l - a), Re(a;- - 1)],
ft = 1, • • -, ro, / = 1, • • -, p,

(iii) min Re ch > max|Re a;|, ft = 1, • • •, m, j = 1, • • •, p.
Condition (iii) is treated as empty if p = 0.

(iv) a ^ min(Re ch, 0), ft = 1, • • •, m,

b > max[(l/2)(l/a - 1), Re(a,. - 1)] > - 1 - min Re ch,
j = 1, • • •, p, ft = 1, • • •, m,

min(a, b) > — Re ch — 1, ft = 1, • • -, m,

(v) F(y) is the distributional G-transform of f G G'ab defined by

I <V - «
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Conclusion: For each <p(f) in D(I), we have

lim ( £ %)G-m ( xy

An interesting special case of this corollary is a generalization of
Hankel transform to distributions, which has been studied by Zemanian
[16], Koh and Zemanian [6], Dube and Pandey [1] and others. This fol-
lows on setting m = 1, p — 0 and cl = v/2. In fact, the inversion the-
orems established by these authors can be deduced from the present
work by a suitable change of variables.

COROLLARY 2. Let f e G^b where a ^ min((l/2)Re v, 0), b > -
1/4, min(a, b) > - (l/2)Re V - 1, Re v ^ - (1/2) and let %) fee
the distributional Hankel transform of f G G'ab defined by F(y) —
(/•(x),/1,(2(xt/)1/2) >. Then, for each <p(t) G D(J),

lirn ( J
-

Setting m = 2, p = 0, qf = 1, n = 1, fcx = — y/2 — a, cx = —
j^/2, c2 = p/2 and aj = — v/2 — a in Theorem 3, we arrive at an ex-
tension of the Hardy transform [4] which has been given earlier by
Pathak and Pandey [11].

COROLLARY 3. Let f G G^ where a ^ -(l/2)|Re *>|, b > - (1/4),
min(a, b) > - (l/4)Re(*> + '2a) - 1, Re(a) > - 1, Re(^ -f a) > -
1, - 1/2 ^ Re j/ ^ 1/2, |Re(v + 2a)| < 3/2 and let F(y) be the distri-
butional Hardy transform of f G G'a >b defined by

F(y) = (f(4

C,(x) =

ITien, /or each <p(t) e D(/),

lim

= < /(*),



324 R. S. PATHAK AND J. N. PANDEY

Setting ro = p = 1, q = 0, n = 2, flj = v/2 + a, q = 7/2 + a,
dl = p/2 and d2 = — p/2 in Theorem 3 leads to the following exten-
sion of the Hardy transform which has also been studied by Pathak and
Pandey [12].

COROLLARY 4. Let f £G'ab where a ^ min ((l/2)Re(p + 2a), 0), b >
max[- 1/4, (l/2)Re(7 + 2a) - 1], min(a, b) > (l/2)|Re v\ - 1, Re(a)
> 0, Re(v + a) > 0, - 1/2 ̂  Re(j> + 2a) < 3/2, - 3/2 ^ Re v ^
3/2, and Ze£ F(y) be the distributional Hardy transform of f defined by

Tfcen, for each «p(t) G D(Z),

)dy, f(X)

By taking a = 1/2 in Corollaries 3 and 4, we can obtain inversion
formulae for the distributional Yy — and Hv — transforms respectively.

COROLLARY 5. Let f GG^6 where a ^ - (l/2)|Re v\9 b > - 1/4,
min(a, b) > - (1/2) Re v - 3/2, - 1/2 ^ Re y ̂  1/2, and let F(y)
be the distributional Y-transform off G G^ & defined by

F(y) = (f(x

TTien, /or each «p(f) G D(/).

COROLLARY 6. Let / G G^ 6 where a ^ min ((l/2)Re(»- + 1), 0), b >
max[- 1/4, (l/2)Re(j; - l)j, min(a, b) > (l/2)|Re p| - 1, - 1/2 g
Re P ^ 1/2, and let F(y) be the distributional H-transform off defined
by

F(y) = (f(4

Then, for each <p(t) e D(7),
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7. In the following theorem, a structure formula for the restriction of
an element / G C£f6(I) to D(P) is given.

THEOREM 5. Let f be an arbitrary element of G'a b(P). Then there exist
bounded measurable functions g^x) defined for x > 0 for i = 0, 1, 2,
• • • , r where r is some non-negative integer depending upon f such that

for arbitrary qp E D(I) we have

where V x is the integrodifferential operator defined by (20).

PROOF. The proof can be given by using standard technique [1]. For
details, see [13, p. 39].
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