CAUCHY TRANSFORMS OF MEASURES, AND A CHARACTERIZATION OF SMOOTH PEAK INTERPOLATION SETS FOR THE BALL ALGEBRA

ALEXANDER NAGEL*
For $z=\left(z_{1}, \cdots, z_{n}\right)$ and $w=\left(w_{1}, \cdots, \quad w_{n}\right) \in \mathbf{C}^{n}$, let $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$, and let $|z|=\langle z, z\rangle^{1 / 2}$. Let $B_{n}=\left\{z \in \mathbf{C}^{n}| | z \mid<1\right\}$ denote the unit ball in \mathbf{C}^{n}, and let $\partial B_{n}=\left\{z \in \mathbf{C}^{n}| | z \mid=1\right\}$ denote its boundary. If $F(z)$ is holomorphic on B_{n}, we say that F belongs to $H^{p}\left(B_{n}\right), 0<p<\infty$, if

$$
\sup _{r<1} \int_{\partial B_{n}}|F(r \zeta)|^{p} d \sigma(\zeta)<\infty
$$

where $d \sigma$ is rotation invariant Lebesgue measure on ∂B_{n}. We say that $F \in H^{\infty}\left(B_{n}\right)$ if $\sup _{z \in B_{n}}|F(z)|<\infty$. If $F \in H^{p}\left(B_{n}\right)$ for $0<p \leqq \infty$, then F has radial limits $F^{*}(\zeta)$ almost everywhere on ∂B_{n} with respect to $d \sigma$. Moreover, if $1 \leqq p<\infty, F(r \zeta)$ converges in L^{p} to $F^{*}(\zeta)$. (For a discussion of H^{p} theory in B_{n}, see for example Stein [6] or Stout [7].)

Let $d \mu$ be a finite Borel measure on ∂B_{n}. We shall denote by $C(\mu)$ the Cauchy transform of $d \mu$ which is given by

$$
C(\mu)(z)=\int_{\partial B_{n}}[1-\langle z, \zeta\rangle]^{-n} d \mu(\zeta)
$$

$C(\mu)(z)$ is holomorphic on B_{n}, but in general it need not belong to $H^{1}\left(B_{n}\right)$, for example if $d \mu$ is a point mass.

The object of this paper is twofold. First we study $C(\mu)$ when $d \mu$ is "Lebesgue measure" on a smooth curve $\gamma \subset \partial B_{n}$. We show that if the tangent to the curve γ does not lie in the maximal complex subspace of the real tangent space to ∂B_{n} at each point, then $C(\mu)(z)$ does belong to $H^{1}\left(B_{n}\right)$, and in fact has better behavior depending on the smoothness of γ. (Note that when $n>1$, it follows that $C(\mu)$ may belong to $H^{1}\left(B_{n}\right)$ even if $d \mu$ is singular with respect to the surface measure $d \sigma$ on ∂B_{n}.) Precise statements are given in Theorem 1.

A second object of this paper is to apply Theorem 1 to obtain a necessary condition for a compact set $K \subset \partial B_{n}$ to be a peak interpolation set for the ball algebra $A\left(B_{n}\right)$ of functions continuous on \bar{B}_{n} and holomorphic on B_{n}. (For the definition of peak interpolation set, see section

[^0]2). This condition is simply that the intersection of K with every curve γ satisfying the conditions of Theorem 1 must have zero Lebesgue measure on γ (see Theorem 2). In particular, this, together with the results of [5], leads to a complete characterization of smooth real submanifolds $M \subset \partial B_{n}$ such that every compact set $K \subset M$ is a peak interpolation set for $A\left(B_{n}\right)$. (See Theorem 3).

Theorem 3 has been announced by Henkin and Tumanov for the more general case of strictly pseudoconvex domains in \mathbf{C}^{n} (see [3], Chapter VI, § 2, Theorem 15) but no proofs were given there. In a recent Russian preprint [4], Henkin and Tumanov give proofs of generalizations of Theorems 2 and 3. However, their methods are different from those in this paper, and they do not obtain Theorem 1.

1. Cauchy Transforms of Measures. Let $\phi:[0,1] \rightarrow \partial B_{n}$ be a C^{k} curve, $k=2, \cdots, \infty$. Suppose that there exists $\delta>0$ so that

$$
\begin{equation*}
\left|\left\langle\phi(t), \phi^{\prime}(t)\right\rangle\right| \geqq \delta, \quad t \in[0,1] . \tag{1}
\end{equation*}
$$

This analytic condition on ϕ is equivalent to a geometric condition, which we now describe. If $\zeta \in \partial B_{n}$, let T_{ζ} be a real tangent space to ∂B_{n} at ζ, and let $P_{\zeta}=T_{\zeta} \cap i T_{\zeta}$ be the maximal complex subspace of T_{ζ}. If L_{ζ} denotes the one-dimensional real subspace of T_{ζ} generated by $i \zeta$, then

$$
T_{\zeta}=P_{\zeta} \oplus L_{\zeta}
$$

and this decomposition is orthogonal relative to the usual real inner product on \mathbf{C}^{n} given by $(z, w)=\operatorname{Re}\langle z, w\rangle$. It is now clear that the tangent to the curve $\phi(t)$ lies in $P_{\phi(t)}$ if and only if $\left\langle\phi(t) \phi^{\prime}(t)\right\rangle=0$. Hence (by continuity) condition (1) is equivalent to

$$
\phi^{\prime}(t) \notin P_{\phi(t)} \quad \text { for all } t \in[0,1] .
$$

Next, let $\psi \in C_{0}^{\infty}[0,1]$, the space of real valued infinitely differentiable functions with compact support on (0,1), and define a measure $d \mu$ on ∂B_{n} by the equation:

$$
\int f d \mu=\int_{0}^{1} f(\phi(t)) \psi(t) d t \quad \text { for } f \in C(\partial B) .
$$

Then $d \mu$ is a finite Borel measure on ∂B_{n} and its Cauchy transform is given by

$$
\begin{equation*}
C(\mu)(z)=\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-n} \psi(t) d t \tag{2}
\end{equation*}
$$

Theorem 1. Let $\phi:[0,1] \rightarrow \partial B_{n}$ be a curve of class $C^{k}(k \geqq 2)$ satisfying (1). Let $C(\mu)$ be defined by (2). Let D^{α} be any derivative in z_{1}, \cdots, z_{n} of total order $|\alpha|$, with $|\alpha|<k-1$. Then
(a) if $|\alpha|+1<k<|\alpha|+1+n$, then
$D^{\alpha} C(\mu) \in H^{p}\left(B_{n}\right)$ for

$$
p<\frac{n}{n-k+|\alpha|+1}
$$

(b) if $k=|\alpha|+1+n$, there exists $K>0$ so that

$$
\left|D^{\alpha} C(\mu)(z)\right| \leqq K[|\log \operatorname{dist}(z, \phi[0,1])|+1]
$$

(c) if $k>|\alpha|+1+n$, the $D^{\alpha} C(\mu) \in H^{\infty}\left(B_{n}\right)$.

Proof. For each $t \in[0,1]$ there are neighborhoods U_{t} of t in $[0,1]$ and V_{t} of $\phi(t)$ in C^{n} so that if $s \in U_{t}$ and $z \in \bar{B}_{n} \cap V_{t}$ then $\phi(s) \in V_{t}$ and $\left|\left\langle z, \phi^{\prime}(s)\right\rangle\right| \geqq \delta / 2$. Let U_{1}, \cdots, U_{p} be a finite subcover of $\left\{U_{t}\right\}$, let V_{1}, \cdots, V_{p} be the corresponding open sets in C^{n}, and let $\left\{\theta_{1}, \cdots, \theta_{p}\right\}$ be a C^{∞} partition of unity subordinate to $\left\{U_{1}, \cdots, U_{p}\right\}$. Then

$$
\begin{aligned}
C(\mu)(z) & =\sum_{j=1}^{p} \int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-n} \theta_{j}(t) \psi(t) d t \\
& =\sum_{j=1}^{p} C_{j}(z)
\end{aligned}
$$

Each C_{j} is holomorphic on $\bar{B}_{n} \backslash V_{j}$, and hence it suffices to show that each C_{j} has the required properties in V_{j}.

If D^{α} is any derivative in z of total order $|\alpha|$, then we have

$$
D^{\alpha} C_{j}(z)=\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-n-|\alpha|} \Psi_{\alpha}(z, t) \theta_{j}(t) \psi(t) d t
$$

where $\Psi_{\alpha}: \mathbf{C}^{n} \times[0,1] \rightarrow \mathbf{C}$ is holomorphic in z and is of class C^{k} in t. We wish to integrate by parts to reduce the negative exponent of $[1-\langle z, \phi(t)\rangle]$.

In general, if $\Phi(z, t)$ is holomorphic in z, and is of class C^{ℓ} with compact support in U_{j} in t, then for $z \in V_{j}$, we have $\left\langle z, \phi^{\prime}(t)\right\rangle \neq 0$ and so if $m>1$

$$
\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-m} \Phi(z, t) d t
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{d}{d t}\left[[1-\langle z, \phi(t)\rangle]^{-m+1}\right] \\
& \quad(m-1)^{-1}\left\langle z, \phi^{\prime}(t)\right\rangle^{-1} \Phi(z, t) d t \\
& =\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-m+1} \tilde{\Phi}(z, t) d t,
\end{aligned}
$$

where $\tilde{\Phi}(z, t)$ is holomorphic in z and of class $C^{\prime \prime}$ with compact support in U_{j} in t, where

$$
\ell^{\prime} \geqq \inf (\ell-1, k-2)
$$

Hence for $z \in V_{j}$ we have for $r \leqq k-1$

$$
\begin{equation*}
D^{\alpha} C_{j}(z)=\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-n-|\alpha|+r} \Phi_{\alpha, r}(z, t) d t \tag{3}
\end{equation*}
$$

where $\Phi_{\alpha, r}(z, t)$ is holomorphic in z and is of class C^{k-r-1} in t with compact support in U_{j}.

For each fixed t and $m>0$, the function $z \rightarrow[1-\langle z, \phi(t)\rangle]^{-m}$ belongs to $H^{p}\left(B_{n}\right)$ if and only if $p<n / m$. Hence by Stout [7], Corollary III.3, equation (3) shows that $D^{\alpha} C_{j}$ belongs to $H^{p}\left(B_{n}\right)$ if $-n-|\alpha|+$ $r<0, \quad r-|\alpha|>0$, and $p<n /(n+|\alpha|-r)$. In particular, if $|\alpha|+1<k<n+|\alpha|+1$, we can choose $r=k-1$ and we obtain $C_{j}(z) \in H^{p}\left(B_{n}\right)$ if $p<n /(n-k+|\alpha|+1)$. This proves part (a) of Theorem 1.

If $k \geqq n+|\alpha|+1$, we use (3) to write

$$
D^{\alpha} C_{j}(z)=\int_{0}^{1}[1-\langle z, \phi(t)\rangle]^{-1} \psi_{\alpha, n+|\alpha|-1}(z, t) d t
$$

where $\psi_{\alpha, n+|\alpha|-1}(z, t)$ is of class $C^{k-n-|\alpha|}$ in t. Integrating by parts once again we get

$$
\begin{equation*}
D^{\alpha} C_{j}(z)=\int_{0}^{1} \log [1-\langle z, \phi(t)\rangle] \psi_{\alpha, n+|\alpha|}(z, t) d t \tag{4}
\end{equation*}
$$

and hence $\left|D^{\alpha} C_{j}(z)\right| \leqq C_{1}+C_{2}|\log \operatorname{dist}(z, \phi[0,1])|$. This gives part (b).
Finally, if $k>n+|\alpha|+1$ we can integrate by parts again in (4) to obtain

$$
\begin{aligned}
D^{\alpha} C_{j}(z)= & \int_{0}^{1}[[1-\langle z, \phi(t)\rangle] \log (1-\langle z, \phi(t)\rangle) \\
& -[1-\langle z, \phi(t)\rangle]] \psi_{\alpha, n+|\alpha|+1}(z, t) d t
\end{aligned}
$$

where $\psi_{\alpha, n+|\alpha|+1}(z, t)$ is continuous in t. This shows that $D^{\alpha} C_{j}(z)$ is uniformly bounded, and gives part (c) of Theorem 1, and completes the proof.

We isolate certain consequences for special notice:
Corollary 1. If $k \geqq 2, C(\mu) \in H^{1}\left(B_{n}\right)$.
Corollary 2. If $k=\infty, C(\mu) \in A^{\infty}\left(B_{n}\right)$, the algebra of functions which are C^{∞} on \bar{B} and holomorphic on B_{n}.
2. Peak Interpolation Sets. Let $K \subset \subset \partial B_{n}$ be a compact set. Then the following conditions are known to be equivalent:
(a) $|\mu|(K)=0$ for all $\mu \in A^{\perp}\left(B_{n}\right)$, the space of Borel measures on B_{n} which annihilate $A\left(B_{n}\right)$.
(b) If $f \in C(K)$, there exists $F \in A\left(B_{n}\right)$ with $F(z)=f(z)$ for $z \in K$, and $|F(z)|<\|f\|_{K}$ for $z \in \bar{B}_{n} \backslash K$.
(c) There exists $F \in A\left(B_{n}\right)$ with $F(z)=1$ for $z \in K$ and $|F(z)|<1$ for $z \in \bar{B}_{n} \backslash K$.
(d) There exists $F \in A\left(B_{n}\right)$ with $F(z)=0$ for $z \in K$ and $|F(t)| \neq 0$ for $z \in \bar{B}_{n} \backslash K$.

The equivalence of (a) and (b) is a theorem of Bishop [1]. (b) clearly implies (c), and (c) clearly implies (d). That (d) implies (a) is a special case of a theorem of Val'skii [8].

Theorem 2. Let $K \subset \partial B_{n}$ be compact. In order for K to satisfy conditions (a)-(d) it is necessary that for every C^{2} curve $\phi:[0,1] \rightarrow \partial B_{n}$ satisfying (1) or $\left(1^{\prime}\right), \phi^{-1}(K)$ have Lebesgue measure zero in $[0,1]$.

Proof. Let $\phi:[0,1] \rightarrow \partial B_{n}$ satisfy (1), let $\psi \in C_{0} \infty[0,1]$, and define a measure $d \mu$ on ∂B_{n} by

$$
\int f d \mu=\int_{0}^{1} f(\phi(t)) \psi(t) d t
$$

By Corollary 1, $C(\mu) \in H^{1}\left(B_{n}\right)$ where $C(\mu)$ is the Cauchy transform of $d \mu$ as defined by (2). Let $F \in A\left(B_{n}\right)$. Then

$$
\begin{aligned}
\int F d \mu & =\int_{0}^{1} F(\phi(t)) \psi(t) d t \\
& =\lim _{r \rightarrow 1} \int_{0}^{1} F(r \phi(t)) \psi(t) d t
\end{aligned}
$$

Since $r \phi(t) \in B_{n}$, we have by the Cauchy integral formula for B_{n}

$$
F(r \phi(t))=\int_{\partial B_{n}} F(\zeta)[1-\langle r \phi(t), \zeta\rangle]^{-n} d \sigma(\zeta) .
$$

Thus using Fubini's theorem, we obtain

$$
\begin{aligned}
\int F d \mu & =\lim _{r \rightarrow 1} \int_{\partial B_{n}} F(\zeta)\left[\int_{0}^{1}[1-\langle r \phi(t), \zeta\rangle]^{-n} \psi(t) d t\right] d \sigma(\zeta) \\
& =\lim _{r \rightarrow 1} \int_{\partial B_{n}} F(\zeta) \overline{C(\mu)(r \zeta)} d \sigma(\zeta)
\end{aligned}
$$

Since $\left.C(\mu) \in H^{1} B_{n}\right)$ we can put the limit under the integral sign and obtain

$$
\int F d \mu-\int F(\zeta) \overline{C(\mu)^{*}(\zeta)} d \sigma(\zeta)=0
$$

It follows that if we let $d \nu=d \mu-\overline{C(\mu)^{*}} d \sigma$ then $d \nu \in A\left(B_{n}\right)^{\perp}$.
Now if K is a set satisfying (a)-(d), so is $K \cap \phi[0,1]$. But $K \cap \phi[0,1]$ has zero measure with respect to $d \sigma$. Since we must have $|\nu|(K \cap \phi[0,1])=0$, it follows that measure $\left(\phi^{-1}(K)\right)=0$.

Recall that a measure $d \mu$ on ∂B_{n} is called an A-measure if for every uniformly bounded sequence $\left\{F_{n}\right\}$ in $A\left(B_{n}\right)$ with $\lim _{n \rightarrow \infty} F_{n}(z)=0$ for all $z \in B_{n}$, it follows that $\int F_{n} d \mu \rightarrow 0$. (see Henkin [2]).

Corollary 3. If $\phi:[0,1] \rightarrow \partial B_{n}$ is a curve satisfying (1), if $\psi \in C_{0}^{\infty}[0,1]$, and if $d \mu$ is defined by $\int f d \mu=\int_{0}^{1} f(\phi(t)) \psi(t) d t$, then $d \mu$ is an A-measure.

Proof. By Theorem 2, $\quad \int f d \mu=\int f(\zeta) \overline{C(\mu)^{*}(\zeta)} d \sigma(\zeta)+\int f d \nu$ where $d \nu \in A\left(B_{n}\right)^{\perp}$. $d \nu$ is clearly an A-measure, and it follows from Henkin [2], that so is $C(\mu)(\zeta) d \sigma(\zeta)$.

Now let $M \subset \partial B_{n}$ be a not necessarily closed real submanifold of class C^{3}. For $\rho \in M$ we let $T_{\rho} M$ be the real tangent space to M at ρ.

Theorem 3. Let M be a real submanifold at ∂B_{n} of class C^{3}. Then every compact set $K \subset M$ satisfies $(\mathrm{a})-(\mathrm{d})$ if and only if $T_{\rho} M \subset P_{\rho}$ for all $\rho \in M$. (Recall that P_{ρ} is the maximal complex subspace of $T_{\rho}\left(\partial B_{n}\right)$.)

Proof. A proof of the sufficiency appears in [5]. As indicated in the introduction, this was also stated by Henkin and Tumanov in [3] and a proof appears in [4]. The necessity follows from Theorem 2, since if $T_{\rho} M \nleftarrow P_{\rho}$ for some ρ, we can clearly find a curve $\phi:[0,1] \rightarrow M$ which satisfies (1). Hence $\phi[0,1]$ does not satisfy (a)-(d), and hence neither does M.

References

1. E. Bishop, A General Rudin-Carleson Theorem, Proc. Am. Math. Soc. 13 (1962), 140-143.
2. G. M. Henkin, Integral Representations of functions holomorphic in strictly pseudoconvex domains, and some applications, Math. SB. 78 (1969), 611-632 (English Translation: Math. USSR-SB. 7 (1969) 597-616).
3. G. M. Henkin and E. M. Čirka, "Boundary Behavior of Holomorphic Functions of Several Complex Variables", Contemporary Problems in Mathematics Vol. 4, Moscow, 1975. (English Translation: J. Soviet Math. 5 (1976) 612-687.)
4. G. M. Henkin and A. E. Tumanov, Russian preprint.
5. A. Nagel, Smooth Zero Sets and Interpolation Sets for Some Algebras of Holomorphic Functions on Strictly Pseudoconvex Domains, Duke Math. J. 43 (1976), 323-348.
6. E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, 1972.
7. E. L. Stout, H^{p}-functions on strictly pseudoconvex domains, Am. J. Math. 98 (1976) 821-852.
8. R. E. Val'skiǐ, On measures orthogonal to analytic functions in \mathbf{C}^{n}, Dokl. Akad. Nauk. SSSR 198 (1971) (English Translation: Soviet Math. Dokl. 12 (1971), 808-812).

Department of Mathematics, Princeton University, Princeton, NJ 08540
Department of Mathematics, University of Wisconsin, Madisen, WI 53706

[^0]: Received by the editors on February 8, 1977, and in revised form on May 4, 1977.
 *Research supported in part by an NSF grant at the University of Wisconsin.
 Copyright © 1979 Rocky Mountain Mathematical Consortium

