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GENERALIZED BAZILEVlC FUNCTIONS

DOUGLAS M. CAMPBELL AND KENT PEARCE

ABSTRACT. This paper defines the generalized Bazilevic functions
via the differential equation

4- 49

where a+ i/3 G C — {negative integers} and g(z), h(z) are restricted
to various function classes. The geometry of the solutions, their rep-
resentation, the relation of their univalence to the domain of analyt-
icity, and the motivation for considering the planar projection of the
various representations of a generalized Bazilevic function are con-
sidered. The extremal problems max|fl2|, max|fl3| are solved. An ex-
plicit bound on the radius of Bazilevicness for S is obtained. A
bounded univalent non-Bazilevic function which is a generalized
Bazilevic function is constructed. Thomas' result that bounded B(a,
0) functions satisfy an — O(n~l) is generalized to classes of nonuni-
valent functions. The paper closes with a conjecture on the analytic
structure of a bounded univalent funtion whose coefficients satisfy
an = Ofn-1).

0. Introduction. Loewner's method [13] introduced in 1923 and de-
veloped by Kufarev in 1943 [8] was to imbed an image domain in a
continuously increasing family of domains and then describe this family
by a differential equation. Using the Loewner-Kufarev differential equa-
tion Bazilevic [2] in 1955 was able to prove that the class of functions

is analytic and univalent in \z\ < 1 where g(z) is a starlike univalent
function, g(0) = 0, h(z) is analytic and satisfies Re(eixh(z)) > 0 in \z\ < 1
for some real X, a > 0, and ft is a real number. Particular choices of a,
/?, g and h yield the convex, starlike, close-to-convex and spiral-like
functions.
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Zamorski [21], found in 1962 the general form of the solution to any
extremal problem for the ordinary Bazilevic functions and proved that
|aw| ^ n for a = 1, 1/2, 1/3, • • -, p = 0. In 1965 Pommerenke [15]
proved the univalence of (1) using subordination chains. In 1968
Thomas [20] asked if it was possible to give a geometric character-
ization of the Bazilevic functions when /? = 0. He then proved that the
Taylor coefficients of bounded Bazilevic functions with ft — 0 satisfy
an — 0(1 /n) which extended Clunie and Pommerenke's result [5] for
bounded close-to-convex functions.

In 1971 Sheil-Small [19] gave an intrinsic characterization for the or-
dinary Bazilevic functions along the lines of Kaplan's characterization
of the close-to-convex functions [6]. He proved each ordinary Bazilevic
function f(z) is a solution of the differential equation

-

(g and h as before) and extended the class to include the case a = 0.
He gave the first example (albeit non-constructive) of a non-Bazilevic
univalent function. Finally he showed the set of a + ifi which could be
used to represent a fixed Bazilevic function in (2) is a closed convex set
in the right half plane.

In 1972 Prokhorov [17] characterized Bazilevic functions of type (a,
0) in terms of the geometry of the complement of f(D) as Lewandowski
[9, 10] had done for the close-to-convex functions. In 1974 Avhadiev
and Aksent'ev [1] completed this program by characterizing Bazilevic
functions of type (a, /?) in terms of the complement of f(D). By increas-
ing the restrictions on the function h(z) which appears in (1) they were
able to let a be a real number > — 1/2.

In this paper we reverse Loewner's procedure. We define the gener-
alized Bazilevic functions by means of a differential equation. We ob-
tain a generalization by increasing the classes from which g and h are
drawn in (2) and by letting a + ift be any point in the entire complex
plane with the negative integers deleted (section 1). In section 2 we
discuss equation (2) at the exceptional points. In section 3 we discuss
the geometry of the solutions.

Each solution of (2) is associated with a quadruple (a, /?, g, h). In sec-
tion 4 we examine various properties of the projection onto the com-
plex plane of the first two coordinates of all quadruples which repre-
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sent a fixed Bazilevic function. Since it is very difficult to explicitly
determine to which (a, ft) classes a specific Bazilevic function f(z) can
belong, theorems 4.2 and 4.3 provide useful simple analytic devices that
greatly reduce this difficult problem. Theorem 4.4 shows that the
geometry of the projected set can give explicit analytic information
about f(z). Much of the work of this section is devoted to an explor-
ation of the following problem: given an arbitrary closed convex set A
in the right half plane is there a Bazilevic function whose representa-
tion projection is exactly A?

Section 5 solves several extremal problems and provides the machin-
ery to give an upper bound for the radius of Bazilevicness for the
univalent functions. We also provide an explicit example of a univalent
non-Bazilevic function which is a generalized Bazilevic function. In sec-
tion 6 we show an = 0(l/n) for a class of bounded generalized Bazi-
levic functions and thereby extend Thomas, Clunie and Pommerenke's
results to classes of non-univalent locally univalent functions. We close
the paper with a conjecture concerning the analytic structure of bound-
ed univalent functions whose coefficients satisfy an — 0(n~1).

1. The Bazilevic Differential Equation. We begin with the following
known result.

LEMMA 1.1. Let H(z) be an analytic non-vanishing function in
\z\ < R with H(Q) = 1. Then there is a unique function f(z) —
z + a2z

2 + • • •, locally univalent and analytic in \z\< R, vanishing
only at z = 0, satisfying the differential equation

(1.1) zf(z)/f(z) = H(z\ \z\<R.

PROOF. The function f(z) = z exp J 0* (H(w) - l)/w dw has the de-
sired properties. Suppose f^(z) and /2(z) both satisfy (1.1). Then
*/i'(*)//i(*) - */2'(*)//2(*) * equivalent to z\f2(z}]^(z)/f2(z}}' - 0,
which, by the identity theorem and the normalization of the solutions,
forces /x(z) = f2(z).

It will be useful to have an equivalent form for the Bazilevic differ-
ential equation.

LEMMA 1.2. Let g(z) = b^z + b^z2 + • • •, bl ¥= 0, be an analytic
function in \z\ < 1 vanishing only at z = 0. Let h(z) = CQ + c^z + • • -,
c0 ¥= 0, be an analytic non-vanishing function in \z\< 1. Let
f(z) = z + a2z

2 + • • • be an analytic locally univalent function in
\z\<R, 0 < R ^ 1, vanishing only at z = 0. Then in \z\< R the fol-
lowing two differential equations are equivalent:
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PROOF. We may rewrite (1.2) as

g(z)

which is equivalent to

-l) log -

— a log & ' — log h(z) = 0,
z J

which, by the identity theorem and the normalizations of f(z), g(z), and
h(z), is equivalent to

/(*)

We now establish the existence and uniqueness of solutions of the
Bazilevic differential equation (1.2) when the parameter a + ift is re-
stricted to an appropriately punctured plane.

THEOREM 1.3. Let g(z) = b^z + b2z
2 + • • •, bl ¥= 0, be an analytic

function in \z\ < 1 vanishing only at z = 0. Let h(z) — c0 + c^z + • • •,
c0 ¥* 0, be an analytic non-vanishing function in \z\ < 1. Then for any
complex number a + ift not equal to a negative integer —1, —2, —3,
• • -, there exists a real number R, 0 < R = 1, and a unique function

f(z) — z + a2z
2 + • • • locally univalent and analytic in z\ < R, van-

ishing only at z = 0, which in \z\ < R satisfies the differential equation

„ —8—-*#
= az^L + zJ^L +iB.

g(z) h(z)
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PROOF. If a + i/? = 0, then by Lemma 1.2 we need only solve the
differential equation zf(z)/f(z) = h(z)/c0 which can be done by Lemma
1.1.

If a + ifi is any complex number except 0, —1, —2, • • •, then

-1 = 1+2n=l

G(z) =V ' n=i n + a

are well defined analytic functions in \z\ < 1 which satisfy

(1.4) (a + ifl)G(*) + *G'(z) = F(z).

Since G(0) = (a + i/*)"1 ^ 0, the number R, defined as sup{r < 1:
G(z) * 0 in \z\ ̂  r}, will satisfy 0 < R ^ 1. Define

(1.5) H(z) = F(z)/(a + ^)G(z).

Clearly H(^) is a non-vanishing analytic function in \z\ < R satisfying
H(Q) = 1. Therefore Lemma 1.1 guarantees a unique function f(z), lo-
cally univalent, analytic, vanishing only at z — 0, in \z\ < R, satisfying
zf(z)/f(z) = H(z). Using the fact that zf(z)/f(z) = H(z), (1.5), (1.4) and
the definition of F(z), it is easy to check that f(z) satisfies (1.2) in
\z\ < R.

To show uniqueness we suppose that f^(z) and f2(z) are two distinct
solutions to (1.2). Then by Lemma 1.2 both functions would satisfy

z Yift h(z}
Z I V flz) / &!% '

Hence in z < R

If we set

then equation (1.6) becomes —zL'(z] = (a + *j8)L(z). If /^z) is not iden-
tically equal to /2(z) then the normalizations of /^z) and /2(z) force L(z)
to have the expansion

L(z) = Anz» + An
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An ¥= 0, for some integer n ^ 1. On the other hand equating
coefficients of —zL'(z) = (a + i/?)L(z) forces -nAn — (a + i/?)An.
Since An ¥= 0, this implies a + t/J = — n which is a contradiction to
a + i/J lying in the plane punctured at the negative integers. This con-
cludes the proof of the theorem.

A function f(z) = z + a2z
2 + • • • analytic, locally univalent, van-

ishing only at 0 in \z\ < R is said to be a generalized Bazilevic function
if it satisfies equation (1.2) where g(z) — b^z + b2z

2 + - • •, bl ¥= 0, is a
function analytic in |z| < 1 vanishing only at z = 0 and
h(z) = CQ + c^z + • • • , c0 ^ 0, is an analytic non- vanishing function in
|z| < 1. Each generalized Bazilevic function is therefore associated with
a quadruple (a, /?, g, h). Since for any b ¥= 0 and c ^ 0 the quadruple
(a, )6, g/fo, h/c) defines the same generalized Bazilevic function as the
quadruple (a, ft, g, h), we can and will suppose for the rest of the pa-
per that both g(z) and h(z) are normalized by g(z) — z + b2z

2 + • • •,
h(z) = 1 + cf+ •".

DEFINITION. Let & be a class of normalized functions g(z) = z + fe2z
2

+ • • • analytic in \z\ < 1 and vanishing only at z = 0. Let %f be a
class of normalized functions h(z) = 1 + c^z + • • • analytic, and non-
vanishing in |z| < 1. A function f(z) = z + a2z

2 + • • • analytic, locally
univalent and vanishing only at z = 0 in \z\ < R, is a generalized Bazi-
levic function of type (a, ft, ^^) if and only if f(z) satisfies the differ-
ential equation

g(z) h'(z)
= OLZ -^ff- + Z —if- + ifi

g(z) h(z)

in \z\ < R where g(z) belongs to $ and h(z) belongs
In 1955 Bazilevic [2] with the help of the Lowner-Kufarev differen-

tial equation gave an explicit representation of a class of univalent ana-
lytic functions in |z| < 1. In 1972 Sheil-Small [19] gave an intrinsic
characterization of Bazilevic's functions along the lines of Kaplan's
characterization [6] of the close-to-convex functions and proved that
Bazilevic's functions corresponded to solutions of (1.2) for a > 0, $ the
starlike functions, and 2f the functions satisfying Re eixh(z) > 0 for
some real number X. Such functions are obviously a very special sub-
class of the generalized Bazilevic functions. They will be referred to as
the ordinary Bazilevic functions.
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2. The Bazilevic differential equation at the negative integers. The re-
striction of theorem 1.2 to C punctured at the negative integers is not
accidental. There need be no solutions of (1.2) at a + i/3 = — n, n = 1,
2, • • •, and when there are solutions they are never unique.

We already know that if f(z) is a Bazilevic function with representa-
tive (a, /?, g, h\ a + ifi ^ -n, n = 0, 1, 2, • • -, then f(z) can be writ-
ten as f(z) = z((a + ip)G(z))l/(a+W where G(z) is analytic in \z\ < 1 and
satisfies (a + ift)G(z) + zG(z) = (g(z}/z]ah(z\ We need a converse.

LEMMA 2.1. Let (a + ifi) * 0. Let H(z) = (a + ifi)~l + 2"=1 cnz
n foe

an analytic function in \z\ < I. Suppose f(z) is a generalized Bazilevic
function with representative (a, ft, g, h). // f(z) can be represented as

(2.1) f(z) = z((a

in some neighborhood of the origin, then H(z) is a solution of
(a + »)8)H(z) -h zH'(z) = (g(z)/z)ah(z) throughout \z\ < 1.

PROOF. Because of (2.1) we may write H(z) as (a -h ip)-l(f(z)/z)a+iP
in some neighborhood of the origin. A computation yields

( f(z\ V+»0-l
-M- j /'(

in some neighborhood of the origin. But by Lemma 1.2 we also have

(2.3) (fW/zY+V-y (z) = (g(z)/z)"h(z)

in some neighborhood of the origin. Therefore by (2.2) and (2.3)

(2.4) (a + lftH(z) + zH'(z) = (g(z] / z)«h(z)

in some neighborhood of the origin. Both sides of (2.4) are analytic
throughout \z\ < 1. By the identity principle the differential equation
(2.4) actually holds throughout |z| < 1.

Thus questions about the existence and uniqueness for generalized
Bazilevic functions are really questions about the existence and unique-
ness of solutions G(z) = I /(a -h t)8) + 2*-! cnz

n to

(2.5) (a + iflG(z) + zG'(z) = F(z)

where F(;z) is an arbitrary analytic non-vanishing function in \z\ < 1.
To see that the differential equation (2.5) may fail to have an analyt-

ic solution at each exceptional point a + t/J = — n, n = 1, 2, • • •, it
suffices to let F(z) = 1 -h czn, 0 < |c|^ 1. Letting G(z) =
— n~l -h 2J°_1cfc;z

fc and equating coefficients of — nG(z) + zG'(z) =
1 -h czn yields
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/L x /O if* *"(fc — n) • ck = \v ' k I c if fc = n

which is clearly absurd for fc = n. One may also turn directly to (1.2)
with g(z) = z and h(z) = 1 + czn and after elaborate computations veri-
fy that there can be no analytic solutions.

The equation — nG(z) + zG'(z) — F(z) can also have non-unique solu-
tions. For example each of the functions G(z) = — n"1 + czn, c any
complex number, is a solution of — nG(z) + zG'(z) = 1. Thus for ( — n,
0, z, 1) the Bazilevic differential equation (1.2) has the family of solu-
tions f(z) = z(l — nczn)~l/n analytic in \z\ < \nc\~l/n. In particular
f(z) = z/(l — cz), \c\ < 1, is a family of non-unique analytic univalent
in |z| < 1 functions corresponding to (— 1, 0, z, 1).

There are simple necessary and sufficient conditions for the existence
of solutions at the points a + i/3 = — n, n = 1, 2, • • •. Let
F(z) = 1 + 2JLi dkz

k and G(z) = (a + i/3)-1 + 2"=1 ckz
k. Upon com-

paring coefficients of (a + ij3)G(z) + zG'(z) = F(z) we see that G(z)
will be analytic in the same disc as F(z) if and only if we can solve
(a + i/J + k)ck = dfc for all Jk = 1, 2, • • •. Thus for the generalized
Bazilevic differential equation (1.2) to have a solution at a + i/3 = —n,
n = 1, 2, • • • it is necessary and sufficient that dn, the nth coefficient
of (g(z)/z)~nh(z), vanish. There are no solutions for ( — n, 0, z/(l + z), 1)
and ( — n, 0, z/(\ — z)2, 1) since dn is 1 and ( — l)w(^n), respectively.
There always is a solution for ( — n, 0, z/(l + z), 1/(1 -h z)) since dn is
0. There are also solutions for ( —n, 0, z/(l — z)2, (1 + z)/(l — z)), since
F(z) is (1 — z)2(n~l\l — z2) which has dn equal to zero.

Although there never is a unique solution at a + ifl = — n, there is a
limited family of solutions. If the nth coefficient of F(z) is zero, then it
is trivial to check that the functions

G(z) = bzn - -
n

where b is any complex number, are the only solutions of
— nG(z) + zG'(z) = F(z). Consequently we have proved

THEOREM 2.2. Let a + ifi = -n, n - 1, 2, • • -. Then the generalized
Bazilevic differential equation (1.2) has a normalized locally univalent
analytic solution vanishing only at 0 in some neighborhood of zero if
and only if the nth coefficient of (g(z)/z)~nh(z} vanishes. Furthermore,
any solution is of the form
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where (g(z)/z)-nh(z) = 1 + 2£=1 dkz
k.

3. Properties of R. Theorem 1.3 guarailtees the existence of a solu-
tion to differential equation (1.2) specified by a quadruple (a, ft, g, h),
a + ift ¥= —1, — 2, —3, • • •. The solution is analytic in |z| < R where
R, the modulus of the first zero of an auxiliary function G(z), depends
on the quadruple (a, ft, g, h). A generalized Bazilevic function can have
radically different quadruple representations. For example, the Koebe
function z/(l — z)2 has both a ( — 1/2, 0, z, 1 -h z) as well as a (1, 0,
z/(l — z)2, (1 -f- z)/(l — z)) representation. It would be nice to know
that R is independent of the quadruple (a, /?, g, h) and, if R is less than
one, that this reflects the geometry of f(z) itself.

THEOREM 3.1. Let f(z) be a generalized Bazilevic function with quad-
ruple representations (alt ftl9 g1? h^) and (a2, ($2, g2, h2), aj + i^j ^ — 1,
-2, -3, • • •. Let Rj = sup{r < 1 : G^z) ¥* 0 in |z| < r] where Gfa) is
the function associated with the quadruple (a;, f$.9 gjy h^), / — 1, 2. Then
Rl — R2. If R is less than I, then:

(3.1) a > 0 implies inf \f(z)/z\ = 0,
\z\<R

(3.2) a = 0 implies 0 < A ^ \f(z)/z\ ^ B < oo in \z\ < R,

(3.3) a < 0 implies sup \f(z)/z\ = oo.
\z\<R

If R is less than 1 and a -h ifi ^ 1/n, n — 1, 2, • • -, tfien R w the
£x0c£ radius of analyticity of f(z). If R is less than 1 and a
+ i/? = 1/n, n = 1, 2, • • •, f/ien /(z) faw a zero of order n on \z\ — R.
Finally, ifRis less than 1, then f(z) grows like (R - \z\)a/(a^^, that is:

(3.4) \f(z)\ = 0(R - \z\)a/<aZ+W.

PROOF. We first prove Rl = R2 when (a^ + «j81)(a2 + t/82) ̂ = 0. By
Lemma 1.1 the solution of zf (z)/f(z) = 1 + zG/(z)/[(aj + i^G^z)] is

(3.5) f(z) = *[(«,

Thus in \z\ < min^j, R2) we have

(3.6) - [(a, + tfOG^^fai+
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Although Gx and G2 may be different functions, since they are both an-
alytic in \z\ < 1 equation (3.6) guarantees that their zeros (if any) must
coincide. Hence Rl must equal R2.

We next prove that R1 = R2 if one quadruple is (0, 0, gl9 h^ and the
other quadruple («2, /?2, g2, h2) satisfies a2 -h i/32 ̂  0. The proof of
Theorem 1.3 showed that any f(z) defined by (0, 0, gx, h^ has Rt equal
to one, that is, f(z)/z is analytic and non-vanishing in \z\ < 1. But as in
the first part of this proof, Lemma 1.1 guarantees that f(z) is equal to
z[(a2 + ip2)G2(z)]^«*+W in \z\ < R2. Thus G2(z) = (a2 + ift)"1

(f(z)/z)a* +i@2 in |z| < .R2. Both sides of the equation are actually analyt-
ic functions throughout \z\ < 1. Therefore by analytic continuation
G2(z) is equal to the non-vanishing function (a2 -f i/32)~

l(f(z)/z)a2+iP2 in
|z| < 1. Consequently R2 = 1 = R^ in this case also.

Relations (3.1), (3.2) and (3.3) follow immediately from (3.5) and the
fact that G(z) has a zero on \z\ — R < 1.

We now prove if R is less than 1 and a + i/3 ¥= l/n, n — 1, 2, • • •,
then T, the radius of analyticity of f(z), is equal to R. We do this by as-
suming T is greater than R and getting a contradiction for a < 0,
a > 0, and a — 0.

We first show this is absurd for a < 0. Analyticity in |z| < T, T > R,
implies max{/(z) : \z\ = R} < oo which contradicts (3.3).

We next show this is absurd for a > 0. Relation (3.1) implies that if
f(z) is analytic in \z\ < T, T > R, then / must have a zero, say z0, on
\z\ = H. Let the order of this zero be ra. Then

lim

as z approaches z0 radially. The left hand side is finite and non-zero.
Since a + if) ¥= l/n, the right hand side cannot approach a finite non-
zero limit. [Note that (1.4) implies that all zeros of G(z) are simple].

Finally we show this is absurd for a — 0. Since R is less than 1 the
function G(z) has a zero, say z0, on \z\ = R. Consequently

lim f(z) = lim z[(a + i/3)G(z)]l/<a+W
Z-*Z0 Z-»Z0

as z —»z0 radially. The left hand side approaches a definite limit since
f(z) is supposed to be analytic in |z| < T, T > R. But the right hand
side has no limiting value as z —> z0 radially.

If R is less than one and a -f if) = l/n, n — 1, 2, • • • then clearly
/(z) has a zero of order n on |z| = R and is analytic in a slightly larger
disc. Finally, (3.5) and the fact that G(z) has a simple zero on \z\ = R
shows that (3.4) holds. This completes the proof of the theorem.
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Theorem 3.1 has important implications for the univalence of gener-
alized Bazilevic functions.

COROLLARY 3.2. Let f(z) be univalent within its radius of analyticity.
V f(z) has an a + ifl representation where either a > 0 or
(a + (1/4))2 + 02 < (1/4)2, then f(z) is univalent in \z\ < 1.

PROOF. If a > 0 and R < 1, then by (3.1) we would have
ini{\f(z)/z\ : \z\ < R} = 0 which is absurd for univalent functions. If
(a + (1/4)2 + £2 < (1/4)2 and R< j then /(R^)/R would be a norma-
lized univalent function in \z\ < 1 which would grow like

FIGURE i



208 D. M. CAMPBELL AND K. PEARCE

(1 — \z\)a/(ai+P*> which is faster than the maximum possible growth
(1 — \z\)~2 for normalized univalent functions [15].

Sheil-Small used the first half of this corollary in his proof that ordi-
nary Bazilevic functions are univalent in \z\ < 1.

It would be of interest to determine the exact region of values a +
ifi in C where univalence of a Bazilevic function within its radius of
analyticity implies that the radius of analyticity is 1 (see Figure 1). For
all a < —1/2 the phenomena fails. In fact, if a + i($ — — 1, the func-
tion f(z) — z/(\ — az\ with ( — 1, 0, z, 1) representation, is univalent
within the radius of analyticity but for \a\ > 1 its radius of analyticity
is strictly less than one. If a < —1/2 and a + ifl *£ — 1, then choosing
any complex number c, 0 < \c\ < 1, such that d =
(a + ift)c/(l + a + if$) satisfies \d\ > 1, we can create the generalized
Bazilevic function f(z) = z(l + dz)*/(a+iW with (a, & z, 1 + cz) repre-
sentation. Since zf (z)/f(z) = (1 + cz)/(l + dz\ we see that f(z) is spir-
al-like, hence univalent, within its radius of analyticity which is strictly
less than one.

There are Bazilevic functions with R < 1 and a + ifl = l/n, n = 1,
2, • • •. For example, f(z) — (e**iz — Y)/4m is a generalized Bazilevic
function with representation (1, 0, z, e4<niz] and R — 1/2.

4. The geometry of Tl(f, A, B). If f(z) is a generalized Bazilevic func-
tion then it is associated with a collection of quadruples (a, ft, g, h)
which satisfy (1.2). In order to obtain information about / it is necessary
to restrict the classes A and B to which the functions g and h are al-
lowed to belong. We let (f, A, B) denote the collection of all quad-
ruples which represent a fixed but arbitrary function / when g is re-
stricted to A and h is restricted to B. We let II(f, A, B) denote the set
of all points (a + i/?) for which / has an (a, /?, g, h) representation,
g E A, h G B, i.e., II(f, A, B) is the projection into C of the first two
elements of the set of quadruples representing /. In this section we will
investigate the relation between the geometry of the point set !!(/", A,
B) and the geometry of the mapping /.

We first show that II(f, A, B) is either a single point or empty if f(z)
is a generalized Bazilevic function with R < 1. It clearly suffices to
show II(f, ^, 2f) is a single point where

^ = (g(z) = z + • • • : g(z}/z analytic and ¥= 0 in |z| < 1),

3^ = (h(z) = 1 + '' ' : &(*) analytic and ^ 0 in \z\ < 1}.

Note that II(f, ^, 3^) is always convex. For if (a., 0,, g,, h-), / = 1, 2,
are two representatives for f(z) then the quadruple (Ac^ -f (1 — X)«2,
A/?! -h (1 - A)/?2> ga, h3) also satisfies (1, 2) where
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log
1

(z — zo)

andg3

Let (a, ft g, h) represent an / with R < I. Theorem 3.1 asserts that
the growth of f(z) is exactly (R - \z\}a/(a*+P*>. We consider the two
cases a ¥= 0, a = 0. First suppose a ¥= 0. Since the growth of a func-
tion is independent of its representation, a/(a2 + /?2) must be a nonzero
constant, say k. The locus of (a, ft) such that a/(a2 + /?2) = k is a
circle. Therefore, II(f, c^, 5^) is a convex point set lying on a circle
and thus must be a single point. On the other hand, if a — 0, then ft
cannot equal 0 since a function with a (0, 0) representation always has
R — 1. It therefore suffices to show that /? (which is ^ 0) is uniquely
determined by the geometry of / in order to conclude that II(f,
is a single point. This is immediate since from (3.5) and (3.2)

ft

where z0 is a zero of G(z) on \z\ — R.
Thus whenever we investigate the relation between the geometry of

/ and the geometry of II(f, A, B) we will be assuming that / is defined
and analytic throughout the unit disc.

In order to obtain nontrivial relations between / and II(f, A, B) it is
necessary to choose proper subclasses of $ and W. For if f(z) is a gen-
eralized Bazilevic function in \z\ < 1, then TI(f, .-f, 3f) is simply C it-
self since (a, ft /(*), f(z)(z/f(z))1-^) always represents f in ^ and 3f.

So that the reader can have a concrete picture in his mind we have
phrased the following results in terms of the ordinary Bazilevic func-
tions. Since the results also apply to classes which do not yet appear in
the literature we point out the proper context of our results immedi-
ately after the statement of each theorem. Recall that / is an ordinary
Bazilevic function, denoted (f, y*, £P\ if / has an (a, ft g, h) represen-
tation where a is positive, ft is real, g is in^/* (the normalized starlike
functions), and h is in & (the normalized analytic functions for which
for some real X, Re eixh(z) > 0 throughout \z\ < 1).

Sheil-Small showed II(f, </*, ^) is a closed convex point set. We
will find further properties of II(f, </*, ^) in order to investigate the
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following general problem: find necessary and sufficient conditions on a
point set E so that there will exist a generalized Bazilevic function /
and classes A and B for which H(f, A, B) = E.

Our first theorem gives a very important restriction on II(f, A, B).

THEOREM 4.1. If f(z) ^z, then the intersection of U(f, ,/* 2?) with
any vertical line is a bounded set. [The conclusion holds for any TL(f,
A, B) where A and B are normal families].

PROOF. If there were a vertical line x — a on which H(f, ,/*, 0*)
were unbounded, then we could find a sequence of quadruples (a, )8fc,
gk, hk) representing / for which |/?fc| — > oo, gk £</*, hk G ̂ . Taking
the imaginary part of the logarithm of both sides of (1.3) yields

(4-2)

Since /(z) ^ z, we can find a point z0 such that [f(z0)/z0| ^ 1- Although
the quantities gfc(z0)

 and frfc(*o) depend on fc, nevertheless |arg gk(z0)/z0\
and | arg hk(z0)\ are bounded independently of k since y* and ^ are
normal families. As |/?fc| — > oo the left hand side of (4.2) diverges while
the right hand side remains bounded which is absurd.

Our next theorem is extremely useful in determining what possible
value of a and /? can be used to represent a generalized Bazilevic func-
tion which is unbounded either in modulus or in argument.

THEOREM 4.2. (a) If f(z) is unbounded then the intersection of II(f,
y *, ̂ ) and any vertical line is at most a single point.

(b) // SLTgf(z)/z is unbounded, then the intersection of H(f, ./*, ^)
and any horizontal line is at most a single point.

[The same conclusions hold for TL(f, A, B) for any classes A and B
for which for each element g in A and h in B we have

sup |argg(z)/z| < oo, sup |argh(z)| < oo].
I*I<1 IzKl

PROOF. Suppose f(z) is unbounded and (ajy fij9 gj9 hs)9 \ — 1, 2,
al = a2, are two representations for f(z) where

(4.4) sup |arg gj(z)/z\ < oo, sup |arg hJz)\ < oo,
\z\<i

for / = 1, 2, by hypothesis. Using (4.2) twice we obtain
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l 2 — l I r i \ I I 'log \f(z)/z\

Choosing zn so that \f(zn)\ — » oo and remembering (4.4) we see that ftl

must be equal to /32. A similar proof holds for the assertion concerning
|arg f(z)/z\ ->oo.

It is very difficult to know if a given analytically represented func-
tion is capable of being written as a reasonably nice Bazilevic function.
The next theorem provides an effective test for unbounded functions.
One simply tests whether certain limits exist. If the limits do not exist,
then either / cannot be represented as a Bazilevic function or else II(f,
A, B) consists of a single point. If the limits do exist, then one knows
what possible values can be in !!(/*, A, B).

THEOREM 4.3. Let f(z) be an unbounded function and let II(f, ,/*,
^) contain at least two distinct points (al + i/3^, (a2 + ift2). Let zn be
any sequence of points in \z\ < 1 for which \f(zn)\ — * oo (including se-
quences zn which approach \z\ = 1 tangentially or which have distinct
cluster points). Then both of the following limits must exist and must
have the indicated values:

(4.6) lim
n-»oo log IfcJ/aJ «i - «2

(47) 2s 1^^ = (a-1)f;:^-1)^.
[The theorem remains true for TL(f, A, B), A, B satisfying the conditions
mentioned after Theorem 4.2].

PROOF. Theorem 4.2 guarantees that «2 ¥= ar As in Theorem 4.1 we
use (4.2) twice to obtain:

(4.8) 1 2 ° « i « 2 a r

' O/2') + arg ^i(-

Dividing through by log \f(z)/z\, letting f(zn) —* oo, and using (4.4) yields
(4.6). Relation (4.7) is proved similarly.

The next theorem shows how the structure of II(f, i/*, ^) can tell
us about the behavior of f(z).

THEOREM 4.4. // Ti(f, ^*, &) is unbounded, then there exists a com-
plex number u, \u\ ̂  1 and a g(z) in<f* such that f(z) = z(g(z)/z)u.

[The conclusion holds if <f* is replaced by a compact family of^
is replaced by any normal subfamily of
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PROOF. Since H(f, /*, ^) is unbounded, then by passing to a sub-
sequence if necessary we can find ak + i/3k —»oo and complex numbers
u, v, \u\ ̂  1, \v\ ̂  1, u + v — I, such that

(4.9) lim k = u, lim k = v.

Each ak + i/3k comes from a quadruple (ak, fik, gk, hk) representing /
where gk £</* and hk e £?. Using (1.2) we see the following is true
for all u, v, and g(z):

f (*) 8'W / e*'(*) g'(z)J \ / -,,/r O \ / „., — „, f /y OK V / ,j O \ /

MZ) /(*) f'(z)

Thus

f(z) g'(z)J v x ttz ° — v s «

(4.10)

— U

/"(*)

The normality of ̂  and the analyticity of f(z) in |z| < 1 guarantee that

hk(z) f(z) f'(z)

is bounded within, say, \z\ ̂  1/2 for all k. By passing to another sub-
sequence and using the compactness of./* we may assume gk(z) con-
verges uniformly on \z\ ̂  1/2 to g(z) G,/*. Let u and v be given by
(4.9). The left hand side of (4.10) is independent of k while the right
hand side goes to zero in \z\ ^ 1/2 as k —»• oo. Thus
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(4.12) Z = U Z J + V

fa) g(*)

in \z\ = 1/2. Since g(z)/z is analytic and nonvanishing throughout
\z\ < 1, (4.12) holds throughout \z\ < 1. Lemma 1.1 guarantees the solu-
tion of (4.12) is analytic throughout \z\ < 1 and is given by
f(z) = z(g(z)/z)«.

m

FIGURE 2
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If f(z) £z, then Theorem 4.4 strongly limits the structure of H(f, y*,
0*) in the neighborhood of infinity. In particular, !!(/", </*, ^) (and
II(f, A, #) for any A, B satisfying the conditions at the end of Theorem
4.2) cannot contain arbitrarily large points ak -f- i(3k with ak//3k —> 0.

COROLLARY 4.5. If II(f, ,/*, &*) w unbounded then f(z) is spiral-like.
If Tl(f, y*, 0*) contains a sequence of points ak + ifik, ($k = mak + /,
|afc| —> oo, then f(z) is spiral-like of order arctanm. // II(f, y*, &) is
unbounded on any horizontal line, then f(z) is starlike.

PROOF. This is immediate from (4.9), (4.12) and the definition of spir-
al-like and starlike.

We now have enough machinery to investigate whether an arbitrary
convex set in C can be II of some ordinary Bazilevic function. Theo-
rem 4.1 shows that the convex sets (a) and (b) of Figure 2 can never be
a II(f, y*, &*) set. Corollary 4.5 shows that the convex sets (c), (d), (e)
and (f) of Figure 2 can never be a Il(f, y*9 SP} set. For if f(z) is star-
like it automatically has a representation along the entire real axis (a,
0, f(z), zf(z)/f(z)), while if f(z) is spiral-like of order y, then it automati-
cally has the representation (fcosy, fsiny, z(f(z)/z)l+ii&ny, zf(z)/f(z))
along the entire line through the origin of slope arctan y.

Given a generalized Bazilevic function / it would be nice to have
reasonably general conditions which guarantee that f(z) can be uni-
formly approximated on compacta by 'nicer' Bazilevic functions which
are close to / in the sense of the projection IT.

THEOREM 4.6. Let a + ifi be a point in II(f, y*, &*). Then for each
r, 0< r < 1, H(f(rz)/r, y*, 0*) contains a neighborhood of the point a
+ i/i.

PROOF. Fix r, 0 < r < 1, and consider F(z) = f(rz)/r. By (1.3)

where g(z) e ,/ * and h(z) G & is such that |arg e^h(z)\ < ir/2. Let

h(rz)
rz \ g(rz)
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Then

sup |arg eixH(z)\
IzKl

= sup
IzKl

arg eix h(rz) + («-«*) arg (
\

-
rz I

(a*-a)arg

+ 08*-j8)log
rz I I

^ sup |arg eix h(rz)\ + |(a* — a)

max {

Therefore by choosing a* + i/?* in a sufficiently small neighborhood of
a + «/? we can guarantee that //(z) is in ^. The function £(2) is in -jf*
since ̂ * is contraction invariant. Rewriting H(z) as

yH(z}>v 'F(z)

we can use Lemma 1.2 to show that /(rz)/r has an (a*, /?*, G, H) repre-
sentation as claimed.

We conclude this section with two remarks.

REMARK. II(f, ,/*, ^) need not be convex in C although it is always
convex in a = 0 and a = 0 separately. To see this consider
/(z) = zexp(z/2) which is y-spiral-like for — ?r/6 = y = ^/6. As we in-
dicated before, any y-spiral-like function automatically has an <f*9 0*
representation everywhere on the line [te^ : —oo<t<oo}. If !!(/",
./*, ^) were convex in C it would have to contain the convex hull of
the points [te^ : -oo < t < oo, -n/6 ^ y ^ 77/6}. This would be the
entire complex plane. Since /(z) = z exp(z/2) £z, this is absurd by The-
orem 4.2.

REMARK. If /(z) is an unbounded y spiral-like function, then /(z) can-
not be y'-spiral-like, y' =£ y. In particular an unbounded starlike func-
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tion can only be trivially spiral-like. In order to see this it suffices to
recall that if a function were both y and y' spiral-like, then in the right
half plane TL(f, .y*, 3?) would contain the convex hull of [te^,
teW : 0 < t < 00} . In particular, the intersection of II(f, </**, &*) with
any vertical line in the right half plane would not be a singleton which
is absurd by Theorem 4.2.

5. Uniqueness of the (a, /?) representation of a generalized
Bazilevic function. Each generalized Bazilevic function is given by a
quadruple (a, ft, g, h). One hopes that the functions g and h reflect the
geometry of / itself. Therefore if we fix a and ft it is important to de-
termine how much freedom we have in choosing the g and the h which
will represent /. For example, f(z) = (eaz — l)/a, 0 < \a\ = n/2, is an
ordinary Bazilevic function with the following two distinct (1, 0) repre-
sentations in .j^*, £P\

(1, 0, z, eaz)

(I, 0, (#* - l)/a, az#*l(tf* - 1)).

This lack of uniqueness is possible for any a, ft. For example, if c is suf-
ficiently small, then f(z) = z has the following uncountably many dis-
tinct (a, ft) representations in,/*, &\ (a, ft, z(l + es), (1 + €*)-*).

One therefore asks if there are any examples of unique representa-
tions. In order to answer this in the affirmative we develop a relation
between the coefficients of / and the coefficients of g and h which rep-
resent /.

THEOREM 5.1. Let the generalized Bazilevic function f(z) =
z -f a2z

2 + - - • be represented by the quadruple (a, ft, g, h). Then

(5.1) (1 + a + ift}a2 = a b2 + GI

where g(z] — z + b2z
2 + • • • and h(z) = 1 + c^z +

PROOF. Multiplying both sides of the fundamental differential equa-
tion (1.2) by f(z) f(z) g(z] h(z) we obtain

f(z}f'(z}g(z}h(z) + zf(z)f(z}g(z)h(z]

+ (« + ift - IX/Wg (z)h(z)
(5.2)

= azf(z)f(z)g(z)h(z) + z f(z)f'(z)g(z)h'(z)

+ if}f(z)f'(z)g(z)h(z).

Equating the coefficients of z3 for both sides of (5.2) yields
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(cx -f &2 -f 2a2 + a2) + 2a2 + (a + i0 - l)(Cl + &2 + 4a2)

= a^ + 2fo2 -f 2a2 + a2) + cx + i^K -f b2 + 2a2 -f a2)

which reduces to (1 + a + i/?)a2 = afo2 + cr In a similar manner one
can obtain, using (5.1),

(5.3) 2(2 + a + ift)a3 = a(2b3 - b2
2) + 2c2 - cx

2 + a2
2(3 + a + tf).

This allows us to obtain sharp coefficient inequalities for the ordinary
Bazilevic functions B(a, /?), a = Q.

THEOREM 5.2. Iff is in B(a, ft), a ^ 0, then

(5.4) 3 + a + tj8 a + 2
d 2(2 + a + ift) *

and equality is possible for every (a, ft), a ^0, —oo<ft< oo.

PROOF. Using (5.3) for a3 yields

3 -f « + ift
2(2 + a + 0)

2 _
2+a+ift 2+a+ift

|2 + a + ift\ \2 + a + ift\

a -f 2
|2 + a + tf| '

where the last inequality uses the fact that |c2 — (l/2)cj2| ^ 2 for func-
tions of positive real part and \b3 — (1/2)&2

2| ̂  1 for starlike functions.
By choosing h(z) = (1+ *2)/(l - z2) = 1 + 2*2 + • • • and g(z) =
z/(\ — z2} = z -f z3 -f • • • we obtain equality in (5.4) for any a = 0
and —oo < ft < oo.

THEOREM 5.3. ///(z) is in B(a, ft), a ^ 0,

wa^
is in B(Q, ft), then

inequalities (5.6) and (5.7) are besf possible.

PROOF. Inequality (5.6) is immediate from (5.1) and the fact that
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\c2\ = 2 and \b2\ = 2. The uniqueness (up to rotations) of functions in
y* and^ satisfying |cx| = 2, \b2\ — 2, shows that equality holds in (5.6)
if and only if f(z) is a rotation of the function defined by (a, ft,
z/(l - z)2, (1 + z)/(l - z)).

If a is zero, then (5.3) and (5.1) together yield

<5-8'
But for functions of positive real part

l, |2X -

and the inequality is sharp. This immediately proves (5.7) and also
proves that (5.7) is sharp.

The conclusions of Theorem 5.2 and 5.3 actually hold for the larger
class of functions which have an (a, /?, g, h) representation with g spir-
al-like (instead of just starlike) and h in &. We only needed
|63 — (1/2)&2

2| ^ 1 and this holds for spiral-like as well as starlike func-
tions [7].

The class of functions which have an (a, ft, g, h) representation, g
spiral-like, h G ̂ , contains nonunivalent functions as well as univalent
functions which are not ordinary Bazilevic functions. To be specific, let
us consider functions with a (1, 0, g, h) representation, g spiral-like, h in
0*. All analytic functions f(z) for which zf'(z) is spiral-like belong to this
class; in fact, they have the representation (1, 0, zf'(z), 1). Robertson
[18] showed that there are nonunivalent functions for which zf'(z) is
spiral-like. Therefore, there are nonunivalent functions with a (1, 0, g,
h) representation, g spiral-like, h in 0*.

We now prove that there are univalent functions with a (1, 0, g, h)
representation which are not in B(a, ft) for any a = 0, and
— oo < ft < oo. The function

i — n — -ry*p<-2iy)

defined by (1, 0, z(l - z)exP(-2iy)-i? ^ is univalent for 0 < y < ir/6 by
corollary 2 of [14] since 0 < cos(y - w/2) ̂  1/2 and

f(z)

= Re e'<Y-*/2> [ 1 ~ Ze~2ly 1 > 0
L 1 — z J

in Izl < 1.



GENERALIZED BAZILEVIC FUNCTIONS 219

On the other hand, Shell-Small [19, p. 142] showed that if C is a pos-
itively described arc of the simple closed curve f(\z = r), 0 < r < 1,
f(z) univalent analytic, then f(z) is an ordinary Bazilevic function of
type (a, /?), a = 0, if and only if for each such arc

(5.10) Ac (argdu; + (a — l)argu; + ft log|u>|) > —TT

where if C joins w± to w2, kcu(w) = u(w2) — u(ti;1). Since
(1 — 2)exP(-2iy) is bounded in |z| < 1 and goes to zero as z—* 1 in any
direction, it is easy to see that f(z) and arg/(z) are bounded in \z\ < 1.
A direct computation shows arg/'(z) is unbounded in \z\ < 1. Con-
sequently for any a ^ 0 and any /?, — oo < ft < oo, the function (5.9)
can be made to violate (5.10). Thus f(z) cannot be an ordinary Bazilevic
function. This provides an explict example of a bounded univalent non-
Bazilevic function.

One might suspect from Shell-Small's example of a univalent non-
Bazilevic function and from the univalent non-Bazilevic function (5.9)
that all such examples must be *bad' on the boundary. Such is not the
case. There are functions univalent analytic on the closed unit disc
which are quasiconformally extendable to the whole plane, but which
are not ordinary Bazilevic functions. It suffices to note that the com-
pactness of the ordinary Bazilevic functions [19, p. 141] implies that if
f(z) is (5.9) then only finitely many elements of the collection
{f(rnz)/rn)}n=i> ® ^ rn ^ 1» rn ~* ^> can ^e ordinary Bazilevic functions.
Consequently f(fnz)/rn for all n greater than some n0 are non-Bazilevic
functions univalent in the closed unit disc, and trivially quasi-
conformally extendable.

Theorem 5.2 yields the first quantitative bound for the radius of ordi-
nary Bazilevicness for the class ../. Let R^z denote the supremun of
these r < 1 such that for every f(z) in </, f(rz)/r is in some class B(a,
j8), a ^ 0.

THEOREM 5.5. R^z ^ (1 + 2 exp(-6))-1/2 = .99753

PROOF. An analysis of Szego and Fekete's proof that for any f(z) in
y, \a3 - Xa2

2| ^1 + 2 exp(-2X/(l - X)), 0 ̂  X < 1, [16, p. 167]
shows that for X = 3/4 there is a function f(z) in </ with

(5.11) a2 = Se~3 a3 = 1 + SO^r6.

If f(z) is this function with 02 and a3 given by (5.11) then we will apply
Theorem 5.3 to the coefficients of f(rz)/r = z + A2z

2 + A3z? + • • •
where A2 = ra2, A3 = r^a^ Computing (5.4) for the coefficients of
f(rz)/r yields
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3 + g + iff 2
^3 — T^T" **9

(5.12)

lo ————^—^————— /In
J O/O I ^, I -'A)\ ^2(2 + a + iff)

3 + a + iff 2
"22(2 + a + iff

But a2 and a3 are real and positive so

3 + a + iff
(5.13)

2(2 + a + iff)

for all a^O and all ft -oo < ft < oo. Thus by (5.11), (5.12) and
(5.13) the coefficients of f(rz)/r satisfy

3 + a + iff
2(2 + a + iff

^ r>(l + 2 exp - 6).

Therefore by (5.4) the univalent function f(rz)/r cannot be in any B(a,
ff) class, a ^ 0, if 1 (̂1 + 2exp( —6)) is greater than 1. Consequently
Rp = (1 + 2 exp( —6))~1/2. Better bounds are easily obtained for any
specific B(a, ff) class.

We return to the problem of unique representation of a Bazilevic
function. The Koebe function z/(l — z)2 can have an (a, B), a > 0, rep-
resentation in the ordinary Bazilevic function only if ff = 0 and in this
case the functions g and h are uniquely determined. In fact let
(a, ff, g,fe) be representation for z/(\ - z)2, g E^*, h G £?, a ^ 0.
Then by Theorem 5.1, 2 = (ab2 + cx)/(l + a + iff) where b2 is the sec-
ond Taylor coefficient of g and cx is the first Taylor coefficient of h. If
\b2\ or |c1| were strictly less than 2 we would have

2 =
1 + a + iff

< 2 a 2

which is absurd. Thus \b2\ = IcJ = 2. The same argument forces ff = 0.
Repeating the argument a third time forces arg b2 = arg c^ = 0. Thus
b2 — 2, ct = 2 which, as is well known for </* and ^, forces
g(z) = z/(l - z)2 and h(z) - (1 + z)/(l - z). One notices that the
Koebe function has the same unique representation in the much larger
class of functions with an (a, ff, g, h) representation, g E </, h G ^,
a > 0.

Since the Koebe function still has the representation (a, 0, z/(l — z)2,
(1 + £)/(! — z)) on the negative real axis, Theorem 4.2 and the con-
vexity of that part of II(f, ,/*, 5^) which lies in the left plane again
imply that there can only be an (a, 0) representation in,/*, ^, a < 0,
for the Koebe function. However g and h are no longer unique for the
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Koebe function, a < 0. In fact,

(a, 0, z/(l - z)Va+V/a, 1 + 4 a < -1/2

(a, 0, z/(l - z)2<«+V/a, 1 - z2), a < -1

(- 1 0, */(! + a*)2, (1 + az)(l + z)), -£ S a § 0

are all distinct (a, /?, g, h) representations, g E ,/*, fo E ̂ , a < 0. In
particular we can represent the Koebe function by two bounded func-
tions g(z) = z, h(z) = 1 -h z.

6. Application to the an = O(l/n) problem. One of the interesting
results of univalent function theory relates the growth of the maximum
modulus of a function, M(r, /), to the growth of the coefficients of the
function f(z) — 2 anz

n. In 1932 Little wood and Paley [12] proved for
univalent functions that M(r, ̂  = 0(1- r)~v implies \an\ = O(nY-1),
y > 1/2. This phenomenon breaks down for y < 1/2. In fact Little-
wood [11] proved there is an odd bounded univalent function for which
|fln|> n-17'1 for infinitely many n. Thus to prove that |an| = O(n~1) for
a class of bounded univalent functions requires additional assumptions
about the geometry of elements of the class. Clunie and Keogh [4] in
1960 proved that an — O(n~l) for bounded starlike functions while
Clunie and Pommerenke [5] in 1966 proved an — O(n~l) for bounded
close-to-convex functions. Thomas [20] in 1968 proved an = O(n~1) for
bounded B(a, 0), a > 0, functions (for which B(l, 0) yields Clunie and
Pommerenke's close-to-convex result).

In the other direction Clunie [3] in 1968 answered in the negative a
question of Pommerenke concerning Littlewood's \an\ > n-17"1 counter-
example. Clunie exhibited a bounded univalent function with
larS/(z)l ^ w f°r which a

n ^ ^(n"1). Thus, Clunie remarked, being
'similar' to a close-to-convex function is not sufficient to guarantee
an = O(n-1). This raised the question as to whether one can characterize
the bounded univalent functions for which an — O(n~1). After stating
and proving the next theorem, which extends Thomas' result we make
two conjectures about the geometry of a function and an — O(n~l) be-
havior.

We recall that a starlike, close-to-convex, or ordinary Bazilevic func-
tion of type (a, 0), a > 0, has the representation
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where g(z) is starlike and Re eixh(z) is of positive real part. But for the
starlike function g(z) in the representation of f(z) we always have
^o7r\de[argg(z)}\ = Jowd0{argg(;s)} = 27T. It appears that the crucial
element in Thomas' proof that bounded univalent ordinary Bazilevic
functions have an — O(n~l) is that / have a representation in a ^, ffi
class where sup foff\dff{siTgg(z)}\ is finite rather than necessarily 2?r. A
careful examination of Thomas' proof also indicates that his heavy de-
pendence on the univalence of / (for example Lemma 1 and Lemma 2,
p. 356 [20]) is not necessary. The appropriate setting for Thomas' proof
is the context of generalized Bazilevic functions which have an a, 0
representation, a real,

' " h(z),

where g(z) satisfies sup Jg77 \de{siTg g(z)}\ < oo and h(z) satisfies
Re eixh(z) > 0 for some X.

THEOREM 6.1. Let f(z) = z + 2^_2anzn be a generalized Bazilevic
function with representation (a, 0, g, h) where supfl"\de

{argg(z)}| ^ A < oo, Re eixh(z) > 0, and a is real. If 0 < m ^ \f(z)/z\
= M < oo in \z\ < 1 then n\an\ = K(a, M, m, A), where K(a, M, m, A)
is a constant independent of f and depends only on a, M, m and A.

PROOF. Let (a, 0, g, h) be a representation for f. By (1.3) f(z) satisfies

where for some X, h^z) = e~ixh(z) is of positive real part. Thus

e-^f'(z)

Since nan is equal to (27rrn)-1 f %" zf(z)e-ine dO, (6.1) yields

i Re /4(Z) d0

From the hypothesis on /(z) we have [/(z)!1"" = K1(r) where K^r) is
(Mr)1-" if -oo ^ a § 1 and is (mr)1-" if 1 g a. Thus
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Using (6.1) and the fact that Re h^z) ^ 0 in \z\ < 1 we find

^zfCz)/^-1 exp(-i« argg(z)) <Z0.

After integrating this by parts we obtain

I, =i K1(r)(Wr«)-1 Re j7V(z)aexp( - i« arg g(z)) de (arg g(z)} .

Taking absolute values in this integral and using the fact that
sup So*\de{a.Tgg(z)}\ ^ A together with the fact that \f(z)\a ^ (M\z\)a

if a ^ 0 and \f(z)\a ^ (m\z\)a if a ^ 0, we obtain

(6.2) I^r) ^ 2AK2(7rrn)-1

where

f M1+lal/mla:l a ^ 0

(6.3) K 2 = < M O ^ a ^ :
^ Maml~a 1 ̂  a

We now bound /2(r). On taking complex conjugates and using (6.1)
again, we obtain

"e(z)"hJz)ein9 dO

(6.4)
= (£«")•-i (z) exp(2i(« - 1) arg/(z)) exp(-2i

) exp(2i(a - l)arg/(z))exp(-2«a argg(Z)) M

If we define /n(z) as

(6-5) fn(z)=

then integrating (6.4) by parts yields
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I(r) =2 fn(z) dfl{exp[2i(« - l)arg/(z)] exp(2ia

i(a - l)arg/(Z)]exp(-2iaargg(Z)ReZ *±j- M

a - l)arg/(Z)]exp(-2iaargg(Z)dtf{arggi

- AW + AM-
We now estimate ]^(r) and J2(r). Upon integrating (6.5) by parts we ob-
tain

Since sup f%" \de {argg(*)}| ^ A we obtain by (6.6)

(6.7) /2(r) ^ 4MA\a\r~n

Applying the Schwarz inequality to

AW = ^r*• ~~M*£fl

yields

r Rez
fa)

Noting that

yields

|Re zf(z)\* dff ^ m-2 If (

-2

(6.10)

2
dO.

1(l - r)-1 Jfc|a



GENERALIZED BAZILEVlC FUNCTIONS 225

On the other hand /„(«) = 2"=0 (fc/(n + k})2a^n+k so

£" \fn(z)\2 M =

(

Thus

/!(!•) ^ 2|a -

since 2 fc|flfc|
 2f* is less than or equal to M2^! — r)~2 by the Cauchy es-

timate \an\ ~ M. Putting all these estimates together we have

+ 4MA|a|r-n

+ 2|a -

Choosing r so that (1 — r)3n — > oo as n — » oo (for example,
r = 1 — n~1/4 we see that

lim sup n|flj ^ 2AK2e
37r-1 + 4MA|a|e3 = X(A, a, M, m)

-

as claimed. Note in particular that this proof shows J^r) does not con-
tribute anything to the determination of lim sup n\an\.

COROLLARY 6.2. If f(z) is a bounded univalent function which has an
(a, 0, g, h) representation, sup Jgw \de{&rgg(z)}\ < oo, h G ̂ , a

a = On~1 .

Corollary 6.2 generalizes Thomas' result not only to a larger class of
functions but also allows a to be negative as well.

We close the paper with the conjecture that these generalized Bazi-
levic functions are the natural setting for the phenomenon relating
boundedness of univalent f(z) to an = O(n~l).

CONJECTURE A. If f(z) is a bounded univalent function with
an — O(n~1), then / has an (a, 0, g, h) representation with

CONJECTURE B. If f(z) is a locally univalent function, 0 < m ^ \f(z)/z\
^ M < oo in |z|< 1, and an = O(n~1), then / has an (a, 0, g, h) repre-
sentation with sup Jgw \de {argg(z)}| < oo, h G ^.
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