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ON MODULI OF CONTINUITY OF ANALYTIC 
AND HARMONIC FUNCTIONS 

THAD DANKEL, JR. 

ABSTRACT. We consider inequalities relating the modulus of con
tinuity of an analytic or harmonic function in a planar region to its 
modulus of continuity on the boundary of the region. Using harmon
ic measure, we give a new proof of such a result for harmonic func
tions in the unit disc. We also generalize results for both analytic 
and harmonic functions in the unit disc to such functions defined on 
a Jordan region G such that 3G satisfies certain smoothness assump
tions. 

Introduction. Let G be a region in C, the complex plane. Let A(G) 
be the algebra of functions which are analytic in G and continuous in 
G; similarly, let a(G) be the vector space of functions which are har
monic in G and continuous in G. If u belongs to A(G) or to a(G\ and if 
8 > 0, put 

<o(u, ô, G) = sup{|t/(z1) — u(z2) | zv z2 G G, 

u(u, 8, G) = supdi^-t) — u(z2)\ : zl5 z2 G 8G, 

\Zl-z2\^8}. 

When G = D — {z G C : \z\ < 1}, the following two properties have 
attracted the attention of a number of analysts: 

I. There exists a constant C > 0 such that for all u G A(G) and for 
all 8 > 0, co(ti, S, G) ^ CW(M, 8, G). 

II. There exists a constant C > 0 such fhat for all u G a(G), and for 
all 8 G (0, 1/2), <o(u, Ô, G) =i Clog(l/ô) w(u, ô, G). 

(In II, the upper bound 1/2 for ô is arbitrarily chosen. All that is essen
tial is 8 = B < 1, to bound 1/8 away from the zero of the logarithm.) 

Proofs of property I for G = D may be found in [1] and [2]. In the 
latter paper, it is shown that in I necessarily C > 1, and that it is suf
ficient to take C = 3; it is also shown that the logarithmic factor in II 
cannot be dropped. In [3], Shapiro attributes property II for G = D to 
Hardy and Little wood [4], and he gives a proof of it based on Fourier 
analysis. 
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The purpose of this paper is twofold: to give a new proof of II for 
the unit disc D based on harmonic measure, and to prove that a broad 
class of regions G also have properties I and II. 

We use "C" to denote an arbitrary positive constant; different ap
pearances of "C" may denote different constants. 

Property II for the Unit Disc. 

THEOREM 1. Property II holds if G = D, the unit disc. 

PROOF. Given 80 > 0, we may choose an integer n so that n80 = 2. 
Then, if u G a(D) and 8 ^ 80, we have 

io(u, 8) co(u, 80) ' 

(Here, and in the sequel, we drop the symbol for the region G in co and 
co when G is clear from the context). Hence, to prove II for D, it suf
fices to show that for some C > 0, 

l i m s u p ^ ^ O o g l / S ) - 1 ^ 
s-o co(w, o) 

uniformly for u G a(G). Fix such a u. By [2], 

œ(u, 8) = sup{\u(z) - u(z')\ : z G D, z' E 3D, 

\z-z'\1k8). 

(In [2], this lemma is stated for u analytic; however, since its proof 
relies only on the maximum principle, it also holds for u harmonic.) 
Therefore, we need only show that for sufficiently small 8 > 0, and for 
z G D, z' G 8D, such that \z - z* \ < 8, 

(1) Hz) - u(z')\ ^ C(log 1/SMu, 8\ 

where C is independent of u, 8, z, z'. Since the class of harmonic func
tions is invariant under rotations, without loss of generality we assume 
zf= 1. 

Fix 8 > 0. Let n be the first integer such that 8 is at least the length 
of the side of the regular 2n — gon inscribed in 3D; that is, n satisfies 

2 sin(7r/2(n - 1 ) ) > B 2 sin(7r/2n). 

Note that 

(2) l im nS = TT. 
5-0 
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Let o(z, dX) = o(z, dX, D) be the harmonic measure on 3D at z G D. 
(Since we are considering the unit disc, o(z, dX) is Pr(6 — t) dt, where 
z = rel$, dt is Lebesgue measure on 3D divided by 277, and Pr(0 — t) is 
the Poisson kernel.) Thus, 

<z) = X ) uw ° (* dx)> zea 

If 0 = k ^ n — 1, let Afc be the (counterclockwise) arc of 3D from 
eikm/n t o enk+iyn/n^ a n ( j i e t ^ ^ e ^ Symmetrically located arc with re
spect to the x — axis. Since 3D = U^zJ (Ak U Äk), and since a(z, dX) is 
a probability measure, 

n - l 

(3) | « ( z ) - « ( l ) | ^ 2 X u X \u(\) - u(l)\o (z, d\). 

As the chord length of Ak is less than 8, the triangle inequality implies 

\u(X) - u(l)\ S (Jfc + 1) <ó(u, 8) 

provided À G Afc U Ak. Then (3) becomes 

(4) \u(z) - tt(l)| =i I V (* + 1) ofe Ak U A,) 1 <ö(u, 8). 
L fc=o -J 

Put Bk = U /^ f c(A / U Ä,), ßk(z) = a(z, Bk), 0 ^ fc ë n - 1, and 
ßn(z) = 0. Because o(z, Ak U Äfc) = ßk(z) - ßk+1(z), (4) implies 

(5) M*) - u(l)| ^ ( V jBfc(*) ) «(ti, 8). 
\ k=0 / 

Now the level lies of o(z, A), for A a fixed arc of 3D, are circular arcs 
joining the endpoints of A (see, e.g., [5]). This property means that 
ßk(z) is maximized for \z — 1| = 8 at z = 1 — ô. Replacing /?fc(z) in (5) 
by /?fc = ßk(l — S), we see that to prove (1) we need only show 

/ n - l 

(6) lim sup ( 2 ßk ) • [log I /o]" 1 ^ C . 

Note that, by symmetry, ßk — 2yfc, where yk is the harmonic measure 
at 1 — 8 of the half of Bk which lies in the upper half plane. Since 
ß0 — 1, we have 

n—1 n—1 

2 ßk = i+ 2 2 yk-
fc=0 kzzl 
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To calculate yk, we map D conformally onto the upper half plane via 
the linear fractional transformation 

S = (z- l)/i(z + 1), z G D. 

Now, a short calculation shows that Ç(eikm/n) = tan (far/2n); moreover, 
f( —1) = oo. Since harmonic measure is conformally invariant [5], yk is 
the harmonic measure at f(l — 8) = «5/(2 — 8) of the interval 
(tan km/2n, + oo) on the real axis with respect to the upper-half plane. 
Since the function 1 — 1/77 Arg (z — tan kir/Zn) is harmonic in the up
per half-plane and assumes at x E R the boundary value 1 if 
x > tan (k7r/2n) and 0 if x < tan (hn/ln), yk is the value of this func
tion at z = iô/(2 — 5), namely 

1 t / ôcot(fc77/2n) \ 
Y * = -, t a n \ 2-8 ) ' 

Now, for 8 < 1, 

^ — esc I —— J 
77 \ 2n / 

" * 7 7 ' 

Therefore, since by (2) no < 4 if ô is sufficiently small, 

w_1 4 
2 Y* = — C log n. 

fc=l 77 

for such ô. Using (2) again, we see that (6) holds, and hence that II 
holds for D. 

More General Regions. In this section G is a Jordan region—a sim
ply-connected region such that 9 G is a Jordan curve—and f:G^>D is 
a one-to-one, conformai mapping of G onto D. By [6, vol. 2, p. 96], / 
extends to a one-to-one, continuous mapping (also denoted by "/") of G 
onto D; moreover, / _ 1 :D-^> G is continuous. 

THEOREM 2. Suppose f and / _ 1 satisfy (global) Lipschitz conditions on 
G and D, respectively. Then G. has properties I and IL 

PROOF. Suppose 
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and 

(8) \f-\zd - f-\*2)\ S K' \zt - %|, %, *2 E D. 

We assume K' ^ 1. For u G a(G), û = u ° / _ 1 G a(D); and for 
u G A(G), M G A(D). From (7) and the definitions of co and co, we have 

(9) co(u, 8, G) ^ co(ü, K8, D). 

Similarly, using (8), 

(10) co(u, 8, G) ^ co(ü, 8/K', D). 

Combining, (9) and (10), we obtain 

(u) u(u, 8, G) < co(ü, K8, D) 
{ } co(u, 8, G) co(ü, 8/K\ D) 

But if n is the first integer greater than or equal to KK\ the triangle 
inequality implies 

co(ü, K8, D) ^ nco(ü, 8/K\ D). 

Thus, (11) becomes 

co(tt, 8, G) (0(5, 8/K', D) 
K } co(u, ô, G) co(û, Ô/K', D)' 

Since D has property I, (12) implies that G does also. If u G a(G) 
and Ô ^ 1/2, than Ô/K' ^ 1/2, so the right-hand side of (12) is 
^ n • Clog(KVS) = n • Clog (I/o), by property II for D. Hence, G 
has property II, and the proof is complete. 

The following theorems are proved by showing in each case that 
Theorem 2 applies. 

THEOREM 3. If dG is an analytic curve, then G has properties I and 
II. 

PROOF. By [6, vol. 2, p. 102], / may be analytically continued across 
dG to a univalent function defined on a larger simply-connected region 
fi. Hence, by the argument principle and the compactness of G, there 
exist m, M such that 

(13) 0 < m < If (fll < M < oo, ÇŒG. 

Thus, Kf"1)'! < l/m on D. Now, as D is convex, if two points of D are 
given, we may integrate (f-1)' along the line segment joining them. 
Therefore, / _ 1 satisfies a global Lipschitz condition on D. To see that / 
satisfies a Lipschitz condition on G, let T be a rectifiable Jordan curve 

file:///f-/zd
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in fl such that G lies in the interior of T. An application of the Cauchy 
integral formula to / and T yields the desired result. An application of 
Theorem 2 completes the proof. 

Rather than the strong assumption of analyticity in Theorem 3, it is 
desirable to obtain "C^-type" conditions on 3G sufficient for the hyp-
thesis of Theorem 2; i.e., conditions about the existence and smoothness 
of tangents to 3G. To this end, we recall some definitions from the the
ory of conformai mapping ([7], chapter 10). The Jordan curve T, repre
sented by w(t), has a tangent at w0 — w(t0) if arg (w(t) — it>0) —• 0 as 
t i t0 and arg (w(t) — w;0) —* 0 + IT as t Î t0, for some 6 = 0(to) E R. T is 
smooth if it has a tangent at each of its points and 6(t) is continuous in 
t. The curve T is Dini-smooth if the angle 0(s) of the tangent, consid
ered as a function of the arc length s, satisfies 

\0(s2) - 0(^)1 < u(s2 - sj, «! < s2, 

where co is an increasing function such that f J co(x)/x dx < oo. 

THEOREM 4. Suppose that 8G is Dini-smooth and that 3G has bound
ed arc-chord ratio: there exists C > 0 such that for every pair of points 

Sv ?2 e 3G, 

|*2 - st\ ^ C\U - a 

where \s2 — st\ is the arc length along dG between fx and f2. Then G 
has properties I and II. 

PROOF. By a theorem of Warschawski [7, 8], (f-1)' extends contin
uously to D, and there exist m, M such that 

(13) 0 < m < Kf-1)'^)! < M < oo, zeD. 

As D is convex, integration of the right-hand inequality along line 
segments in D implies that / _ 1 satisfies a Lipschitz condition on D. 
Warschawski's theorem also implies that (f-1)' may be calculated on 3D 
by differentiating along 3D. Therefore, by the chain rule, 

ds dS ds - d£ \ d£± \' l ' )f 

I dt I 

exists and is continuous on 3G. But this means / satisfies a Lipschitz 
condition with respect to s on dG; and, therefore, by the boundedness 
of the arc-chord ratio, / satisfies a Lipschitz condition on 3G. Now, [2, 
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Theorem 2.7] implies that if M G A(G) and &(ti, 5, G) ^ KÔ, there ex
ists a C > 0 such that <o(w, ô, G) ^ C • 8. Letting u — j , we see from 
this result that / satisfies a Lipschitz condition on G. By an application 
of Theorem 2, the proof is complete. 

COROLLARY. Suppose dG is Dini-smooth and that G is convex. Then G 
has properties I and II. 

PROOF. The quickest proof of this result is to integrate the reciprocal 
of the left-hand inequality in (13) along line segments in G to conclude 
that / satisfies a Lipschitz condition on G, and then appeal to the first 
part of the proof of Theorem 4 and to Theorem 2. However, we will 
show that when 3 G is smooth and rectifiable (in particular, when it is 
Dini-smooth), convexity of G implies bounded arc-chord ratio on 3G—a 
result perhaps of some interest itself. 

Suppose 3 G does not have bounded arc-chord ratio, so that there are 
sequences {Jn} {Jn'} in 3G with 

(14) k - VI ^ n \Sn - J„'|. 

Passing to a subsequence, if necessary, we may assume that 
fw ~~* fo €= dG. Since 3G is rectifiable, (14) implies that fn' —* f0 also. 

Since G is convex, we may enclose 3G in a rectangle whose sides are 
tangent to 3G such that none of the four points of tangency is f0. The 
four points of tangency divide 3 G into four arcs. Suppose f and f lie 
on the same one of these arcs, and define a Cartesian coordinte system 
whose axes pass through the end points of this arc and are per
pendicular to the sides of the rectangle. If we partition the subarc from 
f to r and inscribe chords, then 

2 V(Ax),2 + (At/)/ g V2" 2 (|Ax,| + lAjfcl) 
i i 

g y/2 ( | 2 AX{ | + | 2 Ay< | ) 

=i 2 if - ri, 

where the second inequality follows from the constancy in sign of A^ 
and At/^ a consequence of G's convexity. This means 

\s - s'i ^ 2 if - ri-

Since this is contrary to (14), we conclude that 3G must have bounded-
arc chord ratio. 
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CONCLUSION. It would be desirable to discover the weakest possible 
geometric assumptions on G and/ or d G which would guarantee that G 
has properties I and II. Is there a simple counterexample among, say, 
the polygonal regions G, which shows the failure of I or II? 

It would also be desirable to know the best values of the constants C 
in I and II. One possible approach to this problem might be to 
prove—in the case of I, say—that 

co(w, 8, G) 
hm sup —)———f ^ C 

s^o Z)(u, o, G) 

then show (possibly by a kind of dilation argument?) exactly how much 
C must be increased to serve as a bound for all 8 > 0. 

This work was carried out while the author was a visiting faculty 
member at the University of North Carolina at Chapel Hill. It is a 
pleasure to thank Professors Cima, Petersen, Wogen, and Roberts for 
many valuable conversations and suggestions. Thanks are also extended 
to the referee for several valuable comments. 
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