THE CARTAN CRITERION FAILS FOR TRIANGULAR SUBALGEBRAS OF A FACTOR

ALAN HOPENWASSER

It is a familiar fact that if \mathscr{L} is a solvable Lie algebra of endomorphisms acting on a finite-dimensional, complex vector space V then there exists an (ordered) basis for V such that the matrix representation of each element of \(\sigma \) with respect to this basis is upper triangular. Further, Cartan's Criterion states that a Lie sub-algebra, \mathcal{L} , of End (V) is solvable if and only if tr(A[B, C]) = 0 for all A, B, C in \mathcal{L} . See, for example, [2], I.5.4. (The Lie product is given by [B, C] = BC - CB and tr is the trace.) The notion of an algebra of upper triangular matrices has been generalized by Kadison and Singer [5] to the setting of von Neumann algebras. (A sub-algebra $\mathcal T$ of a von Neumann algebra $\mathcal H$ is said to be triangular if $\mathcal{T} \cap \mathcal{T}^*$ is a maximal abelian self-adjoint subalgebra of \mathcal{B} . Here, $\mathcal{T}^* = \{T^* \mid T \in \mathcal{T}\}$.) In the case of finite von Neumann algebras a trace is available, and so we may inquire if Cartan's Criterion is valid for triangular sub-algebras. The purpose of this note is to answer the question negatively; an example is given of a triangular sub-algebra of a type II, factor for which Cartan's Criterion does not hold.

The factor in question is the group von Neumann algebra of F_2 , the free group on two generators, a and b. This factor, which we denote by \mathscr{R} , is a type II_1 factor which acts on the Hilbert space $\ell^2(F_2)$. For each $f \in \ell^2(F_2)$, let L_f denote the (left) convolution operator given by $L_f(g) = f^*g$, for all $g \in \ell^2(F_2)$. (Recall that convolution is defined by the formula $f * g(x) = \sum_{y \in \ell_2} f(y)g(y^{-1}x)$.) Also, note that $(L_f)^* = L_{f^*}$, where f^* is defined by $f^*(x) = f(x^{-1})$. Then \mathscr{R} is precisely the set of all those L_f which are bounded linear operators on $\ell^2(F_2)$. If, for each $x \in F_2$, we let $\delta(x)$ denote the characteristic function of $\{x\}$ and set $U_x = L_{\delta(x)}$, then \mathscr{R} is the von Neumann algebra generated by the family of unitaries, $\{U_x \mid x \in F_2\}$. (The action of each unitary U_x is given by $(U_x f)(y) = f(x^{-1}y)$, for all $f \in \ell^2(F_2)$ and all $y \in F_2$. For a full exposition of the group algebra construction of Murray and von Neumann the reader may consult [4].)

Let \mathscr{A} be the sub-von Neumann algebra of \mathscr{R} generated by $\{U_{a^n} | n \in Z\}$. Note that $\mathscr{A} = \{L_f | L_f \in \mathscr{R} \text{ and supp}(f) \text{ is contained in } \}$

A, the subgroup of F_2 generated by a}. \mathscr{A} is clearly abelian and is, in fact, a maximal abelian *-sub-algebra of \mathscr{R} . Indeed, if $L_f \in \mathscr{R}$ and commutes with each U_{a^n} , then U_{a^n} $L_f U_{a^{-n}} = L_f$, whence $\delta(a^n) * f * \delta(a^{-n}) = f$ for each integer n. This implies that $f(x) = f(a^{-n}xa^n)$ for all $x \in F_2$ and all $n \in Z$. If $x \notin \{a^n \mid n \in Z\}$ then $\{a^{-n}xa^n \mid n \in Z\}$ is infinite; since f is square summable and constant of this set, it must vanish there. This proves that $\operatorname{supp}(f)$ is contained in the subgroup generated by a, i.e., $L_f \in \mathscr{A}$.

The unique normalized trace defined on \mathscr{R} is given by the formula $\operatorname{tr}(L_f)=f(e)$, where e is the identity element in F_2 . Also, observe that the mapping $\phi:\mathscr{R}\to\mathscr{A}$ given by $\phi(L_f)=L_{f|A}$ preserves the trace and is a diagonal process on \mathscr{R} relative to \mathscr{A} . (That is, $\operatorname{tr}(S)=\operatorname{tr}(\phi(S))$ for all $S\in\mathscr{R}$, ϕ is linear, positive and $\phi(DT)=D\phi(T)$, $\phi(TD)=\phi(T)D$, for all $D\in\mathscr{A}$ and all $T\in\mathscr{R}$. See [1], 6.1.3, page 635.) This mapping is an analogue of the mapping on the set of $n\times n$ matrices which carries each matrix B to that diagonal matrix with the same diagonal entries as B. Such a mapping is multiplicative on the set of upper triangular matrices. However, the diagonal process ϕ , when restricted to the triangular algebra \mathscr{T} defined below, is not multiplicative.

Let $T=U_{b^{-1}}+U_b+U_{b^2}$ and let \mathscr{T} be the algebra generated by \mathscr{A} and T. An arbitrary element of \mathscr{T} is a finite sum of terms each of which has the form $A_0TA_1T\cdots A_{k-1}TA_k$, where $A_0,\ A_1,\ \cdots,\ A_k\in\mathscr{A}$ (and any, or all, of the A_i may equal the identity, I). A term of the form $A_0T\cdots TA_k$ will be said to have length k. (The possibility k=0 is not excluded.) If $L_f=A_0T\cdots TA_k$, then there are constraints on the support of f. Any element $x\neq e$ in F_2 can be written in a canonical form: $x=a^{n_0}b^{m_1}a^{n_1}\cdots b^{m_n}a^{n_n}$, where only the exponents n_0 and n_j may be 0. This includes the possibility that j=0, i.e., x is a power of a. The sequence of exponents is determined by x, since the group is free. For each $x\in F_2$, let $\sigma(x)=m_1+\cdots+m_j=$ the sum of the exponents of b in the canonical form for x. (Of course, if $x\in A$ then $\sigma(x)=0$.) If $x\in \operatorname{supp}(f)$, then $-k\leqq \sigma(x)\leqq 2k$. If it is also known that $\sigma(x)=2k$, then x must have the form $a^n \circ b^2 a^{n_1} b^2 \cdots b^2 a^{n_k}$ for a unique (k+1)-tuple of integers (n_0,\cdots,n_k) .

Proposition 1. The algebra \mathcal{T} is triangular with diagonal \mathscr{A} .

PROOF. It is evident that $\mathscr{A} \subset \mathscr{F} \cap \mathscr{F}^*$; for the reverse containment it suffices to show that if $S = L_f$ is a self-adjoint element of \mathscr{F} , then $S \in \mathscr{A}$. So, assume that S is a self-adjoint element of \mathscr{F} ; S may be written as a finite sum of terms as above. Let k be the greatest length of any of the terms in S. We shall show that if k > 0 then S may be expressed as a sum of terms all of length less than k. This proves the

proposition, for repeated application of the argument shows that S may be written as a sum of terms of length 0, i.e., S lies in \mathscr{A} .

We may write

$$S = L_f = A_0^{\ 1}TA_1^{\ 1}T \cdots TA_k^{\ 1} + \cdots + A_0^{\ p}TA_1^{\ p}T \cdots TA_k^{\ p}$$
+ a finite sum of terms of length less than k.

First observe that if $x \in \operatorname{supp}(f)$, then $-k \leq \sigma(x) \leq k$. Indeed, it is immediate from the form of L_f and the remarks above that $-k \leq \sigma(x) \leq 2k$. But since L_f is self-adjoint, $f(x) = \overline{f(x^{-1})}$, whence $x^{-1} \in \operatorname{supp}(f)$. Thus $-k \leq \sigma(x^{-1}) \leq 2k$; the fact that $\sigma(x^{-1}) = -\sigma(x)$ now implies that $-2k \leq \sigma(x) \leq k$.

For each A_i^j , let $f^{(i,j)}$ be the function in $\ell^2(F_2)$ (with support in $A=\{a^n\mid n\in Z\}$) such that $A_i^j=L_{f^{(i,j)}}$. Consider the function

$$h = \sum_{j=1}^{p} f^{(0,j)} * \delta(b^2) * f^{(1,j)} * \delta(b^2) * \cdots * \delta(b^2) * f^{(k,j)}.$$

The support of h consists entirely of points of the form $x = a^{n_0}b^2a^{n_1}b^2$ \cdots $b^2a^{n_k}$, and at such points h takes the same values as f. But if $x \in \text{supp}(h)$, $\sigma(x) = 2k$; hence 0 = f(x) = h(x). Thus

$$0 = h = \sum_{j=1}^{p} f^{(0,j)} * \delta(b^{2}) * \cdots * \delta(b^{2}) * f^{(k,j)}$$

$$= \sum_{n_{0}, \dots, n_{k}} \left(\sum_{j=1}^{p} f^{(0,j)}(a^{n_{0}}) f^{(1,j)}(a^{n_{1}}) \cdots f^{(k,j)}(a^{n_{k}}) \right) \delta(a^{n_{0}}b^{2} \cdots b^{2}a^{n_{k}}).$$

Now the $a^{n_0}b^2 \cdots b^2a^{n_k}$ are distinct for distinct (k+1)-tuples of integers (n_0, \dots, n_k) , hence each coefficient must be zero. From this it follows that, for any k-tuple $\alpha_1, \dots, \alpha_k$ of non-zero integers,

$$\sum_{j=1}^{p} f^{(0,j)*}\delta(b^{\alpha_{1}})^{*} \cdots *f^{(k,j)*}\delta(b^{\alpha_{k}})$$

$$= \sum_{n_{0},\cdots,n_{k}} \left(\sum_{j=1}^{p} f^{(0,j)}(a^{n_{0}}) \cdots f^{(k,j)}(a^{n_{k}})\delta(a^{n_{0}}b^{\alpha_{1}} \cdots b^{\alpha_{k}}a^{n_{k}}) \right)$$

$$= \sum_{n_{0},\cdots,n_{k}} 0 \cdot \delta(a^{n_{0}}b^{\alpha_{1}} \cdots b^{\alpha_{k}}a^{n_{k}}) = 0.$$

In particular,

$$0 = \sum_{j=1}^{p} f^{(0,j)} * (\delta(b^{-1}) + \delta(b) + \delta(b^{2})) * \cdots * (\delta(b^{-1}) + \delta(b) + \delta(b^{2})) * f^{(k,j)}.$$

But the function on the right hand side is just that element of $\ell^2(F_2)$ which is mapped by the left regular representation onto the operator, $A_0^1T \cdots TA_k^1 + \cdots + A_0^pT \cdots TA_k^p$ in \mathcal{R} . Hence this operator is zero and S can be written as a sum of terms of length less than k.

Proposition 2. The trace-preserving diagonal process ϕ is not multiplicative when restricted to \mathcal{T} .

PROOF. Since
$$T=U_{b^{-1}}+U_b+U_{b^2}$$
, $\phi(T)=0$. But $T^2=U_{b^{-2}}+2U_e+2U_b+U_{b^2}+2U_{b^3}+U_{b^4}$, hence $\phi(T^2)=2U_e=2I$.

Proposition 3. The Cartan Criterion does not hold for \mathcal{T} .

PROOF. Let $A=U_{a^{-1}}$, $B=U_aT$, and C=T. Observe that $\operatorname{tr}(ABC)=\operatorname{tr}(U_{a^{-1}}U_aTT)=\operatorname{tr}(T^2)=2$. If $L_g=ACB=U_{a^{-1}}TU_aT$, then any element x in $\operatorname{supp}(g)$ has the form $x=a^{-1}b^nab^m$, where $n,m\in\{-1,1,2\}$. In particular, $\operatorname{tr}(ACB)=0$. Thus $\operatorname{tr}(A[B,C])=\operatorname{tr}(ABC-ACB)=2\neq 0$, and Cartan's Criterion fails.

Remark. An operator which is not in the kernel of the diagonal process ϕ may be thought of as having a nonzero diagonal part. If we take $B=U_aT$ and C=T as above, then $\phi(BC)=\phi(U_aT^2)=U_a\phi(T^2)=2U_a$ and $\phi(CB)=\phi(TU_aT)=0$ (as can be seen from considering the support of the appropriate function). Therefore, $\phi([B,C])=2U_a\neq 0$ and we see that there exist commutators with non-zero diagonal part. Since $\phi(B)=\phi(C)=0$, we see also that $\ker\phi$ is not even a Lie algebra. (Compare [3]).

We conclude with one final proposition about the algebra \mathcal{T} :

Proposition 4. \mathcal{T} is irreducible (in \mathcal{R}).

PROOF. We must show that if $E=L_f$ is a non-zero projection in $\mathscr B$ such that ESE=SE for all $S\in\mathscr T$, then E=I. Note first that since each element of $\mathscr A$ leaves E invariant, E commutes with $\mathscr A$ and hence, $E\in\mathscr A$. Therefore, f has support contained in A; since $f\neq 0$, there is an integer n such that $f(a^n)\neq 0$. Let $g=\delta(b^{-1})+\delta(b)+\delta(b^2)$. Then ETE=TE implies that f*g*f=g*f. Let m be a non-zero integer and evaluate both f*g*f and g*f at a^mba^n . For g*f we obtain: $g*f(a^mba^n)=\Sigma_x\,g(x)\,f(x^{-1}a^mba^n)=f(ba^mba^n)+f(b^{-1}a^mba^n)=0$, since $m\neq 0$ and f has support in f. On the other hand,

$$f * g * f(a^mba^n) = \sum_{x,y} f(x)g(x^{-1}y)f(y^{-1}a^mba^n)$$
$$= \sum_{p,q} f(a^p)g(a^{-p}a^mba^q)f(a^{n-q})$$
$$= f(a^m)f(a^n).$$

The equalities above utilize the facts that f(x) = 0 unless $x = a^p$, for some p; $f(y^{-1}a^mba^n) = 0$ unless $y = a^mba^q$, for some q; and $g(a^{-p}a^mba^q) = 0$ unless m = p and q = 0. Since we know that f * g * f = g * f and that $f(a^n) \neq 0$, we conclude that $f(a^m) = 0$ for all $m \neq 0$. Thus, $f = f(e)\delta(e)$ and E = f(e)I. Since E is a projection, we must have f(e) = 1 and the proposition is proven.

Remark. Proposition 4 implies that the only elements of $\mathcal B$ which commute with $\mathcal T$ are the scalar operators.

REFERENCES

- W. Arveson, Analyticity in Operator Algebras, Amer. J. Math. 89 (1967), 578–642.
- N. Bourbaki, Lie Groups and Lie Algebras, Part I, Addison-Wesley, Reading, Mass., 1975.
 - 3. J. A. Erdos, Some Questions Concerning Triangular Operator Algebras, preprint.
- 4. R. V. Kadison, Theory of Operators, Part II. Operator Algebras, Bull. A.M.S. 64 (1958), 61–85.
- R. V. Kadison and I. M. Singer, Triangular Operator Algebras, Amer. J. Math. 82 (1960), 227–259.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486

