THE CARTAN CRITERION FAILS FOR TRIANGULAR SUBALGEBRAS OF A FACTOR

ALAN HOPENWASSER
It is a familiar fact that if f is a solvable Lie algebra of endomorphisms acting on a finite-dimensional, complex vector space V then there exists an (ordered) basis for V such that the matrix representation of each element of \mathcal{f} with respect to this basis is upper triangular. Further, Cartan's Criterion states that a Lie sub-algebra, \mathcal{f}, of End (V) is solvable if and only if $\operatorname{tr}(A[B, C])=0$ for all A, B, C in \mathcal{f}. See, for example, [2], I.5.4. (The Lie product is given by $[B, C]=B C-C B$ and tr is the trace.) The notion of an algebra of upper triangular matrices has been generalized by Kadison and Singer [5] to the setting of von Neumann algebras. (A sub-algebra. T of a von Neumann algebra \mathscr{P} is said to be triangular if $T^{\top} \cap T^{*}$ is a maximal abelian self-adjoint subalgebra of \mathscr{H}. Here, $T^{*}=\left\{T^{*} \mid T \in . T\right\}$.) In the case of finite von Neumann algebras a trace is available, and so we may inquire if Cartan's Criterion is valid for triangular sub-algebras. The purpose of this note is to answer the question negatively; an example is given of a triangular sub-algebra of a type II_{1} factor for which Cartan's Criterion does not hold.

The factor in question is the group von Neumann algebra of F_{2}, the free group on two generators, a and b. This factor, which we denote by \mathscr{R}, is a type II_{1} factor which acts on the Hilbert space $\ell^{2}\left(F_{2}\right)$. For each $f \in l^{2}\left(F_{2}\right)$, let L_{f} denote the (left) convolution operator given by $L_{f}(g)$ $=f * g$, for all $g \in \ell^{2}\left(F_{2}\right)$. (Recall that convolution is defined by the formula $f * g(x)=\sum_{y \in \in_{2}} f(y) g\left(y^{-1} x\right)$.) Also, note that $\left(L_{f}\right)^{*}=L_{f *}$, where f^{*} is defined by $f^{*}(x)=\bar{f}\left(x^{-1}\right)$. Then \mathscr{P} is precisely the set of all those L_{f} which are bounded linear operators on $\ell^{2}\left(F_{2}\right)$. If, for each $x \in F_{2}$, we let $\delta(x)$ denote the characteristic function of $\{x\}$ and set $U_{x}=L_{\delta(x)}$, then \mathscr{B} is the von Neumann algebra generated by the family of unitaries, $\left\{U_{x} \mid x \in F_{2}\right\}$. (The action of each unitary U_{x} is given by $\left(U_{x} f\right)(y)$ $=f\left(x^{-1} y\right)$, for all $f \in \ell^{2}\left(F_{2}\right)$ and all $y \in F_{2}$. For a full exposition of the group algebra construction of Murray and von Neumann the reader may consult [4].)

Let \mathscr{A} be the sub-von Neumann algebra of \mathscr{R} generated by $\left\{U_{a^{n}} \mid n \in Z\right\}$. Note that $\mathscr{A}=\left\{L_{f} \mid L_{f} \in \mathscr{P}\right.$ and $\operatorname{supp}(f)$ is contained in
A, the subgroup of F_{2} generated by $\left.a\right\} . \mathscr{A}$ is clearly abelian and is, in fact, a maximal abelian *-sub-algebra of \mathscr{R}. Indeed, if $L_{f} \in \mathscr{P}$ and commutes with each $U_{a^{n}}$, then $U_{a^{n}} L_{f} U_{a^{-n}}=L_{f}$, whence $\delta\left(a^{n}\right) * f$ $* \delta\left(a^{-n}\right)=f$ for each integer n. This implies that $f(x)=f\left(a^{-n} x a^{n}\right)$ for all $x \in F_{2}$ and all $n \in Z$. If $x \notin\left\{a^{n} \mid n \in Z\right\}$ then $\left\{a^{-n} x a^{n} \mid n \in Z\right\}$ is infinite; since f is square summable and constant of this set, it must vanish there. This proves that $\operatorname{supp}(f)$ is contained in the subgroup generated by a, i.e., $L_{f} \in \mathscr{A}$.
The unique normalized trace defined on \mathscr{P} is given by the formula $\operatorname{tr}\left(L_{f}\right)=f(e)$, where e is the identity element in F_{2}. Also, observe that the mapping $\phi: \mathscr{R} \rightarrow \mathscr{A}$ given by $\phi\left(L_{f}\right)=L_{f \mid A}$ preserves the trace and is a diagonal process on \mathscr{P} relative to \mathscr{A}. (That is, $\operatorname{tr}(S)=\operatorname{tr}(\phi(S))$ for all $S \in \mathscr{P}, \phi$ is linear, positive and $\phi(D T)=D \phi(T), \phi(T D)=\phi(T) D$, for all $D \in \mathscr{A}$ and all $T \in \mathscr{H}$. See [1], 6.1.3, page 635.) This mapping is an analogue of the mapping on the set of $n \times n$ matrices which carries each matrix B to that diagonal matrix with the same diagonal entries as B. Such a mapping is multiplicative on the set of upper triangular matrices. However, the diagonal process ϕ, when restricted to the triangular algebra. T defined below, is not multiplicative.

Let $T=U_{b^{-1}}+U_{b}+U_{b^{2}}$ and let \mathscr{T} be the algebra generated by \mathscr{A} and T. An arbitrary element of \mathscr{T} is a finite sum of terms each of which has the form $A_{0} T A_{1} T \cdots A_{k-1} T A_{k}$, where $A_{0}, A_{1}, \cdots, A_{k} \in \mathscr{A}$ (and any, or all, of the A_{i} may equal the identity, I). A term of the form $A_{0} T \cdots T A_{k}$ will be said to have length k. (The possibility $k=0$ is not excluded.) If $L_{f}=A_{0} T \cdots T A_{k}$, then there are constraints on the support of f. Any element $x \neq e$ in F_{2} can be written in a canonical form: $x=a^{n_{0}} b^{m_{1}} a^{n_{1}} \cdots b^{m_{i}} a^{n_{j}}$, where only the exponents n_{0} and n_{j} may be 0 . This includes the possibility that $j=0$, i.e., x is a power of a. The sequence of exponents is determined by x, since the group is free. For each $x \in F_{2}$, let $\sigma(x)=m_{1}+\cdots+m_{j}=$ the sum of the exponents of b in the canonical form for x. (Of course, if $x \in A$ then $\sigma(x)=0$.) If $x \in \operatorname{supp}(f)$, then $-k \leqq \sigma(x) \leqq 2 k$. If it is also known that $\sigma(x)=2 k$, then x must have the form $a^{n_{0}} b^{2} a^{n_{1}} b^{2} \cdots b^{2} a^{n_{k}}$ for a unique $(k+1)$ tuple of integers $\left(n_{0}, \cdots, n_{k}\right)$.

Proposition 1. The algebra. T is triangular with diagonal \mathscr{A}.
Proof. It is evident that $\mathscr{S} \subset \mathscr{T} \cap . \mathscr{T}^{*}$; for the reverse containment it suffices to show that if $S=L_{f}$ is a self-adjoint element of \mathscr{T}, then $S \in \mathscr{A}$. So, assume that S is a self-adjoint element of $\mathscr{T} ; S$ may be written as a finite sum of terms as above. Let k be the greatest length of any of the terms in S. We shall show that if $k>0$ then S may be expressed as a sum of terms all of length less than k. This proves the
proposition, for repeated application of the argument shows that S may be written as a sum of terms of length 0 , i.e., S lies in \mathscr{A}.

We may write

$$
\begin{aligned}
\mathrm{S}= & L_{f}=A_{0}{ }^{1} T A_{1}{ }^{1} T \cdots T A_{k}{ }^{1}+\cdots+A_{0}{ }^{p} T A_{1}{ }^{p} T \cdots T A_{k}{ }^{p} \\
& + \text { a finite sum of terms of length less than } k .
\end{aligned}
$$

First observe that if $x \in \operatorname{supp}(f)$, then $-k \leqq \sigma(x) \leqq k$. Indeed, it is immediate from the form of L_{f} and the remarks above that $-k \leqq \sigma(x) \leqq 2 k$. But since L_{f} is self-adjoint, $f(x)=\overline{f\left(x^{-1}\right)}$, whence $x^{-1} \in \operatorname{supp}(f)$. Thus $-k \leqq \sigma\left(x^{-1}\right) \leqq 2 k$; the fact that $\sigma\left(x^{-1}\right)=-\sigma(x)$ now implies that $-2 k \leqq \sigma(x) \leqq k$.

For each $A_{i}{ }^{j}$, let $f^{(i, j)}$ be the function in $\ell^{2}\left(F_{2}\right)$ (with support in $\left.A=\left\{a^{n} \mid n \in Z\right\}\right)$ such that $A_{i}{ }^{j}=L_{f^{(i, j)}}$. Consider the function

$$
h=\sum_{j=1}^{p} f^{(0, j) *} \delta\left(b^{2}\right)^{*} f^{(1, j) *} \delta\left(b^{2}\right)^{*} \ldots * \delta\left(b^{2}\right)^{*} f^{(k, j)} .
$$

The support of h consists entirely of points of the form $x=a^{n_{0}} b^{2} a^{n_{1}} b^{2}$ $\cdots b^{2} a^{n_{k}}$, and at such points h takes the same values as f. But if $x \in \operatorname{supp}(h), \sigma(x)=2 k$; hence $0=f(x)=h(x)$. Thus

$$
\begin{aligned}
0 & =h=\sum_{j=1}^{p} f^{(0, j) *} \delta\left(b^{2}\right)^{*} \ldots * \delta\left(b^{2}\right)^{*} f^{(k, j)} \\
& =\sum_{n_{0}, \cdots, n_{k}}\left(\sum_{j=1}^{p} f^{(0, j)}\left(a^{n_{0}}\right) f^{(1, j)}\left(a^{n_{1}}\right) \cdots f^{(k, j)}\left(a^{n_{k}}\right)\right) \delta\left(a^{n_{0}} b^{2} \cdots b^{2} a^{n_{k}}\right) .
\end{aligned}
$$

Now the $a^{n_{0}} b^{2} \cdots b^{2} a^{n_{k}}$ are distinct for distinct $(k+1)$-tuples of integers $\left(n_{0}, \cdots, n_{k}\right)$, hence each coefficient must be zero. From this it follows that, for any k-tuple $\alpha_{1}, \cdots, \alpha_{k}$ of non-zero integers,

$$
\begin{aligned}
& \sum_{j=1}^{p} f^{(0, j) *} \delta\left(b^{\alpha_{1}}\right)^{*} \ldots{ }^{*} f^{k, j) *} \delta\left(b^{\alpha_{k}}\right) \\
& =\sum_{n_{0}, \cdots, n_{k}}\left(\sum_{j=1}^{p} f^{(0, j)}\left(a^{n_{0}}\right) \cdots f^{(k, j)}\left(a^{n_{k}}\right) \delta\left(a^{n_{0}} b^{\alpha_{1}} \cdots b^{\alpha_{k}} a^{n_{k}}\right)\right. \\
& =\sum_{n_{0}, \cdots, n_{k}} 0 \cdot \delta\left(a^{n_{0}} b^{\alpha_{1}} \cdots b^{\alpha_{k}} a^{n_{k}}\right)=0 .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
0= & \sum_{j=1}^{p} f^{(0, j) *}\left(\delta\left(b^{-1}\right)+\delta(b)+\delta\left(b^{2}\right)\right)^{*} \ldots{ }^{*}\left(\delta\left(b^{-1}\right)\right. \\
& \left.+\delta(b)+\delta\left(b^{2}\right)\right)^{*} f^{(k, j)} .
\end{aligned}
$$

But the function on the right hand side is just that element of $\mathscr{l}^{2}\left(F_{2}\right)$ which is mapped by the left regular representation onto the operator, $A_{0}{ }^{1} T \cdots T A_{k}{ }^{1}+\cdots+A_{0}{ }^{p} T \cdots T A_{k}{ }^{p}$ in \mathscr{R}. Hence this operator is zero and S can be written as a sum of terms of length less than k.
Proposition 2. The trace-preserving diagonal process ϕ is not multiplicative when restricted to \mathscr{T}.
Proof. Since $T=U_{b^{-1}}+U_{b}+U_{b^{3}} \phi(T)=0$. But $T^{2}=U_{b^{-2}}+2 U_{e}$ $+2 U_{b}+U_{b^{2}}+2 U_{b^{3}}+U_{b^{4}}$, hence $\phi\left(T^{2}\right)=2 U_{e}=2 I$.
Proposition 3. The Cartan Criterion does not hold for \mathscr{T}.
Proof. Let $A=U_{a-ヶ} B=U_{a} T$, and $C=T$. Observe that $\operatorname{tr}(A B C)=$ $\operatorname{tr}\left(U_{a^{-1}} U_{a} T T\right)=\operatorname{tr}\left(T^{2}\right)=2$. If $L_{g}=A C B=U_{a^{-1}} T U_{a} T$, then any element x in $\operatorname{supp}(g)$ has the form $x=a^{-1} b^{n} a b^{m}$, where $n, m \in\{-1,1$, 2\}. In particular, $\operatorname{tr}(A C B)=0$. Thus $\operatorname{tr}(A[B, C])=\operatorname{tr}(A B C-A C B)=$ $2 \neq 0$, and Cartan's Criterion fails.

Remark. An operator which is not in the kernel of the diagonal process ϕ may be thought of as having a nonzero diagonal part. If we take $B=U_{a} T$ and $C=T$ as above, then $\phi(B C)=\phi\left(U_{a} T^{2}\right)=U_{a} \phi\left(T^{2}\right)=$ $2 U_{a}$ and $\phi(C B)=\phi\left(T U_{a} T\right)=0$ (as can be seen from considering the support of the appropriate function). Therefore, $\phi([B, C])=2 U_{a} \neq 0$ and we see that there exist commutators with non-zero diagonal part. Since $\phi(B)=\phi(C)=0$, we see also that $\operatorname{ker} \phi$ is not even a Lie algebra. (Compare [3]).
We conclude with one final proposition about the algebra \mathscr{T} :
Proposition 4. \mathscr{T} is irreducible (in \mathscr{P}).
Proof. We must show that if $E=L_{f}$ is a non-zero projection in \mathscr{R} such that $E S E=S E$ for all $S \in \mathscr{T}$, then $E=I$. Note first that since each element of \mathscr{A} leaves E invariant, E commutes with \mathscr{A} and hence, $E \in \mathscr{A}$. Therefore, f has support contained in A; since $f \neq 0$, there is an integer n such that $f\left(a^{n}\right) \neq 0$. Let $g=\delta\left(b^{-1}\right)+\delta(b)+\delta\left(b^{2}\right)$. Then $E T E=T E$ implies that $f * g * f=g * f$. Let m be a non-zero integer and evaluate both $f * g * f$ and $g * f$ at $a^{m} b a^{n}$. For $g * f$ we obtain: $g * f\left(a^{m} b a^{n}\right)=\Sigma_{x} g(x) f\left(x^{-1} a^{m} b a^{n}\right)=f\left(b a^{m} b a^{n}\right)+f\left(b^{-1} a^{m} b a^{n}\right)+$ $f\left(b^{-2} a^{m} b a^{n}\right)=0$, since $m \neq 0$ and f has support in A. On the other hand,

$$
\begin{aligned}
f * g * f\left(a^{m} b a^{n}\right) & =\sum_{x, y} f(x) g\left(x^{-1} y\right) f\left(y^{-1} a^{m} b a^{n}\right) \\
& =\sum_{p, q} f\left(a^{p}\right) g\left(a^{-p} a^{m} b a^{q}\right) f\left(a^{n-q}\right) \\
& =f\left(a^{m}\right) f\left(a^{n}\right)
\end{aligned}
$$

The equalities above utilize the facts that $f(x)=0$ unless $x=a^{p}$, for some $p ; f\left(y^{-1} a^{m} b a^{n}\right)=0$ unless $y=a^{m} b a^{q}$, for some q; and $g\left(a^{-p} a^{m} b a^{q}\right)=0$ unless $m=p$ and $q=0$. Since we know that $f * g * f$ $=g * f$ and that $f\left(a^{n}\right) \neq 0$, we conclude that $f\left(a^{m}\right)=0$ for all $m \neq 0$. Thus, $f=f(e) \delta(e)$ and $E=f(e) I$. Since E is a projection, we must have $f(e)=1$ and the proposition is proven.

Remark. Proposition 4 implies that the only elements of \mathscr{P} which commute with \mathscr{T} are the scalar operators.

References

1. W. Arveson, Analyticity in Operator Algebras, Amer. J. Math. 89 (1967), 578-642.
2. N. Bourbaki, Lie Groups and Lie Algebras, Part I, Addison-Wesley, Reading, Mass., 1975.
3. J. A. Erdos, Some Questions Concerning Triangular Operator Algebras, preprint.
4. R. V. Kadison, Theory of Operators, Part II. Operator Algebras, Bull. A.M.S. 64 (1958), 61-85.
5. R. V. Kadison and I. M. Singer, Triangular Operator Algebras, Amer. J. Math. 82 (1960), 227-259.

Department of Mathematics, University of Alabama, University, Alabama 35486

