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IDEMPOTENT ARTINIAN RINGS AND PROJECTIVE COVERS 

RICHARD M. BITTMAN AND LAWRENCE S. LEVY 

ABSTRACT. It is shown that the idempotent, left artinian rings 
form a collection of (non-abelian) categories in which every object 
has a unique projective cover. It is also shown that, over a LEFT 
artinian ring with identity, the projective cover of every finite 
RIGHT (unitary) module is again finite. 

1. Introduction. Charles Hopkins [2, 7.1] noted that every left arti
nian ring A is a sum (not necessarily direct) A = R + N of an idempo
tent one R (i.e., R = R2) and a nilpotent one N. Furthermore, by tak
ing the Peirce decomposition of the idempotent summand R with 
respect to a suitable idempotent element e, he noted that R could be 
built by starting with the left artinian ring U = eRe with identity. (The 
details of this building process will be reviewed in §2.) 

Our interest in the subject comes from the fact that, by taking a 
more categorical point of view than was possible in the 1930's, one can 
continue Hopkins' program, obtaining some interesting structure in an 
area singularly lacking in modern results : idempotent artinian rings. 

Specifically, we show that the class -f{ U) of all idempotent left arti
nian rings R which can be built from any fixed U by Hopkins' pro
cedure forms a category in which every element has a unique projec
tive cover. In the process, we show how to construct many examples of 
rings in J^(U), not a difficult task using module theory. 

In a subsequent paper [6], Bittman will determine for which rings U 
and V the categories •Jr( U) and -X(V) are equivalent. 

Let R be any left artinian ring. Then R/ rad R, being semisimple arti
nian, always has an identity [4]; and since rad fi is a nil ideal, that 
identity can be lifted to an idempotent e of R. Such an idempotent of 
R is called a principal idempotent, and the ring U — eRe is easily seen 
to be a left artinian ring with identity. We call U a unitary ring of R. 

If é is another principal idempotent of R, then the ring U — e'Re' 
is isomorphic to U (see [5, 3.1]). Thus the isomorphism class of U is an 
invariant of R, and we regard U as the first step in building R from 
rings with identity. We formalize this in: 

BASIC DEFINITION. Let U be a left artinian ring with identity. We de
note, by J^(C7), the category whose objects are all idempotent, left arti
nian rings with unitary ring ^ U. The morphisms of J^(C7) are defined 
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to be all ring homorphisms ft ^ S, between objects of -J^(U), which 
take some unitary ring of R isomorphically onto some unitary ring of S. 

We will prove, in §3, that a morphism R —> S of -f(U) must take 
every unitary ring of R isomorphically onto one S. Thus composition of 
maps R —-> S and S —> T is possible, and X((7) is indeed a category. 
Moreover, every ring homomorphism: ft onto S, with ft and S in J^([7), 
turns out to be a morphism oi-flJJ) (§3). The corresponding result for 
one-to-one maps is false: For example, some fields can be mapped iso
morphically onto proper subfields of themselves. 

We will call a ring F in -f(^J) projective if, whenever / and g are 
morphisms oi-f(\J), with / onto, there exists a morphism h of -f(U) 
such that the diagram below commutes. 

h/ 

Ä"--
(onto) 

A projective cover of ft [ft in -f(lJ)\ is a morphism cp : ft onto ft, with 
ft projective, which is a minimal epimorphism ("epimorphism'' meaning 
"onto") in the sense that no subring X C ft (proper inclusion), X in 

•f(U), satisfies <p(X) = R. 
The main results of this paper (Theorems 4.1 and 4.5) state: Every 

ring R in-!f(XJ) has a projective cover <p : ft -*> R. If f : P -*> R is an
other projective cover of R, then there is a ring isomorphism 0 : R >-» P 
such that <p = fO. Moreover, <p is absolutely minimal in the sense that 
no subring X C R satisfies <p(X) = ft, regardless of whether or not X 
G ./-(CT). 

The reason underlying this striking analogy with module theory is 
that the additive group (ft, +) is a direct sum A © U ® B ® N 
where A is a finite (unitary) right [/-module, ft is a left (7-module of fi
nite (composition) length, and N is a homomorphic image of the group 
A &JJ ft. This (simple, and rather old) observation is discussed in §2. It 
provides us with an easy source of examples of rings in-J^(U) and with 
the motivation for the proof of the main theorems: ft turns out to be 
projective m-f(fj) if and only if A and ft are projective [/-modules and 
N = A ®VB (see §4). 

In making the transition from module theory over U to ring theory in 
•f(ll) we require the following fact, proved in the Appendix: Over a 
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left artinian ring U with identity, the projective cover of every finite 
RIGHT (unitary) U-module is again finite (but the result is false for 
projective covers of finite LEFT (7-modules). 

Since the motivation for the main results of this paper is categorical, 
we remark that being onto or 1 — 1 are categorical properties of 
morphisms in -^(U), that is, they are preserved by category equiva
lences -J^(U)—* -^(V). The proofs of these facts will appear in [6]. 

2. The PPD and Examples. Let JR be any ring which has a principal 
idempotent e ( = an idempotent which becomes the identity element in 
ß / r a d R). The Principal Peirce Decomposition of R with respect to e 
— Ijj is the decomposition 

(R, + ) = (1 - e)Re © eRe © eR(\ - e) © (1 - e)R(l - e). 
(PPD) v , ^ - ^ v , / * w ' 

= A = (7 = B = N 
Here 1 — e is used symbolically only; that is, (1 — e)x means x — ex. 

Note that A and B are, respectively, right and left unitary U-
modules, N is a ring (nilpotent when R is artinian, because e becomes 
the identity modulo rad R), AB Q N, and BA C U. 

THEOREM 2.1. Keep the above notation. Then 
(1) R is left artinian and left noetherian <=> A and N are finite sets 

and JJU and jjB are modules with composition series. 
(2) BA C rad U. 
(3) If R is left artinian, R = R2 <=> AB = N. 

THEOREM 2.2. Every idempotent left artinian ring is also left noethe
rian. 

These facts, due mainly to Hopkins and Szele, are assembled in [5, 
§2]. Note that the PPD displayed above, together with Hopkins' obser
vation (3), show that every idempotent left artinian ring R is built from 
a ring U with identity and two unitary U-modules : A and B. We will 
elaborate on this in 2.5-2.7. First we obtain two applications of 2.1 
which will be needed later. 

PROPOSITION 2.3. Let U be a unitary ring of a left artinian, left noe
therian ring R. Then any ring S with U Q S C R is left artinian and 
left noetherian, and U is a unitary ring of S. 

REMARK. The significance of this proposition is: / / / : R' —* R is a 
morphism in-fill), then the subring f(R') of R is an object of -f(JJ). 

PROOF. Form the PPD of R with respect to e — \v. Then note that 
(For details see [5, Proposition 2.0]) 

(i) rad R = A + rad U + B + N. 
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We show now: e is a principal idempotent of S. Let (S, + ) = A' © 
£7' © B' © N' be the Peirce decomposition of S with respect to e (so 
A' = (1 — e)Se Ç A, etc.). By hypothesis, S D (7, so 17' = eS# D el/e 
= 17 = eRe D eSe = C7', so (7 = (7. Thus 

(2) (S, + ) = A' © C7 © F © N' with A' Ç A, W Q B, and 2V' QN. 

Thus, to see that e = lv becomes the identity in S/rad S, it suffices to 
show that the ideal / = A' + rad 17 + B' + AT is contained in rad S. 
But, by (1), / is contained in the radical of the left artinian ring R and 
is therefore nilpotent; so J Ç rad S and e is a principal idempotent of 
S. 

Now [7 = eSe is a unitary ring of S, and so (2) is a PPD of S. To see 
that S is left artinian and left noetherian, we must show that the terms 
of (2) have finiteness conditions required by Theorem 2.1. But since R 
is left artinian and left noetherian, Theorem 2.1 shows that A and N 
are finite and VB has a composition series. These conditions are clearly 
inherited by A', B' and AT in (2). 

From equation (1) above, we also see that 

COROLLARY 2.4. Let U be a unitary ring of the left artinian left noe
therian ring R. Then ft/rad R = U/ rad U. 

CONSTRUCTION LEMMA 2.5. Let the following data be given. 
(1) A left artinian ring U with identity. 
(2) A finite right U-module A, and a left U-module B of finite com

position length (both unitary). 
(3) A U — U bimodule homomorphism p : jJJS ®ZA)V —* rad U. 

Then there is exactly one way of making the group 

(4) (R, + ) = A © U © B © N (N = A ®VB) 

into an idempotent left artinian ring whose multiplication extends the 
ring and module multiplications given in (1) and (2), such that (4) is the 
PPD of R with respect to e — lv, and such that a • b = a® b and 
b • a = p(b ® a). 

PROOF. Uniqueness: The requirement that (4) be a PPD forces all 
"non-matching" products to be zero, that is, 

(5) O = A2 = B2 = UA = BU = AN = NB = UN = NU. 

Of the remaining 8 types of products, three are given by (1) and (2) 
and two at the end of the lemma. The remaining three types are: 

NA. Recall that N - A ® B = A • B. The desired product is then 
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(a - b) • ax — a • (b • ax) = a • p(b 0 a). 

BN is similarly determined. N2 is determined by 

(a • b) - (a1 • ft1) = a • (6 • ax) • fox = a • p(fe ® a^ • br 

Conversely, a long but straightforward computation shows that the 
multiplication described above is well-defined and associative, and thus 
makes (R, + ) into a ring. Theorem 2.1 shows that the ring R is 
idempotent and left artinian, once we verify that N — A ®v B is fi
nite. But jyB is finitely generated and unitary, say B = 2 * = 1 Ubv Since 
A is finite, so therefore is N = 2 A 0 bv 

EXAMPLES 2.6. The purpose of these examples is to show that -filT) 
contains a large number of easily constructible, non-isomorphic rings. 
Some comments are added to help make the reader comfortable with 
this unfamiliar class of rings. 

NOTATION. Let U be your favorite finite ring (with identity). The ex
amples will be more interesting if rad U ¥= 0. Let A and B be, respec
tively, any right and left ideals of U. We now have items (1) and (2) in 
the Construction Lemma. (If U is infinite, there is the additional com
plication of choosing A to be finite.) Finally, let p be any element of U 
such that BpA Ç rad (7, for example, any element of rad U. Then we 
have the bimodule homomorphism p(b 0 a) — bpa required by (3). 

The Construction Lemma and its proof now describe in detail how to 
make the additive direct sum (4) (K, +) = A e u e B e N (N = A ®VB) 
into the PPD, with respect to e — lv, of a ring in-f(U). Given ele
ments a G A and b G B it will be important to distinguish their 
products ab and ba in U from their products a b = a®bEiN and 
b - a = bpa G rad U where, on the left side of the last two products, 
A and B are considered as terms of (4). 

To indicate the number of non-isomorphic rings thus constructed, we 
note: 

Changing the isomorphism class of any of the additive groups 
A, B, or BpA changes the isomorphism class of the ring R. 

We postpone the proof to item (v) below, and now give some special 
cases of this construction. 

(i) Let A and B equal U itself, hence also (N, + ) = A 0 ^ B = U. 
Theorem 4.6 then states that the ring R is projective in-f(U), regard
less of choice of p in rad U. 
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CAUTION. Although (N, + ) = U in (i), the ring N is not isomorphic 
to the ring U, because N is nilpotent and U has an identity. The prod
uct in N is given by (ax 0 foj • (a2 0 fo2) = a1(b1pa2) 0 ò2. 

(ii) If we take A or B C rad [7, then it is easy to check (using 2.1) 
that the subring 

»' = [" /a] 
of 2 by 2 matrices over (7 belongs to J^( 17) and 

•-[i i\ 
is a principal idempotent of R'. 

If we build the ring R in (4) using p = 1, then (by Lemma 4.4) there 
will be a "natural" ring homomorphism of R onto JR' which is a morph-
ism in ./"(IT). 

(iii) JV T̂  A ®v B. One of the main theorems (4.6) to be proved 
states that an R \n-f(U) is projective in -J^(U) <=> Av and ^B are pro
jective modules and N — A ®jj B [more precisely, the multiplication 
map A 0 ^ B —> A • B (the "2V" term of the PPD) is an isomorphism]. 
So we need an example showing that Av and VB can be projective 
without N — A ®JJ B holding. 

Take Av and jjB projective such that AB ¥= 0 (product in U), hence 
A ®u B ¥= 0. Also take p — 0. Then the term N in (4) annhihilates R 
on the left and on the right, so any subgroup N' of (N, -f) is an ideal 
of R. Hence we can form the ring R' = R/Nf \n.f(U). It has a PPD 

(R\ + ) = A 0 [ / 0 ß © (N/N'). 

Thus any N' ¥= 0 will furnish the desired example. 

(iv) Every COMMUTATIVE idempotent artinian ring has an identi
ty. In fact, examination of any PPD will show that commutativity 
forces A = 0 and B = 0, hence N = A • B = 0, so R = U. Thus all 
nontrivial rings considered in this paper will be strictly non-
commutative. 

(v) Changing the isomorphism class of any of the additive groups A, 
B, or BpA changes the isomorphism class of the ring R. First note that 
(BpA, + ) ^ (B • A, + ) . By analogy with (4), let (4)" be the PPD of an 
idempotent left artinian ring constructed from ingredients A", U", B" 
and p"\ and write the multiplication in R" in the form x • • y to dis
tinguish it from the multiplication x • y in R. Suppose there is an iso
morphism (jp of R" onto R. Then <p takes the identity e" of (7" to a 
principal idempotent of R. It is proved in [5, 3.1] that any two princi
pal idempotents of R are conjugate under some automorphism of R. 
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Therefore, we can suppose that <p(e") — e(— lv). Then <p provides the 
following additive isomorphisms 

A = ( l - 6 ) - f l - e s ( l - e") • • R" • • e" = A". 

B is handled similarly, and 

B • A = (1 - e) • R • e • R • (1 - e) 

s (1 - e") - • Ä" - - e" • • B " • • (1 - e") = B" • • A". 

The first sentence of this proof now shows that the additive groups 
BpA and B"p"A" are isomorphic. 

REMARKS 2.7. To see what portion of all rings in -.f(U) can be con

structed by Lemma 2.5, let R in -J^(U) be given, and take a PPD 
(B, + ) = A © (7 0 B © N. Then let 

(B', + ) = A © U © B © AT (AT = A 0 ^ B) 

be made into a ring by the Construction Lemma, with p(b ® a) de
fined to be the product ba in R. Then the map obtained by extending 
linearly 

a + u + b+(a1®b1)-+a + u + b + a1b1 

is easily seen to be a ring homomorphism of R' onto R (see 4.4). 

3. (7-Preserving Homomorphisms. PROPOSITION 3.1. Let f : R -^ S be 
a ting homomorphism, where R is left artinian and f is 1 — I on some 
unitary subring of R. Then ker / G rad R. 

PROOF. Let f(r) — 0, and suppose / is 1 — 1 on eRe. Then f(ere) — 
0 and hence ere = 0. But r — ere becomes zero modulo rad R because 
e becomes the identity there. Hence r = r — ere E rad R. 

THEOREM 3.2. Let f :R1 —* R2 be a homomorphism of left artinian, 
left noetherian rings whose unitary ring is = U. Suppose either 

(1) f is onto, or 
(2) / takes some unitary ring of Rt isomorphically onto one of R2. 

Then f takes every unitary ring of Rx isomorphically onto one of R2. 

PROOF. Suppose first that / is onto. Let ex be any principal idempo-
tent of Rv and e2 = fe^j. Since / is onto, /(rad Rt) G rad R2, so / in
duces a ring homomorphism / : R1 -^> R2 where R i = i ^ / r a d Rv 

Since Rx and R2 are both isomorphic to the semisimple artinian ring 
(7/rad U (by 2.4) we conclude that / is an isomorphism. It follows that 
e2 is a principal idempotent of R2. 

We show next: f is I — 1 on e^Rev By uniqueness of unitary rings, 
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But U has finite composition length on the left (by 2.1), and this forces 
/ to be 1 — 1 on e1R1e1. 

Thus /(e1ß1^1) = e2^2^2' a unitary ring of R2; so the theorem is 
proved when / is onto. 

Next suppose (2) holds. We first do the case: / is the inclusion map: 
Rx C R2. In particular, R1 has a unitary ring—call it U—which, by (2), 
is also a unitary ring of R2. What we want to prove is: every unitary 
ring V of R1 is a unitary ring of R2. Since U is a unitary ring of both 
Rx and R2, \ v is a principal idempotent of these rings and \UR1\U — 
l ^ l ^ l ^ ( = U). Thus it suffices to find an automorphism of R2 which 
takes 1^ to lv and takes Rr to itself. 

Let ring (Z + R^ be the ring with identity whose additive group is 
Z © Rv its multiplication being (zx + r1)(z2 + r2) — (z^2) + (zxr2 + 
rxz2 + r^g). It was shown in [5, 3.1] that, given any two principal 
idempotents 1^ and lv of Rv there is a unit (1 + r) in ring (Z + Rx) 
such that (1 + r)'1!^! + r) — lv. Since Rt is a 2-sided ideal of ring 
(Z + Kj), conjugation by 1 + r takes Rx to itself. Moreover, 1 + r re
mains a unit in the larger ring, ring (Z + R2); so conjugation by 1 + r 
is the desired automorphism of R2. 

General / : Rx —> R2. Here we are given unitary rings U1 and Vx of 
Rx such that / takes U1 isomorphically onto the unitary ring f(U^) — 
U2 of R2. We want to prove that / is 1 — 1 on Vv and V2 = /(Vj) is 
a unitary ring of R2. Consider the factorization of / : 

R ^ >>f(Rx) = sÌn-^^-»R2. 

Since •/ : Rt —» S is onto, S is left artinian and noetherian; and by 2.3 S 
has the unitary ring U2 ^ Ur So by the "onto" case of the theorem, / 
is 1 — 1 on V1 and V2 is a unitary ring of S. Finally by the "inclusion" 
case of the theorem, V2 is also a unitary ring of R2. 

REMARKS 3.3. For readers interested in extending these results, we 
note that Theorem 3.2 holds when Rx and R2 are only left artinian (and 
not necessarily noetherian). Similarly 2.3 and 2.4 hold if "noetherian" is 
deleted from both the hypothesis and conclusion. 

For the proof of this more general version, one merely uses the more 
complicated finiteness conditions in [5, 2.1] in place of Theorem 2.1 of 
the present paper. In this connection, see also Remark 4.7. 
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4. Projective and Protective Covers in •-/'(U). THEOREM 4.1 (UNIQUE
NESS OF THE PROJECTIVE COVER). Let f{ : Pi -*> R(i — 1, 2) be projective 

covers of R in -J^(U). Then there is a ring isomorphism 0 : Pt onto P2 

such that fx — f20. 

0 
Pi 

/ i 
*R* 

PROOF. Since Px is projective in •/"(£/) and f2 is onto, there is a 
morphism 6 in -fifJ) such that fx — f20. Recall, by 2.2, that rings in 
•^(U) are left noetherian. 

By 2.3, X = 0(P1) is a subring in.f(U) of P2; and f2(X) = R. Min
imality of f2 shows 6(P1) = P2. Since P2 is projective and 0 is onto, 
there is a morphism <p : P2 —> Px such that 0(p = identity on P2. Thus cp 
is 1 — 1. Note that the diagram containing <p, fv and / 2 commutes. 
Minimality of f± now shows, as with 6, that cp is onto, hence an iso
morphism. Therefore 6 = (p_1 is an isomorphism, too. 

We now prepare for the proof that projective covers exist. 

"SMALLNESS" LEMMA 4.2. Let (R, + ) = A © U © B © N be the 

PPD of an idempotent left artinian ring R with respect to e — lv, and 
let K be a 2-sided ideal of R. Then RK is small in RR if and only if 

(1) jJ^K fi U) is small in jjU; and 
(2) viK H B) is small in VB. 

A similar pair of statements, involving U and A, equivalent to KR being 
small in RR. 

PROOF. Note first that since K is 2-sided, 

(K, + ) = (1 - e)Ke © eKe © eK(l - e) © (1 - e)K(l - e) 

(3) =KPiA = K n C 7 = K H B =KDN 

Now suppose RK is small in RR. To prove (2), we suppose B = B' -f 
(K H B) where B' is a (7-submodule of ß . Let 

(4) (X, + ) = A + U + (B' + / £ ) + # (where / = rad U). 

Next, note that X is a left ideal of R: It suffices to multiple each term 
on the right of (4) by each of A, U, B, and N. We remark that one of 
these products requires the hypothesis R = R2 : 

BN = B(AB) = BA(B) Q JB (Use 2.1). 
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Finally, note that X + K = R because of (3). Hence smallnes of RK 
in R shows that X = R, so B' + JB — B. We can now use either nil-
potence of /, or finite generation of VB (see 2.1) together with Na-
kayama's Lemma, to conclude B' = B as desired. 

To prove (1) we use a similar computation, with U' + (K fi CT) — 
[/and 

X = A + (CT' + J) + B +2V. 

Now suppose (1) and (2) hold, and let X be a left ideal of R such 
that 

R = K + X. 

Left multiply by e. 

eK + eX = eR = U + B. 

Also, by (3), eK = (K H CT) + (K H B). So, by (1) and (2), eK is small 
in the left CT-module U ® B. Hence eX — U + B; in particular ^X 
contains both U and £. 

Hence X contains AU — A and also AB — N; so X = R. 

PROPOSITION 4.3. The following assertions about an epimorphism f : R 
-*> S in-f(XJ) are equivalent. 

(1) / fe ABSOLUTELY MINIMAL, that is, if X is a subring of R and 
X # fl, ffeen /(X) ^ S whether or not X G X((7). 

(2) ker f is a small left ideal of R, and also a small right ideal. 

PROOF. (1) =» (2). We show that ker / is a small left ideal of R by 
verifying conditions (1) and (2) of the Smallness Lemma. A symmetric 
argument then shows ker / is small on the right, too. 

So suppose VB' Q B and B' + (ker / H B) = B. Let 

R' = A + U + (B' + JB) + N (/ = rad CT). 

Then TT is a subring of R because B'N Q BAB Ç JB; and f(R') = /(Ä) 
because /(£') = /(B). So, by (1), iT = K; therefore B' + JB = B. Nil-
potent of / or finite generation of VB now implies B' — B, so (2) of the 
Smallness Lemma holds. 

For (1) of the Smallness Lemma recall that, by 3.2, / is one-to-one on 
U; so (ker f) Pi CT = 0. By the Smallness Lemma, ker / is a small left 
ideal of R. 

(2) => (1). Suppose R' is a subring of R such that f(R') — S. Let ë be 
a principal idempotent of S. Since, by 3.1, ker / Ç rad R, a nilpotent 
ideal, ë can be lifted to an idempotent e in R'. 
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Of course, e is also an idempotent of R; and the choice of ë, together 
with the fact that ker / Q rad R, shows that e is a principal idempo
tent of R. 

We claim eR'e — eRe. By hypothesis f{eR'e) — f(eRe). But since / is 
a morphism in -f(U), f is one-to-one on the unitary ring eRe (by 2.2 
and 3.2), proving the claim. 

Now we form a PPD of R and apply the Smallness Lemma to it. Let 
U = eRe, and form the PPD R=A+U + B + N with respect to e 
= \JJ. By hypothesis, ker f is a small left ideal of R, so by (2) of the 
Smallness Lemma, (ker f) fi B is a small (7-submobile of B. But /(R') 
= f(R) shows f(eR'(l — e)) = /(B), so smallness of (ker f) fi B shows 
eR\l - e) = B. 

Similarly, the right-handed version of the Smallness Lemma shows 
(1 — e)R'e — A. Finally, idempotence of R shows. 

(1 - e)R(l - e) =N = AB 

= (1 - e)R'eeR'(l - e) Q (1 - e)R\l - e) 

and since the opposite inclusion is trivial, we are done. 

MAP-BUILDING LEMMA 4.4 Let (Ri? + ) •= Ai © U © Bi © N{ (i = 

1, 2) fee PPD's, with each Ri G -f(U), and let y : Rx —> R2 ^ ß a n ö ^ -
#t;e homomorphism which takes Ax —* A2, [7 —* C7, Bx —»• R2, A/j —*N2-
Suppose further that 

(1) (p is the identity on U, 
(2) cp : Ax —> A2 and cp : # i —» B2 are respectively homomorphisms of 

right and left U-modules, and 
(3) (p(a^)^j — (cpa1)((pb1) and (p(fe1a1) = (cpfe1)((pa1) for ax G Ax and 

^ e Br 
Then (p is a ring homomorphism. 

PROOF. It suffices to check that <p(xy) = ((px)((py) for x and y in each 
of Av U, Bp Nv Of these 16 types of products, 5 behave properly be
cause of (1), (2), and (3), and 8 are always zero (see (5) of 2.5). The re
maining 3 types: NA, BN, and NN are easily checked by using N = AB 
(see 2.1). 

SECOND MAIN THEOREM 4.5. Every R in -f(U) has a projective cover 

<p : R - » R, and any such (p is absolutely minimal. 

PROOF. Choose a principal idempotent e of R and let 

(1) (R, + ) = A © U © B ®N 

be the PPD of R with respect to e. We build (p separately for each 
term in (1). 



436 R. M. BITTMAN AND L. S. LEVY 

Over a left artinian ring with identity, every left and every right uni
tary module has a projective cover [1, Theorem P]. Let <p : Â -*> A and 
(jp : B - » B be projective covers of, respectively, the right and left U-
modules A and B. Set 

(2) (K, +) = A ® u ® B ® (Â ®„ 5) 

and extend cp to an additive map: R -*> R by (p = identity on U, and 
<p(â ® b) = (<pâ)(<pb) G AB = N. 

We make fi into a ring in-f(U) by means of the Construction Lem
ma 2.5, then verify that <p is the required projective cover of the ring 
R. 

The most sensitive item needed in the hypotheses of the Construction 
Lemma is that Â is finite. This follows from the fact: over a LEFT arti
nian ring ( = U) with identity, the projective cover of every finite 
RIGHT module is finite. This is proved in the Appendix, Theorem A3. 
Since B -»> B is a projective cover of a finitely generated (7-module, B 
is finitely generated; so since U is left artinian, jjB has a composition 
series. 

Finally define the U-U bi l inear map p : B ®ZA —» rad U by 
p(b ®â) = (<p6)(<pâ). 

Using the Construction Lemma, we can now make R into a ring in 
•f(U); and by the Map Building Lemma, <p will be a ring homomorph-
ism as soon as we verify that (p(âb) = (<pâ)((pb) and <p(bâ) = (<pfe)(<pâ). 
The first of these is clear since âb = â ® b. For the second of these, 
note first that bâ ŒU where <p equals the identity. Then 

bâ — p(b ® â) (definition of bâ in 2.5) 

= ((pb)(<pa) (definition of p). 

By construction, (p is onto. To check that (p is absolutely minimal we 
have to verify (by 4.3) that ker <p is small in R, both as a left ideal and 
as a right ideal; and by the Smallness Lemma (4.2) these facts follow 
from the facts that cp : B -*• B and <p : Â -*> A are projective covers of 
jyB and A^ and (p equals the identity on U. 

It remains only to check that fi is a projective object of J^((7), and 
this follows the next theorem. 

THEOREM 4.6. Let (R, +) = A ® U ® B ® N be a PPD of R G 

•f{lT). Then R is a projective object of-f(U) if and only if 
(1) Av and VB are projective modules, and 
(2) The multiplication map \i : A ®v B -*> A ß = N is I — 1. 

PROOF. Suppose (1) and (2) hold, and let morphisms / and g m-f(V) 
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be given, with / onto. We seek cp \w-f(JJ) such that the following dia
gram commutes. 

R 

<P / 

*' f X2 » Xx 

Since g is a morphism in -f{ U\ g takes the unitary ring U oî R iso-
morphically onto a unitary ring of Xv We identify U and g(U), thus 
making g the identity on U. Since ker / Q rad X2 (by 3.1) e — \u can 
be lifted to an idempotent e' of X2; and since the homomorphism 
Xx/rad X1 -*> X2/rad X2 induced by / is an isomorphism (see the begin
ning of the proof of 3.2), e' is a principal idempotent of X2. Therefore / 
carries the unitary ring e'X2e' of X2 isomorphically onto the unitary 
ring eXxe ~ U of X r We identify e'X2e' and U, so that / becomes the 
identity on U. 

We can now take the PPD of each Xi with respect to e = 1^ : 

(3) Xi=Ai®U®Bi®Ni (t = 1,2) 

and / takes A2 = (1 — e)X2e onto A1? B2 onto Bl5 and N2 onto iVr 

Also, since / equals the identity on U and is a ring homomorphism, / : 
A2 -K> Ax and / : B2 - » Bx are maps of right and left (7-modules, re
spectively. Similar "compatibility" remarks apply to the way g takes 
the original PPD of R to that of Xv 

We can now use projectivity of Av and jjB to find (7-linear maps qp : 
A —> A2 and (p : ß —» ß2 such that fcp — g on A and on B. To extend 
<p to an additive map: R —* X2, set cp = the identity on (7. Then identi
fy N with A ®v B (hypothesis (2)) and set <p(a 0 b) — (<pa)-(<pb) G 
A2ß2 = N2. 

To see that <p is a ring homomorphism, we invoke the Map-Building 
Lemma 4.4. The only hypothesis of that Lemma remaining to be veri
fied is that <p(ba) = (<pb)(<pa). But since both sides belong to U where /, 
g, and <p equal the identity, and since / and g are ring homomorphisms, 
we get 

cp(ba) = fip(ba) = gba) = (gb)(ga) 

= (ftpb)(ftpa) = M<pl>)(<pa)] = (<pb)(<pa) 

and this completes the proof that R is projective in-^(U). 
Conversely, suppose that R is projective in J^( U). Choose a PPD of 

R and construct the projective cover <p : Ä -*> ß used in the proof of 
Theorem 4.5. Since R is projective, the identity map R —* R is also a 
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projective cover. Hence, by Uniqueness of the Projective Cover (4.1), <p 
is an isomorphism; and this establishes the assertions of (1) and (2), all at 
once! 

REMARKS 4.7. In proving that R was projective provided it satisfies 
(1) and (2) of 4.6, we never used idempotence of X1 and X2. In fact, use 
of [5, 2.1] in place of Theorem 2.1 of the present paper shows: if R EL 
•^(U) satisifies (1) and (2) of 4.6, then R is a projective object in the 
category of all artinian rings with unitary ring ^ U. We don't know if 
R being projective in this larger category forces R to be in -f( U). 

Appendix. Finite-Infinite Decompositions. We will say that a division 
ring A is associated with a left artinain ring U if A is isomorphic to one 
of the division rings which occur in the decomposition of U = U/ rad U 
into a direct sum of full matrix rings over division rings. 

All rings considered in this appendix will have identity elements, and 
all modules will be unitary. 

FINITE-INFINITE DECOMPOSITION LEMMA Al. Every left artinain ring U 
(with identity) has orthogonal idempotents i and f such that i + / = 1, 
and an "upper triangular" decomposition 

(U, + ) = iUi © iUf © JVf withfUi = 0 

= / = M = F 

in which 

(2) F is a finite ring, and 
(3) jl and 7M have finite (composition) length, and the ring I has no 

finite associated division rings (hence no finite left or right nonzero 
modules). 
If M ¥= 0, then U is neither right artinian nor right noetherian. 

PROOF. If i and / are any orthogonal idempotents such that i + / = 
1, then (U, + ) = 7 © M © F © fUi. Furthermore: 7Z, 7M, FF and 
F(fUi) all have finite composition length: For example, to see that 7M 
has finite composition length, merely note that if M' is an 7-submodule 
of M, then the group M' © (fUi)M' is a left ideal of U. 

The semisimple artinian ring U = U/ rad U can be written U = I 
© F where I is a direct sum of matrix rings over infinite division rings 
and F is a finite ring. Let the corressponding decomposition of the 
identity element of U be 1 = T + f and lift T and / to orthognal 
idempotents i and / of U. Then 1 = i + f 

To establish (2), recall that FF has finite composition length. So it 
will suffice to show that all the composition factors of FF are finite. 
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But these are all simple modules over the finite ring ¥ ^ F/rad F, 
hence they are finite. 

Similarly, no division ring associated with I is finite. If I had a finite 
nonzero left or right module, then it would have a finite simple left or 
right module. Thus I/rad I would have a finite simple module, contrary 
to the fact that the division rings associated with / are all infinite. Thus 
(3) is proved. 

Since F(fUi) has finite length and F is finite, fUi is finite. And since 
fUi is a right /-module, its finiteness forces fUi = 0, proving (1). 

The supplementary statement is true since F is finite, M is infinite 
(because it is a left I-module) and every right F-submodule of M is a 
right ideal of U. 

EXAMPLE A2. Given I, 7MF, and F satisfying (2) and (3) of the lemma, 
the ring U = [Q f\ will produce the decomposition (1). For a specific 
example, let I be any infinite field of characteristic =£ 0, F the prime 
field of I, and M = I. 

THEOREM A3. Over a LEFT artinian ring U, the projective cover of 
every finite RIGHT module (exists and) is finite. 

PROOF. Existence is part of Bass's Theorem P [1]. Note also that if 
(jp : P -*> A is a projective cover of a finitely generated module A (over 
any ring) then minimality of the epimorphism qp shows that P is finitely 
generated, too. 

Now let <p : P -*> A be a projective cover of a finite right [/-module 
A, and choose i and / according to the lemma above. Then Ai is a fi
nite right Z-module, so (3) of the lemma shows 0 — Ai = A(l — f). 
Hence A = A/. But then, <p(Pf) — Af = A; and since Pf is a (7-sub-
module of P (see (1) of the lemma), minimality of <p : P -*> A shows Pf 
= P. 

Finally, since P is a finitely generated right [/-module, Pf — P is a 
finitely generated module over the finite ring F, and hence is finite. 

We now show that projective covers of finite LEFT [/-modules need 
not be finite. 

PROPOSITION A4. Let U be a left artinian ring such that, in the nota
tion of Lemma Al, M ¥= 0. Then U has a finite left module B whose 
projective cover is infinite. (Such rings U exist by Example A2.) 

PROOF. The natural homomorphism cp : Uf -*> B = Uf/Jf where / 
= rad U, is a projective cover of VB. Note that iUf Ç / because iUf is 
a left ideal of U whose square is zero. Hence iUf = ijf. Now finiteness 
of B follows from: 
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m + ) = ^ L © fUJL = o © F = finite. 
iJf flf 

On the other hand, (Uf, + ) = M © F. Since M is a nonzero left I-
module, M must be infinite. Hence Uf is infinite, too. 

Finally, we mention that the above machinery contains a proof of 
the following (probably known) result. 

COROLLARY A5. Let U be an indecomposable left and right artinian 
ring. Then the division rings associated with U are either all finite or 
else all infinite. 

PROOF. (In the notation of Lemma Al:) U being right artinian forces 
M — 0. But then indecomposability of U (as a ring) forces U = I or U 
= F. 

REMARK A6. At the suggestion of the referees, we note that the re
sults of this appendix can be extended by letting U be a left artinian al
gebra over a commutative ring K: Replace the phrase "is finite" by 
"has finite length as a K-module" whenever it appears in a theorem or 
its proof. Thus, in Lemma Al , statement (2) becomes, "F is a ring of fi
nite K-length," and the last assertion of (3) becomes, "Z has no associ
ated division algebras of finite K-length (hence no nonzero left or right 
modules of finite K-length)." 

The following version of A5 then might be of interest: 

Let U be an indecomposable left and right artinian algebra over a 
field K. Then the division algebras associated with U are either all fi
nite dimensional or all infinite dimensional. 
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