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DECAY OF SOLUTIONS OF SYMMETRIC HYPERBOLIC 
SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 

GERALDO S. S. ÂVILA AND DAVID G. COSTA 

ABSTRACT. We consider systems of the form ut + 2 ^ A-ux — 0, 
where the A/s are constant k X k (hermitian) symmetric matrices, 
and u is a column vector of k components. We use Fourier trans­
form to prove that non-static solutions decay in time at every point 
x. As a consequence, it follows that the energy of any such solution 
decays locally. More generally, we show that if B(t) is a set which 
does not increase "too" fast, the energy in B(t) of any non-static so­
lution also decays. 

1. Introduction. We consider systems of the form 

where the A/s are constant k X k (hermitian) symmetric matrices, and 
ti is a column vector of k components. These are functions of the inde­
pendent variables t E R and x — (xv • • -, xn) E Rn. Systems of this 
type are the general form of a large number of equations of mathemati­
cal physics, such as Maxwell's equation, the equations of transmission 
lines, acoustics, elasticity (see Appendix in [7]), and even the equations 
of magnetogasdynamics (see [1]). 

It is customary to discuss the above systems under additional assump­
tions on the matrices A-. One such assumption is that the roots X = 
X(p) of the characteristic equation 

(2) P(\p) = det (xi - 2 P A ) = 0 

are all different from zero for p ¥= 0, that is, the operator 2] l_1 Afi/dXj 
is elliptic ([4], p. 178); or a fixed number of them never vanish for p ¥= 
0 ([3]); or the assumption contained in the definition of uniformity 
propagative systems of Wilcox ([7]). In our treatment we impose no re­
strictions on the A-'s other than those stated in the previous paragraph. 
This is important because there are systems, such as those of magneto­
gasdynamics, which possess roots X(p) that vanish for certain p ¥= 0, but 
not identically. It has been shown that if a characteristic root X(p) is 
not identically zero then the set of those p where X(p) = 0 is of mea­
sure zero ([1]). Since the X(p), for \p\ = 1, are speeds of propagation of 
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plane waves in the direction p, it is thus reasonable to expect that for a 
given solution u, the part of it associated with such a X(p) should decay 
in time. Our objective in this paper is to prove this result and derive 
from it the local decay of the energy of u, provided (of course) u is 
non-static. It also follows that the energy of any solution in a "slowly 
increasing" set is asymptotically constant. 

2. The solution of the Cauchy Problem. We use the Fourier trans­
form to derive an explicit formula for the solution of equation (1) with 
initial value u(x, 0) = f(x). We assume initially that / E .yk, where y 
is the Schwartz space of rapidly decreasing functions. The Fourier 
transform of g E yk is defined by 

g(p) = (2W)-»/2 X " e-**g(x)dx, 

and the inverse formula 

g{x) = (2T7)-»/2 J [ . e^g(p)dp 

holds. Since, under Fourier transformation, differentiation with respect 
to Xj changes into multiplication by ip., equation (1) transforms into 

(3) ut + iA(p)u = 0, 

where A(p) = S ^ / y ^ . 
We want to solve equation (3) with the initial condition u(p, 0) = 

f(p). Let {e^p)} be a complete set of orthonormal eigenvectors of A(p) 
with corresponding eigenvalues \(p). Setting 

Ufa t) = û(p, t)-efp) 

and 

UP) = M-efr), 
equation (3) gives us, upon scalar multiplication by eip), 

-%*• = - HPMV)-

The solution of this equation that satisfies the initial condition M (p, 0) 

= UP) is 

"i(P> ') = ^•(p)c-4X' (p , (. 

Therefore, 
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At this point we note that the eigenvectors e.(p) can be chosen in 
such way that they are measurable functions of p. That this is possible 
was proved by C. H. Wilcox (see [9], Theorem 2), and we assume that 
this choice has been made. We note also that the roots X^p) are contin­
uous functions of p ([9], Theorem 1). Therefore, we are justified in tak­
ing the inverse Fourier transform of the above expression for u. We ob­
tain 

(4) u(x, t) = (2TT)-*/2 2 X« fi(v)ei[P'x-UP)%(v)dp. 
j-i 

This formula shows that u is the superposition of k waves: each of 
these waves, in turn, is the superposition—given by the integration over 
p-space—of the plane waves 

(2^)~n/2fj(p)ei^x-x^%(p). 

This wave is a signal that propagates in the direction p with speed u.(p) 
= Aj-(p)/|p|. Each one of the k terms of the sum in (4) is referred to as 
a normal mode of propagation. We see that each mode is associated 
with an eigenvalue (counting multiplicity) of A(p), that is, with a speed 
of plane wave propagation. A fh mode is excited or not, according to 
whether the initial value / is such that /y(p) is different from zero or 
not, respectively. If \.(p) = 0, then the associated mode does not de­
pend on the time: it is static. Thus, a smooth solution u is the super­
position of its static and non-static parts, 

(5) u(x, t) = us(x, t) + uns(x, t), 

and it is clear what a non-static solution means in this case. Consid­

ering the Hilbert space H = L2(Rn)k with its usual norm 

we notice that for any / G H, (4) defines a function u( •, t) — U(t)f G 
H for each t G R: u( •, t) = U(t)f is called a solution with finite energy 
(clearly, u(-, t) is not, in general, a classical solution of (1)). It can be 
shown that U(t) — exp(— tA), t G R, the group of unitary operators 
generated by the skew selfadjoint operator 

A = 2 A , . ^ - , D(A) = {/ G H I A(p)f e H). 

A solution with finite energy «( •, t) — U(t)f is said to be non-static if / 
belongs to the orthogonal complement A^A)-1- of the null space of A. 
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3. Decay of solution. Let us enumerate, in decreasing order of mag­
nitude, the solutions of equation (2) that are not identically zero, say, a 
total of r: 

(6) \(p) è • • • è Xr(p). 

The remaining k — r roots are then identically zero: 

(7) K+I(P) = ••• = h(p) - o-

It follows that u( -, t) — U(t)f is a non-static solution if and only if 

(8) / , = Ofor/ = r + 1, •••, k. 

THEOREM 1. For each m — 1, 2, • • • and f in a dense subset S of 
A^A)-1, there exists a constant CmJ > 0 such that 

\u(x, t)\ ^ cmJ(i + M + • • • + i*mrm , 
for all t ¥= 0, for all x G Rn. 

PROOF. Let us introduce polar coordinates p, co with p > 0, |co| = 1, 
through the relation p — pco. Making use of the (easy to check) facts 
that typo)) — p\(u>) and e^pœ) = e fa), a non-static solution with initial 
value / G .y?k is given by (see (4) and (8)) 

u{x, t) = 

(9) 

(2TT)-»/2 ± £ ( = 1 | j[We*P^-«PM«)/^pc0)ei(tó)pn-ldp J dSw> 

We further restrict / in the following way: each fj(p<*)) is assumed to be 
of the form 

where q̂  G C0°°(0, oo) and ^ is taken from the set of C00 functions on 
the unit sphere Sn _ 1 which vanish on some neighborhood of 

Nj = (co G S""1 I X/co) = 0}. 

We denote by S this set of data / . It was proved in [1] that if a root 
Xj(co) does not vanish identically then the corresponding set Nó is of 
measure zero in Sn_1. Also, Nj is closed, for X-(p) is a continuous func­
tion. It thus follows easily that S is dense in A^A)-1. 

We are now in a position to estimate the expression in (9). Each 
term u^x, t) there can be written 
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ufa t) = (2TT)-"/2 X«-Vi ( £e-^«%dP ) dSw, 

where 

<Pj E C0°°(a, ß) with 0 < a < ß < oo, and Vj is some open neighbor­
hood of N-. If we integrate by parts once, we obtain 

uj{x, t) = (2*)-" X»-V, ( X" ^ T *)«»., 

where F/ = BF^/Sp. We can repeat this procedure any number of 
times, say m times, thus obtaining 

J I Cß p-itp\j(ü))F(m) \ 

-v< ( J. m o ) r dp H 
Now, since each Xj-(w) is continuous, there exists at > 0 such that |X,-(w)| 
= â  > 0 on the set Sn_1\V)-. Thus we can estimate u^x, t) above by 

C(l + |*| + • • • + \x\m) 

\t\m 

where C is a constant that depends on cp^, \f/.9 Vj9 a, ß and ra. The proof 
is complete. 

Now, if K C Rn is any compact set and u(-, 0) = / G S, we obtain 
the fact that the energy of u(-, f) over K decays faster than any power 
of 1/f: 

COROLLARY. For u(-, 0) = / E S and m — 1, 2, • • -, u;e haue 

IK> 011/ = X M*> VF*1* = Cm./(K)ltl"2m> f0r a11 ' * °-
The next result shows that if B(t) is a set that does not increase "too" 

fast as t —•*> oo, then the energy in B(t) of non-static solution decays to 
zero. 

THEOREM 2. Let {B(t) \ t > 0} be a family of bounded measurable 
sets in Rn such that, for some a < 1, 0(f) = 0(fÄ) as t —> oo, where 
0(f) = sup{|x| I x E £(f)}. 77ien, 

lim | K - , f ) | | i ( , = Hm X ( 0 K x , f ) | 2 ^ = 0, 

/or ant/ non-static solution v( •, f) w;ifh finite energy. 
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PROOF. First, let us assume that v(-9 t) is a non-static solution with 
initial value in S. Also, since a < 1, we can choose a positive integer 
m such that 

(10) a(2m + n) < 2m. 

Therefore, by Theorem 1, for some constant C > 0, we have that 

\v(x, t)\2 ^ c r 2 m ( i + \x\2m) ^ a-2 m( i + @(t)2m) 

for any x G B(t). It follows that 

fm \v(x, t)\2dx^Ct~2m(l + 0(*)2w)meas(B(*)) 

^ C ' r 2 w ( l + 0(*)2m)0(*)n, 

and, since 0(f) = 0(f*), we obtain 

fB{t) \v(x, t)\2dx ^ C"f-2™(*«n + V*v™+")) 

for £ large. Hence, in view of (10), the theorem is proved in this case. 

Now, let v(-, t) be an arbitrary non-static solution with finite energy, 
that is, v(-, 0) = g E A^A)-1. Since S is dense in ^(A)-1, given any € > 
0, there exists g€ G S such that ||g — gc|| < c. And, since \\U(t)\\ = 1, 
we obtain 

IK, t)\\Bm = \\u(t)g\\Bm ^ \\u(t)(g - g()\\Bm + \\u(t)gl\\Bm 

^Wm-gJW + \\u(t)gMBm 

= l lg - &II + IPtfelU, < e + l|c/Wge||B((). 

But, by what we just proved, limt_>00||C7(f)g£||Ä(0 = 0. Hence, lim 
suP^oollt>(*' *)IIJJ<O — c> a n d the proof is complete since c > 0 is arbitrary. 

If we take B(t) to be a fixed (bounded, measurable) set B for all t > 
0, Theorem 2 yields the usual local energy decay, that is, the decay of 
the energy in a fixed bounded measurable set: 

COROLLARY. Given a bounded measurable set B C Rn, 

lim |K-, OL2 = l i m C|<>fr t)\2dx = 0, 
t->oo t-*oo ^ 

for any non-static solution v(-, t) with finite energy. 

Now, let us say that a family {B(t) \ t > 0} of sets in Rn converges 
to a set B, B(t) —* B, if the characteristic function XBÌD °f ^W converges 
almost everywhere to the characteristic function XB °f >̂ a s t ~^ °°- I*1 
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this case, it follows that the energy in B(t) of any solution u(-, t) is 
asymptotically constant. 

(We remark that the requirement that XBU)(X) ~^ XB(X) f° r a ^ x e Rn 

is equivalent to the set-theoretical notion of limit Us>0fi^sB(£) = 
n s > 0 u ^ B ( * ) = B.) 

THEOREM 3. In addition to the hypotheses of Theorem 2, assume that 
B(t) —• B, where B is any measurable set, not necessarily bounded. 
Then, for any solution u(-, t) = U(t)f with finite energy, 

lim|H-,*)||iw = EB'\f\ 
t-»oo 

exists. 

PROOF. Let u(-, t) — U(t)f be a solution with finite energy. We can 
decompose / E H uniquely as a sum f = h + g, with h E N(A) and g 
E iV(A)±. We observe that if u(-, t) has no static part (that is, h = 0), 
the proof is that of Theorem 2 and does not depend on the additional 
assumption that B(t) —* B. In any case, U(t)h = h for all t so that 

U(t)f =h+ U(t)g. 

And, since U(t)f — h is non-static, Theorem 2 gives \imt^J\U(t)f — 

Mm) = °> hence 

Km(\\u(.,t)\\m)- \\h\\B(t)) = 0 . 
t-+oo 

Now, the assumption B(t) —+ B implies (by the Lebesgue dominated 
convergence theorem) that 

Jim ||fc||W) = \\h\\B = (EB°[f\)1/2-

The proof is complete. 
4. Final remarks. 1) As already mentioned in the introduction, sym­

metric hyperbolic systems (1) have been studied by other authors under 
additional conditions on the matrices Ay Results on decay of solutions 
can be found in [4], [7], for example. In [8], the case of the wave equa­
tion is thoroughly investigated. Uniform (over all x-space) decay results 
can be found in [2], where a further assumption of convexity on the 
connected sheets of the "wave surface" P(l, p) = 0 is imposed (see also 
[6], where the wave equation and the Klein-Gordon equation are con­
sidered). 

One approach to studying decay of solutions is clearly through the so 
called Riemann matrix of (1), that is, the distribution matrix-valued so­
lution B(x, t) of (1) with initial value B(x, 0) = 8(x)In: any smooth solu-
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tion u(x, t) with initial value f(x) can then be written as u(x, t) — [R( •, 
t) * f](x)> Since R(x, t) is homogeneous of degree — n, R(x, t) — 
t~nR(x/t, 1), and it could be thought that any (non-static) smooth solu­
tion would decay at every point x at least like t~n. This is certainly not 
the case, due to the singularities of R(x, t). In fact, concrete examples in 
two and three dimensions have been given where solutions decay only 
as t~1/2([5]). We conjecture that there is no rate of decay for the gener­
al symmetric hyperbolic systems considered in this paper. In other 
words, we conjecture that there does not exist a function (p(t) —» 0 as t 
—* oo, with the property that for each non-static solution u, the in­
equality supjw(x, t)\ = C<p(t), t > 0, holds with some constant C = 
C(u). 

2) Given a symmetric hyperbolic system for which the null space of 
A(p) has constant dimension for all p ¥= 0, we can naturally associate a 
minimum positive speed of propagation, Xmin = inf{|X;(co)| | co E Sn_1, 
; = 1, • • -, r) (see (6), (7)). In this case, it is not hard to show that the 
energy of any non-static solution u(-9 t) inside a cone \x\ — Ct tends to 
zero as t —* oo, provided that C < Amin. On the other hand, if A (co) 
possesses characteristic roots that vanish for certain co; but not identi­
cally, then there is no minimum positive speed of propagation and the 
above result does not apply. However, since any paraboloid \x\ = Cf*, 
a < 1, has slope d\x\/dt that approaches zero as t —• oo, we see that 
Theorem 2 is natural counterpart of the above mentioned result on 
energy decay in a cone. We contend that we cannot allow a — 1. 

3) Analogous results can be easily obtained for systems which are 
"perturbations" of "free" systems (1), as long as their solutions behave 
asymptotically as "free" solutions. For example, in [1] systems of the 
form E(x)ut + 2 j = 1 A-ux_ — 0 are considered. It is shown there that if 
f(l + \x\2)2 \E(x) - I\* dx < oo then, for any solution u(-, t) in a 
"certain class", there exists a (free) solution u+(-, t) of ut + 2^= 1 Ajux, 
= 0 such that 

lim | K , * ) - tt+(-, t)|| = 0. 

For any such u and for B(t) —> B, it clearly follows that 

Km\\u(;t)\\m)=\\h+\\B, 
t-*co 

where h+ is the orthogonal projection of / + = u+(-, 0) on N(A). 
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