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MULTI-DIMENSIONAL GENERALIZATIONS 
OF THE PADÉ TABLE 

J. H. LOXTON AND A. J. VAN DER POORTEN 

ABSTRACT. The Padé table is a method of generating rational ap

proximating functions to a given function. Recently, various authors 

have considered generalisations giving approximants which are alge

braic functions or satisfy algebraic differential equations. W e show 

how these schemes fit into an even more general theory of algebraic 

approximation of functions and list the rather few known examples 

in which the construction can be given explicitly. 

1. Introduction. Let f(z) be a function of the complex variable z 
which is regular at the origin. The Padé table for f(z) is an array of ra
tional functions, 

amn(Z)/hmn(Z) (m> " = 1, 2 , ' "% 

defined as follows: amn(z) and bmn(z) are polynomials of degrees m — 1 
and n — 1 respectively and not both identically zero such that the 
function bmn(z) f(z) — amn(z) has a zero of order at least m + n — 1 at 
the origin. The definition implies that bmn(z) is not identically zero. 
(See [13], chapter 10 and [17], chapter 20). The Padé table has proved 
empirically useful both in providing efficient rational approximations to 
special functions and as a method of approximate analytic continuation 
of functions defined locally by power series. (See [2], [3] and [5]). 

Various generalisations of the above scheme have been suggested 
which appear to give better approximating functions than the rational 
functions of the Padé table. Thus, Padé [12] considered approximation 
by algebraic functions. If p0, • • -, pm are non-negative integers, there 
are polynomials ak(z) (0 = k = m) of respective degrees at most pk — 1 
and not all zero such that the function 

m 

^ak(z)f(zf 

has a zero of order at least p0 + • • • + pm — 1 at the origin. Let g(z) 
be an appropriately chosen root of the polynomial equation 

m 

2 ak(z) g(zf = 0. 
k—0 
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The functions g(z) are a multi-dimensional array of algebraic approx-
imants to f(z) indexed by p0, • • -, p m . Recently, Shafer [14] has dis
cussed quadratic approximation (the case m = 2 of the above) and his 
examples show that this algorithm can produce very effective results. 

In the same way, we may consider approximating functions which 
satisfy differential equations. If p0, • • -, pm are non-negative integers, 
there are polynomials ak(z) (0 ^ k ^ m) of respective degrees at most 
pk — 1 and not all zero such that the function 

ajz) f™-»(z) + ••• + 0l(z) f(z) + a0(z) 

has a zero of order at least p0 + • • • + pm — 1 at the origin. The ap-
proximants now are the solutions of the differential equations 

«»(*) Ìm-l\z) + ••• + fli(2) g(*) + a0{z) = 0 

with 

g<*>(0) = fik\0) (0 ^ k ^ m - 2). 

In a recent report, Joyce and Guttman [9] give a slightly different ver
sion of this algorithm and indicate some applications in series analysis. 

Both of the schemes just described are special cases of a general the
ory of algebraic approximation of functions constructed by Mahler in 
the thirties. (See [11]). The initial ideas of this theory come from Her-
mite's basic work [6] and [7] on the arithmetic properties of the expo
nential function. In particular, Hermite considers the problem of find
ing polynomials ax(z)y • • -, am(z) such that the function 

m 

^ak(z)^ 

vanishes to a high order at the origin and the dual problem of finding 
polynomials a \(z), ' ' * > (t m(z) such that all the functions 

at*) ***-<*&)*»* ( l ^ / s / ^ m ) 

vanish to a high order at the origin. 
In this note, we sketch those parts of Mahler's theory which seem 

immediately applicable to approximation problems. We also give some 
examples, culled mainly from transcendental number theory, to illus
trate the methods. In a subsequent paper, we hope to discuss the ques
tion of the convergence of algorithms of this type. 

2. The Latin and German polynomial systems. Throughout, m is a 
fixed positive integer and f0(z) - 1, ft(z), • • -, f (z) are m + 1 functions 
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of the complex variable z which are regular at the origin. 
If a(z) is a polynomial, we denote its degree by deg a(z), with the 

convention that the zero polynomial has degree — 1. Also, if f(z) is a 
function regular at the origin, we denote by ord f(z) the order of the 
zero of f(z) at the origin. 

Let p = (p0, pv • • •, pm) be an (m + l)-tuple of non-negative in
tegers and set a = p0 + • • • -f pm. Following Mahler [11], we in
troduce two systems of polynomials. A Latin polynomial system at p is 
a system of polynomials ak(z) (0 ^ k ^ m), not all identically zero, 
which together with the Latin remainder function 

m 

r(z) = 2 ak(z) fk(z) 
kz=:0 

satisfy the inequalities 

degak(z)^pk-l (O^k^m) 

and 

ord r(z) i^ a — 1. 

Such a system always exists, for the polynomials ak(z) have in all o 
coefficients and the condition on the remainder r(z) gives a — 1 linear 
equations to be satisfied by these coefficients and this system always has 
a non-trivial solution. 

A German polynomial system at p is a system of polynomials dk(z) 
(0 ^ k ^ m), not all identically zero, which together with the German 
remainder functions 

t kl(z) = a k)fk(z) - a k(z) Uz) ( O i U ^ m ) 
satisfy the inequalities 

d e g afc(z) = ° - Pk (0 = k^m) 

and 

ordt Jz) i= a + 1 P U ^ W ) . 

The polynomials Q k(z) have in all m(o + 1) + 1 coefficients and, from 
the identities. 

rkt(z) = 0 (0= i fc^m) , 
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it suffices to choose these coefficients so that ord tok(z) = <* + 1 
(1 ^ k ^ m), giving a system of m(o + 1) linear homogeneous equations 
to be satisfied by these coefficients. Thus a German polynomial system 
always exists. 

By using Newton interpolation series for the functions f0(z), • • •, fm(z) 
in place of their Taylor series, the above construction can be easily ex
tended to examine the approximation of functions at a finite or count-
ably infinite set of points, instead of just at the origin. The general
ization is given at varying levels of abstraction by Mahler [11], Jager 
[8] and Coates [4]. Formally, the theory is essentially unchanged, but 
the idea may have useful applications. (See, for example, the remarks in 
[2]). 

3. The fundamental determinant. As before, let p = (p0, pv • • •, pw) 
be an (m + 1)-tuple of non-negative integers and o = p0 + - - • + pm. 
To describe the properties of the two types of polynomial systems, we 
introduce the determinant A(p) = A(p0, pv • • -, pw), which is the de
terminant of order o — p0 with the element 

/k<P.M-«(0)/(po + i - /)! 

in the i-th row and /-th column, where / = px + ••• + pk_1 + / 
( l ^ f ^ a — p0, 1 ^ / c ^ m , \ ^ i 1=k pk). We also denote by ek 

(0 ^ k ^ m) the (m + 1)-tuple having k-th coordinate 1 and all other 
coordinates 0. 

An examination of the defining systems of linear equations for the 
coefficients of the Latin and German polynomials yields the following 
uniqueness theorems. 

THEOREM 1. Let 0 = k = m. The determinant A(p — ck) is non-zero if 
and only if the Latin polynomial system a0(z)9 • • •, am(z) at p is unique 
up to a scalar multiple and ak(z) has exact degree pk — 1. 

THEOREM 2. The following three statements are equivalent: 
(i) the determinant A(p) is non-zero; 

(ii) the Latin polynomial system at p is unique up to a scalar mul
tiple and the Latin remainder function r(z) has exact order o — 1; 

(iii) the German polynomial system &0(z)9 • • -, a m(z) at p is unique up 
to a scalar multiple and (t 0(0) ¥= 0. 

THEOREM 3. Let 0 ^ k ^ m. The determinant A(p + ek) is non-zero if 
and only if the German polynomial system a 0(z), • • •, a m(z) at p is 
unique up to a scalar multiple and a k(z) has exact degree a — pk. 
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We shall verify these assertions by explicitly describing the linear 
equations which determine the Latin and German polynomial systems. 
Plainly, the Latin polynomials ax(z), • • -, am(^) at p can be specified by 
their coefficient vector a(p), which is the (a — p0)-tuple consisting of 
the coefficients of these polynomials written in the order of increasing 
powers of z, beginning with the coefficients of ax(z) and ending with 
those of am(z). We also define the coefficient vector a(p) of the German 
polynomial d 0(z) at p to be the (o — p0 + 1)-tuple consisting of the 
coefficients of a 0(z) written in the order of decreasing powers of z. 
Then, because f0(z) = 1, the complete Latin and German polynomial 
systems at p are determined uniquely when their respective coefficient 
vectors a(p) and a (p) are known. 

Let M(p) be the square matrix of order o — p0 with the same entries 
as the determinant A(p), and let M^p) be the matrix obtained by delet
ing the i-th row and /-th column of M(p). The defining equations of the 
Latin coefficient vector a(p) are the first a — p0 — 1 equations of the 
linear system (of o — p0 equations and o — p0 unknowns) 

(1) M(p)x = 0. 

To see this, recall that the Latin polynomials a^z), • • -, am(z) at p are 
defined by the condition ord r(z) = a — 1 on the Latin remainder func
tion. Because deg aQ(z) = p0 — 1, this condition becomes the 
a — p0 — 1 conditions 

m pk 

r(Po+i-i)(0)/(Po + i - 1)! = 2 2 «w/fc
(p»+i-/,(0)/(Po + i - /)! = 0 

(1 ^ » g a - p„ - 1), 

where we have written 

ak(z)= So«**-1 ( l ^ f c S m ) . 
(zzi 

It follows that the Latin polynomial system at p is unique up to a 
scalar multiple if and only if some matrix 

K-PJP) 

is non-singular. Further, the coefficient vector a(p) satisfies the com
plete set of equations (1) if and only if the Latin remainder function 
r(z) has ordr(^) ^ a. Thus (i) and (ii) of Theorem 2 are equivalent, and 
Theorem 1 follows because if deg ak(z) < pk — 1 then some Latin re
mainder functions at p — ek and p coincide, where by Theorem 2, 
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A(p — €k) — 0. Conversely if A(p — ek) ¥= 0 then ak(z) has exact degree 
pk — 1 and indeed some matrix Ma_p ^p) is non-singular (namely, for 
/ = pt + - - - + pk), so we obtain the uniqueness of the Latin poly
nomial system as asserted by Theorem 1. 

In the same way, if 1 îâ k ^ ra, the defining equations of the Ger
man coefficient vector a(p) are the equations of a linear system 

(2) M(p + €k)*x = 0 

with the (Pi + • • • + pk + l)-th equation omitted. To see this, recall 
that the German polynomials a 0(z)9 • • •, a m(z) at p are defined by the 
conditions ord tk0(z) i ^ a + 1 , (1 ^ k ta m), on the German remainder 
functions. Because deg ak(z) ^ o — pk(l ^ k ^ ra), these conditions be
come the o — p0 conditions 

t ^ - " ( O ) / ^ + 1 - /)! 

= " | ° a0 + 1_0 o_ i / f c<^ i- '>(0)/(Po + « - /)l 

( l § ^ m ; 1 2 / ê pÄ), 

where we have written 

It follows that the German polynomial system at p is unique up to a 
scalar multiple if and only if some matrix 

V - P > + €^ 
is non-singular. Further, the coefficient vector a(p) satisfies the com
plete set of equations (2) if and only if the German polynomial ak(z) 
has degree less than o — pk. Theorem 3 and the rest of Theorem 2 now 
follow. 

An alternative proof of Theorems 2 and 3 can be derived from Theo
rem 5 without any appeal to the systems (1) and (2); for details see 
[16], pp. 279-281. 

4. Normal systems. W e say that the functions f^z), • •, fm(z) are 
normal at the point p if A(p) ¥= 0. After Theorem 2, this definition is 
essentially the same as those given by Jager [8], page 202, and Coates 
[4], pages 433 and 441. We note here two consequences of normality. 

THEOREM 4. Let pv • • -, pm be given non-negative integers. The func
tions ft(z), • • -, fm(z) are normal at the point p = (p0, pv • • -, pm) for 
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infinitely many choices of the non-negative integer p0 if and only if 
they satisfy no equation of the shape 

(3) b0(z) + \(z) Uz) + ••• + bjz) fjz) = 0 

where all the bk(z) are polynomials and deg bk(z) = pk — 1 for 
l^k^m. 

PROOF. It suffices to note that an equation of the shape (3) is equiva
lent to the condition A(p0, pv • • -, pm) = 0 for all suffciently large in
tegers p0. 

THEOREM 5. Let a0(z), • • •, am(z) and a 0(z), • • •, a m(z) be the two 
polynomial systems at the point p. Then 

m 

(4) 2 ak(z)ak(z) = cz-1 

k—0 

where c is a constant. Moreover, c ^ 0 if and only if p is a normal 
point. 

PROOF. Let r(z) and t k£(z) be the remainder functions corresponding 
to the given systems of polynomials. From the definitions, we have the 
identity 

m m 

(5) 2 <*k(z)ak(z) =a o(*) <z) - 2 ak(z)xk0(z). 
kzzO k—0 

Now, the left-side of (5) is a polynomial of degree at most a — 1 and 
the two terms on the right have orders at least a — 1 and o + 1 re
spectively, so we have (4) and the last statement of the theorem follows 
from Theorem 2. 

COROLLARY. Suppose p is a normal point. Then the system of German 
polynomials at p is relatively prime and the only possible common fac
tor of the system of Latin polynomials at p is a power of z. 

PROOF. From (4), the only common factor of either system of poly
nomials is a power of z. Moreover, at a normal point, û0(0) ¥= 0 by 
Theorem 2, so the German polynomials have no common factor. 

5. Some explicit constructions. Only a few isolated instances of nor
mal systems are known. We give three examples. 

(i) Let (o0 = 0, o)v • • •, o)m be distinct complex numbers. Then the 
functions 
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are normal at every point p = (p0, pv • • -, pm). To prove this assertion, 
we observe that if C is a closed contour containing co0, cov • • -, cow, 
then the function 

has a zero of order exactly p0 + • • • + pw — 1 at the origin. This iden
tity, due to Hermite [7], gives explicit expressions for the Latin poly
nomials ak(z) and remainder r(z) at p. Hermite [6] also obtained for
mulae for the German polynomials at p. 

(ii) Let co0 = 0, cuv • • -, côm be complex numbers, no two of which 
differ by an integer. Then the functions 

(1 -zY\ •- . , (1 - z ) ° « 

are normal at every point p = (p^ p1? • • -, pm) and explicit formulae 
for the polynomial systems at p have been given by Mahler [10] and Jä
ger [8]. The Latin polynomials ak(z) and remainder r(z) at p may be ob
tained from the identity. 

m 

Hz) = 2 ak(z)(\ - zf* 

1 f m Pk 

where C is a closed contour containing all the o)k + / — 1 (0 ^ k ^ m, 
1 ^ / ^ pk) and again this proves the normality assertion made above. 

(iii) Let co0 = 0, co1? • • -, com be complex numbers, no two of which 
differ by an integer. The doubly-indexed family of functions 

(1 - z)«' log(l - z)8 (0 ^ r ^ m, 0 ^ 5 ^ n r (r, 5) * (0, 0)) 

is normal with respect to every set of parameters prs (0 ^ r ^ m, 
0 ^ 5 = nr) such that 

Pr. 0 ^ Pr. 1 = • • • = Pr,„r(0 =i f =i m). 

In this case, the Latin polynomials ars(z) and remainder r(z) at p are ob
tained from the identity 
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m nr 

<*)= 2 \ars{z)(\ - zn\og(l - z)Y 
rzzO s=0 

p m nr prs 

= isrX Hfl B^-^-^D-d-^c 
where C is a closed contour containing all the cor + t — 1 (0 ̂  r ^ ra, 
1 ^ f ^ pr>0). (See [1] and [15]). 

Some further examples of normal systems in the more general sense 
mentioned at the end of section 2 are given in [15]. 
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