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ON THE TOPOLOGICAL TRIVIALITY OF SOLUTION SETS 

C. J. HIMMELBERG AND F. S. VAN VLECK1 

To N. Aronszajn, on the occasion of his seventieth birthday 

1. Introduction. Consider the initial value problem 

(1) x'= f(x, t), x(0) = 0, 

where x e Rn, t e / = [0, T], and fis bounded and continuous on Rn x /. 
Aronszajn [1] has proved that the set S of all solutions of (1) is an i?rset 
in the space C[I] of continuous functions from / into Rn. (Recall that an 
7^-set is defined to be the intersection of a decreasing sequence of compact 
absolute retracts.) It follows that, although solutions of (1) are not unique, 
the set of all such solutions is topologically equivalent to a point. Also, the 
theorem of Kneser that {x(T)\x e S} is connected follows easily from 
Aronszajn's theorem. 

The purpose of this note is to give a new and more elementary proof of 
Aronszajn's result, and to make some progress on obtaining a similar 
result for the sets of solutions of the differential inclusion 

(2) x' e F(x, t), x(0) = 0. 

In (2), F is a set valued function whose values are compact convex subsets 
of Rn\ it is assumed that all the values of F are contained in some ball in 
Rn, and that F is a continuous function from Rn x / to the space of all 
compact subsets of Rn topologized by the Hausdorff metric. Aronszajn's 
proof does not work in the latter situation, because it depends on an 
elegant fixed point theorem which appears to have no suitable counterpart 
for set valued functions. 

Our approach is to approximate (1) by a control problem 

(3) x\t) = fn(x, t) + u(t), x(0) = 0, 

where/„ is Lipschitzian and u belongs to a suitably restricted set Un of 
control functions. Un is chosen so that the set 

Sn = {x: I -* Rn | x solves (3) for some u e Un} 

is a compact absolute retract containing S and so that for all e > 0, almost 
all Sn are contained in the ^-neighborhood Ne(S) of S. It then will follow 
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from another theorem of Aronszajn that S is an Rô-set. The details are in 
§2. 

It appears likely that this approach will yield the same result for the 
solution set of (2), though some formidable technical difficulties remain to 
be overcome. We have so far been able to show that the solution set of (2) 
is an R§ only in case Rn = R1. This is done in §3. 

2. The Solution Set of (1) is an Rô. To simplify the exposition we will 
work only with the autonomous version of (1): 

(la) x' = / (* ) , x(0) = 0. 

We assume/is continuous on Rn and that \f(x)\ ^ M for all x e Rn. With 
S now denoting the set of all solutions of (la), we have, for all t el = 
[0, T] and all x e 5, that |x'(0l = l /W0) l ^ M. It follows that \x(t)\ S MT 
for all tel, and so we may restrict the domain o f / i n (la) to the closed 
ball BMT of radius MT. We are going to prove that S is an jRrset. The 
proof of the same result for the non-autonomous case (1) involves no es
sential change in the argument. 

PROPOSITION 1. S is a compact subset of C[T], and S' = {x' \x e S} is 
bounded (by M) and equicontinuous. 

PROOF. It is well known that S is compact, and the boundedness of S' 
was established in the paragraph preceding the proposition. To prove S' is 
equicontinuous, let e > 0 and choose ö > 0 such that \f(x) — f(y)\ < e 
whenever x,yeBMT and \x — y\ < ô. Clearly \x(t) — x(s)\ ^ M\t — s\ 
for all s,t el. Hence 

\t - s\ < ÖIM=> \x(t) - x(s)\ < Ö 

=> \x'(t) - x'(s)\ = \f(x(t)) - / ( * ( J ) ) | < e. 

Now let /„ : Rn -> Rn be a Lipschitzian function bounded by M such 
that \fn(x) - f(x) \ ^ l/n for all x e BMT. Then define a set Un of control 
functions u: I -> Rn by 

Un = coA n , 

where 

An = {u | for some xeS, u(t) = f(x(t)) — fn(x(t)) on / } . 

PROPOSITION 2. i) \u(t)\ ^ \jn for all ueUn, tel; 
ii) U„ is a compact convex subset ofC[I]; 

iii) For each x e S there exists ueUn such that x is a 
solution ofx'(t) = fn(x(t)) + u(t) on I. 

PROOF, (i) and (iii) are obvious. To prove (ii), it is sufficient (since Un is 
bounded, by (i)) to prove An is equicontinuous. So let e > 0 and choose 
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ô > 0 such that 11 - s\ < ô => \x\t) - x'{s)\ < e for all xeS. Suppose 
\fn(x) - fn(y)\ S K \x - y\ for all x, y e BMT, let u e An9 and let x e S 
be such that u(t) = f(x(t)) — fn(x(t)) on /. Then for s,telwe have 

\u(t) - u(s)\ ^ \f(x(t)) -f(x(s))\ + \fn(x(t)) -fn(*(s))\ 

= |JC'(0 - x'(s)\ + kn\x{t) - x(s)\ 

<£ + knM\t - s\ 

< 2e 

for small enough \t — s\, independently of w. 

The following purely topological proposition was proved by Aronszajn 
in [1]. 

PROPOSITION 3. Let (Sn) be a sequence of compact absolute retracts in a 
metric space X and let S be a compact subset of X such that 

i) S c S „for all n, and 
ii) for all e > 0, Sn cz N£(S) for almost all n. 

Then S is an Rô-set. 

THEOREM 1. The solution set Sof(\a) (or of (I)) is an Rô-set. 

PROOF. Define a function <pn: Un -> C[I] by (p„(u) = the unique solution 
x of x'(t) = /„(*(/)) + u(t), x(0) = 0. Then define Sn = #n(Un). It is well 
known that <pn is continuous and easy to see that it is one-to-one. Hence 
Sn is homeomorphic to the compact convex set Un, It follows that Sn is a 
compact absolute retract. By Proposition 2 , 5 c Sn. Using Proposition 3, 
we can prove S is an Rô set by proving for all e > 0 that Sn cz N£(S) for 
almost all n. Suppose to the contrary that there exists e > 0 and an infinite 
sequence nx < n2 < ... such that Sn. <£ N£(S) for all j9 and choose xn. e 
Sn. - N£(S) for ally. 

By an easy application of Ascoli's theorem, cl( U nSn) is compact, and 
so we may assume without loss of generality that (xn) converges, say to 
x. We will now obtain a contradiction by proving x e S. 

For each y, let un. G Un. be such that cpnf(un) = xn., i.e., 

*nf(t) = J (fn.(xn.(s)) + u„.(s)) ds. 

Now (xn) is coconvergent with the sequence (yn) defined by 

ynj(t) = J V ( x W ; W ) 4- u„.(s)) ds, 

since \xn.(t) - yn.(t)\ ^ T/rij for all 0 g t ^ T. Moreover, 

ynj(t) - £ / (^ ) ) <b90£t£T. 
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So 

x(t) = limx (0 = lim j (0 = [f(x(s)) ds, 0 g t£ T. 
y-»oo y—oo J o 

This means x e S. 

3. The Solution Set of (2) is an Rô if n = 1. As in §2, we consider only 
the autonomous case 

(2a) x' G F(x), x(0) = 0. 

We assume that F i s a continuous set valued function on Rl whose values 
are closed bounded intervals in R1, and that F i s bounded (i.e., for some 
M, F(x) c [ — M, M] for all x). The continuity of F means that for every 
e > 0 there exists ô > 0 such that F(x) c N£{F{y)) and F(>>) cz #£(F(x)) 
whenever |x — j>| < 5. 

A solution x to (2a) is defined to be any absolutely continuous function 
satisfying (2a) almost everywhere on / = [0, T]. As in §1, any solution of 
(2a) satisfies | x{t) | ^ MT for all t G /. 

THEOREM 2. The solution set S of {2d) {or of{2)) is an R§-set. 

PROOF. First note that the functions/, g: R1 -• R1 such that F{x) = 
[/(*)> g(x)] f° r a ^ * G ^ 1 a r e continuous. This follows from the fact that 
the inequalities \f{x) — f{y)\ < e and \g{x) — g{y)\ < e are implied by the 
inclusions 

[Ax), g(x)] = [f(y) - e, g(y) + e] 

and 

U{y\ g(y)] = [fix) - e, g(x) + e]. 
Let/„, gn; R1 -» i?1 be Lipschitzian functions bounded by M such that 

Ax) - 2-n < fn{x) < f{x) - 2 - -1 < fix) 

^ g{x) < g{x) + 2-«-1 < gn{x) < g{x) + 2-» 

for all x G BMT. Then define 

hn{x, u) = fn{x) + u{gn{x) - fn{x)) if x G R\ u G [0, 1]. 

Next define £/ to be the set of all measurable functions u: I = [0, T] -> 
[0, 1]. Uis a subset of L2[7] and we assign to C/the subspace topology in
duced by the weak topology on L2[I], Since L2[I] is reflexive and separa
ble, U is compact and metrizable (see [2, V.4.6.8 and V.6.3.3]). Since U 
is also convex, it is an absolute retract. 

Define <p„: U -> C[7] by pw(w) = x, where x is the unique function such 
that 
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* ' ( 0 = / * W 0 ) + U(t)(gn(x(t)) -fn(x(t))) = hn{x(t\u(t% 

and define Sn — (pn(U). Clearly <pn is one to one, and, by first observing 
that Sn is the solution set of 

x\t)e[fn{x{t)\ gn(x(t)% x(0) = 0, 

it is easy to see that Si D S2 D ... and that S = [)nSn. Thus to prove S 
is an iVset, there remains only to prove that <pn is continuous. For then 
it follows that <pn is a homeomorphism onto Sn and S„ is a compact abso
lute retract for each n. 

Let ue U, let (wÄ) be a sequence in £/ converging weakly to w, and let 
xk = #>w(w*) for all A:. Since 

**(0 = i K(xk(s\ uk(s)) ds, 
Jo 

the sequence (xk) is uniformly bounded and equicontinuous on T, and so 
has a uniformly convergent subsequence (xkj) converging, say, to x. If we 
prove 

(4) x(t)= ['hn(x(s)> »(*)) <k> 
Jo 

then it follows that x — <pn(u) and that every uniformly convergent sub
sequence of (xk) converges to x. Consequently cpn(uk) -• <pn(u) as k -> oo 
and #>M is continuous at u. 

To establish (4), observe that it is equivalent to 

lim f fofo/j), H, (*)) - *,(*(*)> u(s))] ds = 0,0StST. 
j-*oo J Q 

But 

hn(xkp "*,-) - hn(x, u) = [hn(xkp ukj) - hn(x, uk)} 

+ [K(x, uk) - hn(x, u)]. 

Clearly the integral of the first term on the right tends to 0. For the second 
term we have 

)Q[hn(x(s), uk.(s)) - hn(x(s), u(s))] 

= ) oXlO, tl(s)[gn(x(s)) - fn(x(s))](uk.(s) - u(s)) ds 

-> 0 as j -» oo, 

since uk. tends weakly to u. 
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