ON THE TOPOLOGICAL TRIVIALITY OF SOLUTION SETS

C. J. Himmelberg and F. S. Van Vleck ${ }^{1}$

To N. Aronszajn, on the occasion of his seventieth birthday

1. Introduction. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=f(x, t), x(0)=0 \tag{1}
\end{equation*}
$$

where $x \in R^{n}, t \in I=[0, T]$, and f is bounded and continuous on $R^{n} \times I$. Aronszajn [1] has proved that the set S of all solutions of (1) is an R_{δ}-set in the space $C[I]$ of continuous functions from I into R^{n}. (Recall that an R_{δ}-set is defined to be the intersection of a decreasing sequence of compact absolute retracts.) It follows that, although solutions of (1) are not unique, the set of all such solutions is topologically equivalent to a point. Also, the theorem of Kneser that $\{x(T) \mid x \in S\}$ is connected follows easily from Aronszajn's theorem.

The purpose of this note is to give a new and more elementary proof of Aronszajn's result, and to make some progress on obtaining a similar result for the sets of solutions of the differential inclusion

$$
\begin{equation*}
x^{\prime} \in F(x, t), x(0)=0 \tag{2}
\end{equation*}
$$

In (2), F is a set valued function whose values are compact convex subsets of R^{n}; it is assumed that all the values of F are contained in some ball in R^{n}, and that F is a continuous function from $R^{n} \times I$ to the space of all compact subsets of R^{n} topologized by the Hausdorff metric. Aronszajn's proof does not work in the latter situation, because it depends on an elegant fixed point theorem which appears to have no suitable counterpart for set valued functions.

Our approach is to approximate (1) by a control problem

$$
\begin{equation*}
x^{\prime}(t)=f_{n}(x, t)+u(t), x(0)=0 \tag{3}
\end{equation*}
$$

where f_{n} is Lipschitzian and u belongs to a suitably restricted set U_{n} of control functions. U_{n} is chosen so that the set

$$
S_{n}=\left\{x: I \rightarrow R^{n} \mid x \text { solves (3) for some } u \in U_{n}\right\}
$$

is a compact absolute retract containing S and so that for all $\varepsilon>0$, almost all S_{n} are contained in the ε-neighborhood $N_{\varepsilon}(S)$ of S. It then will follow

[^0]from another theorem of Aronszajn that S is an $R_{\dot{\delta}}$-set. The details are in § 2.

It appears likely that this approach will yield the same result for the solution set of (2), though some formidable technical difficulties remain to be overcome. We have so far been able to show that the solution set of (2) is an R_{δ} only in case $R^{n}=R^{1}$. This is done in $\S 3$.
2. The Solution Set of (1) is an R_{δ}. To simplify the exposition we will work only with the autonomous version of (1):

$$
\begin{equation*}
x^{\prime}=f(x), x(0)=0 \tag{1a}
\end{equation*}
$$

We assume f is continuous on R^{n} and that $|f(x)| \leqq M$ for all $x \in R^{n}$. With S now denoting the set of all solutions of (1a), we have, for all $t \in I=$ $[0, T]$ and all $x \in S$, that $\left|x^{\prime}(t)\right|=|f(x(t))| \leqq M$. It follows that $|x(t)| \leqq M T$ for all $t \in I$, and so we may restrict the domain of f in (la) to the closed ball $B_{M T}$ of radius $M T$. We are going to prove that S is an R_{δ}-set. The proof of the same result for the non-autonomous case (1) involves no essential change in the argument.

Proposition 1. S is a compact subset of $C[T]$, and $S^{\prime}=\left\{x^{\prime} \mid x \in S\right\}$ is bounded (by M) and equicontinuous.

Proof. It is well known that S is compact, and the boundedness of S^{\prime} was established in the paragraph preceding the proposition. To prove S^{\prime} is equicontinuous, let $\varepsilon>0$ and choose $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in B_{M T}$ and $|x-y|<\delta$. Clearly $|x(t)-x(s)| \leqq M|t-s|$ for all $s, t \in I$. Hence

$$
\begin{aligned}
|t-s|<\delta / M & \Rightarrow|x(t)-x(s)|<\delta \\
& \Rightarrow\left|x^{\prime}(t)-x^{\prime}(s)\right|=|f(x(t))-f(x(s))|<\varepsilon
\end{aligned}
$$

Now let $f_{n}: R^{n} \rightarrow R^{n}$ be a Lipschitzian function bounded by M such that $\left|f_{n}(x)-f(x)\right| \leqq 1 / n$ for all $x \in B_{M T}$. Then define a set U_{n} of control functions $u: I \rightarrow R^{n}$ by

$$
U_{n}=\overline{\operatorname{co}} A_{n}
$$

where

$$
A_{n}=\left\{u \mid \text { for some } x \in S, u(t)=f(x(t))-f_{n}(x(t)) \text { on } I\right\}
$$

Proposition 2. i) $|u(t)| \leqq 1 / n$ for all $u \in U_{n}, t \in I$;
ii) U_{n} is a compact convex subset of $C[I]$;
iii) For each $x \in S$ there exists $u \in U_{n}$ such that x is a solution of $x^{\prime}(t)=f_{n}(x(t))+u(t)$ on I.

Proof. (i) and (iii) are obvious. To prove (ii), it is sufficient (since U_{n} is bounded, by (i)) to prove A_{n} is equicontinuous. So let $\varepsilon>0$ and choose
$\delta>0$ such that $|t-s|<\delta \Rightarrow\left|x^{\prime}(t)-x^{\prime}(s)\right|<\varepsilon$ for all $x \in S$. Suppose $\left|f_{n}(x)-f_{n}(y)\right| \leqq k_{n}|x-y|$ for all $x, y \in B_{M T}$, let $u \in A_{n}$, and let $x \in S$ be such that $u(t)=f(x(t))-f_{n}(x(t))$ on I. Then for $s, t \in I$ we have

$$
\begin{aligned}
& |u(t)-u(s)| \leqq|f(x(t))-f(x(s))|+\left|f_{n}(x(t))-f_{n}(x(s))\right| \\
& =\left|x^{\prime}(t)-x^{\prime}(s)\right|+k_{n}|x(t)-x(s)| \\
& <\varepsilon+k_{n} M|t-s| \\
& <2 \varepsilon
\end{aligned}
$$

for small enough $|t-s|$, independently of u.
The following purely topological proposition was proved by Aronszajn in [1].

Proposition 3. Let $\left(S_{n}\right)$ be a sequence of compact absolute retracts in a metric space X and let S be a compact subset of X such that
i) $S \subset S_{n}$ for all n, and
ii) for all $\varepsilon>0, S_{n} \subset N_{\varepsilon}(S)$ for almost all n.

Then S is an $R_{\delta^{-}}$-set.
Theorem 1. The solution set S of (1a) (or of (1)) is an R_{δ}-set.
Proof. Define a function $\varphi_{n}: U_{n} \rightarrow C[I]$ by $\varphi_{n}(u)=$ the unique solution x of $x^{\prime}(t)=f_{n}(x(t))+u(t), x(0)=0$. Then define $S_{n}=. \varphi_{n}\left(U_{n}\right)$. It is well known that φ_{n} is continuous and easy to see that it is one-to-one. Hence S_{n} is homeomorphic to the compact convex set U_{n}. It follows that S_{n} is a compact absolute retract. By Proposition 2, $S \subset S_{n}$. Using Proposition 3, we can prove S is an R_{δ} set by proving for all $\varepsilon>0$ that $S_{n} \subset N_{\varepsilon}(S)$ for almost all n. Suppose to the contrary that there exists $\varepsilon>0$ and an infinite sequence $n_{1}<n_{2}<\ldots$ such that $S_{n_{j}} \not \subset N_{\varepsilon}(S)$ for all j, and choose $x_{n_{j}} \in$ $S_{n_{j}}-N_{\varepsilon}(S)$ for all j.

By an easy application of Ascoli's theorem, $\operatorname{cl}\left(\bigcup_{n} S_{n}\right)$ is compact, and so we may assume without loss of generality that $\left(x_{n_{j}}\right)$ converges, say to x. We will now obtain a contradiction by proving $x \in S$.

For each j, let $u_{n_{j}} \in U_{n_{j}}$ be such that $\varphi_{n_{j}}\left(u_{n_{j}}\right)=x_{n_{i}}$, i.e.,

$$
x_{n_{j}}(t)=\int_{0}^{t}\left(f_{n_{j}}\left(x_{n_{j}}(s)\right)+u_{n_{j}}(s)\right) d s
$$

Now $\left(x_{n_{j}}\right)$ is coconvergent with the sequence $\left(y_{n_{j}}\right)$ defined by

$$
y_{n_{j}}(t)=\int_{0}^{t}\left(f\left(x_{n_{j}}(s)\right)+u_{n_{j}}(s)\right) d s
$$

since $\left|x_{n_{j}}(t)-y_{n_{j}}(t)\right| \leqq T / n_{j}$ for all $0 \leqq t \leqq T$. Moreover,

$$
y_{n_{j}}(t) \rightarrow \int_{0}^{t} f(x(s)) d s, 0 \leqq t \leqq T
$$

So

$$
x(t)=\lim _{j \rightarrow \infty} x_{n_{j}}(t)=\lim _{j \rightarrow \infty} y_{n_{j}}(t)=\int_{0}^{t} f(x(s)) d s, 0 \leqq t \leqq T .
$$

This means $x \in S$.
3. The Solution Set of (2) is an R_{δ} if $\boldsymbol{n}=1$. As in $\S 2$, we consider only the autonomous case

$$
\begin{equation*}
x^{\prime} \in F(x), x(0)=0 \tag{2a}
\end{equation*}
$$

We assume that F is a continuous set valued function on R^{1} whose values are closed bounded intervals in R^{1}, and that F is bounded (i.e., for some $M, F(x) \subset[-M, M]$ for all x). The continuity of F means that for every $\varepsilon>0$ there exists $\delta>0$ such that $F(x) \subset N_{\varepsilon}(F(y))$ and $F(y) \subset N_{\varepsilon}(F(x))$ whenever $|x-y|<\delta$.

A solution x to (2a) is defined to be any absolutely continuous function satisfying (2a) almost everywhere on $I=[0, T]$. As in $\S 1$, any solution of (2a) satisfies $|x(t)| \leqq M T$ for all $t \in I$.

Theorem 2. The solution set S of (2a) (or of (2)) is an R_{δ}-set.
Proof. First note that the functions $f, g: R^{1} \rightarrow R^{1}$ such that $F(x)=$ [$f(x), g(x)$] for all $x \in R^{1}$ are continuous. This follows from the fact that the inequalities $|f(x)-f(y)|<\varepsilon$ and $|g(x)-g(y)|<\varepsilon$ are implied by the inclusions

$$
[f(x), g(x)] \subset[f(y)-\varepsilon, g(y)+\varepsilon]
$$

and

$$
[f(y), g(y)] \subset[f(x)-\varepsilon, g(x)+\varepsilon]
$$

Let $f_{n}, g_{n} ; R^{1} \rightarrow R^{1}$ be Lipschitzian functions bounded by M such that

$$
\begin{aligned}
f(x)-2^{-n} & <f_{n}(x)<f(x)-2^{-n-1}<f(x) \\
& \leqq g(x)<g(x)+2^{-n-1}<g_{n}(x)<g(x)+2^{-n}
\end{aligned}
$$

for all $x \in B_{M T}$. Then define

$$
h_{n}(x, u)=f_{n}(x)+u\left(g_{n}(x)-f_{n}(x)\right) \text { if } x \in R^{1}, u \in[0,1]
$$

Next define U to be the set of all measurable functions $u: I=[0, T] \rightarrow$ $[0,1] . U$ is a subset of $L^{2}[I]$ and we assign to U the subspace topology induced by the weak topology on $L^{2}[I]$. Since $L^{2}[I]$ is reflexive and separable, U is compact and metrizable (see [2, V.4.6.8 and V.6.3.3]). Since U is also convex, it is an absolute retract.

Define $\varphi_{n}: U \rightarrow C[I]$ by $\varphi_{n}(u)=x$, where x is the unique function such that

$$
x^{\prime}(t)=f_{n}(x(t))+u(t)\left(g_{n}(x(t))-f_{n}(x(t))\right)=h_{n}(x(t), u(t))
$$

and define $S_{n}=\varphi_{n}(U)$. Clearly φ_{n} is one to one, and, by first observing that S_{n} is the solution set of

$$
x^{\prime}(t) \in\left[f_{n}(x(t)), g_{n}(x(t))\right], x(0)=0
$$

it is easy to see that $S_{1} \supset S_{2} \supset \ldots$ and that $S=\bigcap_{n} S_{n}$. Thus to prove S is an R_{δ}-set, there remains only to prove that φ_{n} is continuous. For then it follows that φ_{n} is a homeomorphism onto S_{n} and S_{n} is a compact absolute retract for each n.

Let $u \in U$, let $\left(u_{k}\right)$ be a sequence in U converging weakly to u, and let $x_{k}=\varphi_{n}\left(u_{k}\right)$ for all k. Since

$$
x_{k}(t)=\int_{0}^{t} h_{n}\left(x_{k}(s), u_{k}(s)\right) d s
$$

the sequence $\left(x_{k}\right)$ is uniformly bounded and equicontinuous on T, and so has a uniformly convergent subsequence $\left(x_{k_{j}}\right)$ converging, say, to x. If we prove

$$
\begin{equation*}
x(t)=\int_{0}^{t} h_{n}(x(s), u(s)) d s \tag{4}
\end{equation*}
$$

then it follows that $x=\varphi_{n}(u)$ and that every uniformly convergent subsequence of $\left(x_{k}\right)$ converges to x. Consequently $\varphi_{n}\left(u_{k}\right) \rightarrow \varphi_{n}(u)$ as $k \rightarrow \infty$ and φ_{n} is continuous at u.

To establish (4), observe that it is equivalent to

$$
\lim _{j \rightarrow \infty} \int_{0}^{t}\left[h_{n}\left(x_{k_{j}}(s), u_{k_{j}}(s)\right)-h_{n}(x(s), u(s))\right] d s=0,0 \leqq t \leqq T
$$

But

$$
\begin{aligned}
h_{n}\left(x_{k_{j}}, u_{k_{j}}\right) & -h_{n}(x, u)=\left[h_{n}\left(x_{k_{j}}, u_{k_{j}}\right)-h_{n}\left(x, u_{k_{j}}\right)\right] \\
& +\left[h_{n}\left(x, u_{k_{j}}\right)-h_{n}(x, u)\right]
\end{aligned}
$$

Clearly the integral of the first term on the right tends to 0 . For the second term we have

$$
\begin{aligned}
\int_{0}^{t}\left[h_{n}(\right. & \left.\left(s(s), u_{k_{j}}(s)\right)-h_{n}(x(s), u(s))\right] \\
& =\int_{0}^{1} x_{[0, t]}(s)\left[g_{n}(x(s))-f_{n}(x(s))\right]\left(u_{k_{j}}(s)-u(s)\right) d s \\
& \rightarrow 0 \text { as } j \rightarrow \infty
\end{aligned}
$$

since $u_{k j}$ tends weakly to u.

References

1. N. Aronszajn, Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. Math. 43 (1942), 730-738.
2. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.

Department of Mathematics, University of Kansas, Lawrence, KS 66044

[^0]: ${ }^{1}$ This research was supported by National Science Foundation Grant MCS 76-24436. Received by the editors on April 13, 1978.

