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ROTATING CHAIN FIXED AT TWO POINTS 
VERTICALLY ABOVE EACH OTHER 

MICHAEL REEKEN 

0. Introduction. In 1955 Kolodner [1] treated the problem of a 
chain fixed at one point, the other end being free. Using methods char­
acteristic of ordinary differential equations, he showed that there are 
infinitely many branches of solutions with one, two, three, • • • nodes 
bifurcating from the zero solution, at angular velocities coi5 the latter 
sequence tending to infinity. By the zero or trivial solution we mean 
the solution for which the chain rotates at any angular velocity, but re­
mains on the vertical line through the fixed point. We propose to study 
the analogous case where the second end of the chain is fixed to a 
point vertically below the first point at a distance smaller than the 
length of the chain. The mathematical problem is not analogous to that 
of Kolodner; the different boundary condition changes its character. An 
accessory equation is introduced which makes a treatment along the 
lines of Kolodner's attack rather difficult if not impossible. 

So we turn to a different method, which has been used extensively in 
recent times. It involves establishing the existence of continua of solu­
tion via topological degree methods. Thus one obtains global extensions 
of local branches given by the implicit function theorem. A very prac­
tical and well known approach is that inaugurated by Rabinowitz in his 
treatment of global continua of solutions to certain bifurcation prob­
lems. Unfortunately the problem at hand resists that approach as well. 
The natural setup for this method would be a C2 space, but the trivial 
solution of the problem does not belong to it. This solution is described 
by the following x(s) = (x^s), x2(s), x3(s)): 

xt(s) = x2(s) = 0 

s,s e [o , - ! ± -e_ ] , 

**(*) = r / i 
l+a-s9se [ - ^ t f z j . 

We have used the coordinate system shown in Figure 1. 
The function describing the trivial solution is not differentiable, so bi­

furcation from it cannot be established by the usual analytical tools. 
But a heuristic argument shows that for infinite angular velocity there 
must be a definite solution, in shape roughly similar to a catenary. 
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Figure 1. 

There are actually infinitely many other solutions as well as we shall 
show. The idea then is to start from these solutions at infinity and to 
follow them back. 

The plan of the paper is as follows. In §1, the equation for the chain 
configuration in question is derived and transformed into a different 
form more suitable for treatment. Some results on the nodes of x3 and 
the behaviour of the tension T are derived. In §2, the equation for the 
asymptotic configuration of the chain at infinite angular velocity is de­
duced and all its solutions are discussed. In §3, the general equation for 
finite angular velocity is studied and the existence of a "lowest" branch 
of solutions is established by global extension of local branches given by 
the implicit function theorem. 

1. Preliminaries. The equations of motion of the chain are given by: 

* = g + M ' g =(0,0, g) 

x* • x? =1 x(s,t) =(x1(s, t), Xzis, t\ x3(s, t)) 

3 

s(0, t) = 0 x! • Xe = 2 (*i')2 

i= l 

x(l, t) = a = (0, 0, a), I > a > 0, — = ±, — =xf 

dt ds 
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T is the tension in the chain (it is a Lagrange multiplier associated with 
the condition x? - x? = 1). 

We are interested in solutions rotating uniformly around the vertical 
axis, and we have to express that condition in analytical terms. In order 
to do this in an expedient way, we define a complex function: 

z(s, t) - xt(s, t) + «fete *)• 

Uniform rotation at angular velocity co is now expressed by 

z(s, t) =ei^tz(s\ 

x3(s, t) =0. 

If we substitute this into the above equations of motion we get a new 
set of equations: 

- i02Z = ( 7 S % 

0 = g + («3% 

(x3r + \zf =i, 

3(0) =Z(1) = 0, 

*3(0) =0, x3(t) = a. 

Our first aim is to eliminate r and x3 from the equations. The third 
equation leads to 

x3' = ±(1 - |zf) i / 2 

(+ if the curve runs downwards, — otherwise). The second equation can 
be integrated to give 

™3' = UP - 4 
where the constant of integration a is unknown (in Kolodner's case it 
can be determined from the boundary condition for T at the free end). 

The other equations are 

- U \ = « ) ' , 

- <o**2 =(TXX')'. 

If we multiply by xt', add and integrate, we get 

- <°2 Jo' (*l*l' + *2*2')df 

= r (KOV+TX^V)*. 
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Multiplying the equation for x3 by x3', we get 

° = S g*3 dr+ X («aOV*-

Adding the two and integrating by parts leads to 

" Y £ fr ( *1 + *2 ) *~ XS « ^ * = £ T'dr' 
We have used the equation 2*(x.')2 = 1 and its derivative 2J*/*/' = 

The relation we have derived is valid only for solutions in (?([(), l\). 
Another admissible choice would be L2

2([0, Z]). Performing the in­
tegrations brings us to the following expression: 

T(s) = T(0)-f(x2
1(s) + X2

2(s) )-gX3(s). 

This relation proves that T is finite on the whole interval [0, l\ if T(0) is 
finite. This we assume in all that follows. 

This then implies that x3' has at most one zero in [0, l\ located at a; 
otherwise T would become infinite at that point. If a is not in [0, l\, 
then x3 has no zero. 

We shall show that a is positive. Assume, on the contrary, that a ^ 
0. Then g(a — s) = 0. This implies that r and x3 have different signs. 
x3 must have positive values because the boundary conditions x3(t) = a 
and x3(0) = 0 imply that § \)c3 dr = a > 0. As o is negative or zero, 
x3 has at most one zero at zero (if a = 0; otherwise none). So x3 is 
positive on [0, l\. Therefore T is negative and this implies z(s) = 0 be­
cause — œ2z = (TZ')\ Z(0) = z(l) — 0 has only the trivial solution if T 

< 0. But then x3 = 1 and J l^dz — I 4= a. This contradiction proves 
that a > 0. 

We now prove that T > 0 (consequently sgn x3 = sgn (a — s)). In 
fact, the equation rx3 — g(o — s) shows that T has at most one zero at 
a. If a is actually a zero of T then x3 cannot have one at a and so must 
be positive on [0, l\. But then T changes sign at o and is negative on (a, 
l\ with r(a) — 0. On the interval [a, l\, we have again an equation 

- co2z =(rzj 

z(I) =0, r(a) = 0, T ^ 0, 

which has only the trivial solution. So we certainly have z(a) = 0. But 
this is impossible, because on [0, a] we have now 
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- œ2z = (rzj 

z(0) =z(o) = 0 

T(<J) =0. 

This again implies z = 0 on [0, a], because this together with the equa­
tion for x3 is just Kolodner's case (a free end at a because r(a) = 0), 
and the only solution with z(o) = 0 is the trivial one. This con­
tradiction proves the contention T > 0. 

We can also show that any solution lies in a plane going through the 
x3-axis. For that we recall that a Sturm-Liouville problem of the form 
— (rz'Y — u2z = 0, 2(0) = z(J) = 0 has at most one linearly indepen­
dent real solution. This implies that x1 and x2 are linearly dependent. 
By suitable rotation of the coordinate system around the x3-axis, we can 
achieve that x2 = 0. That shows that we can assume z to be real, and 
denoting this real quantity by x, we have the following nonlinear sys­
tem of equations for it: 

\ (1 - (x?f)1/2 I 

(1) x(0) = *(*) = 0, 

X' (i - err2 ds = a. 
The square roots are understood to change their sign from + to — at s 
= o. 

This equation is not very nice because of the singularity in the ex­
pression g(a — s)/(l — (x')2)172. It is expedient to use the following 
transformation (Kolodner). 

u(s) : = wg-mr* ^u + °-
This can be solved for x/ : 

(*?(*) =• (gV^X* - sf + u*(s) 

or 

From 

M,) - îf(£) 
+ ((gV<"4X° - * ) 2 + A»)1/2' 
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1 _ <** (g2/a>4)(g - s)2 

[ i - (gV<**)(*- s? + u*' 

we infer that 

(g/<o2)(o - s) _ _ 2 1 / 2 

+ (g>/u>*(o - s)2 + u2)1'2 - ( ( " • 
These substitutions transform (1) into — u' — x = 0. This immediately 
implies the boundary conditions u'(0) = u'(l) = 0 for u. The last equa­
tion of (1) becomes 

I •' (g/<o2)(q - s) _ 

"> ((g2/«4)((T - *)2 + M2(S))1/2 

Differentiation of — u' — x = 0 finally leads to the following system 
where we have set fx = g/co2 (co 4= 0) : 

( p 2 ( a _ 5 )2 + w 2 ( s ) l / 2 

(2) ti'(0) = u\J) = 0, 

(From now on square roots are always understood as nonnegative unless 
indicated otherwise.) 

Let Ta = L2
0(0, Î) x R X R where L2

0(0, I) = {u G L2
2(0, Q | 

u'(0) = t*'(J) = 0) . 2 , - {(u, a, ix) G r a |'M > O, a G [0, q, ii(a) -
0}. If (u, a, /x) G r^ and satisfies (2), we call it a solution. 

We can show that any (x, a, ft) with x G L2
2(0, Z) satisfying (1) leads 

to a solution (u, a, ft) of (2) by Kolodner's substitution. This is obvious 
from the given calculations. But we also show by contradiction that in 
this case (u, a, ju) $ 2^. Namely, assume a G [0, l\ and u(a) = 0. We 
have shown that x3' has its zero at a, so x/(a) = ± 1 because (x£)2(a) + 
{iff (a) = 1. We also know that g(a - s)/(l - (^)2(s))1/2 = T(S) > 0 
on [0, q. It follows that u(s) = g(a - s)/(l - ^)2(5))1/2x,(«) is unequal 
to zero at a, that is u(o) = ± T(<J) =1= 0. 

If we are given a solution (u, a, ft) of (2), then we define 

*>=r " ^ — & 
(ja2(a - tf + u2(*))1/2 

This will lead to a solution of (1) with x S C?(0,l) if (u, a, ju) $ 2„; 
otherwise x" will have a discontinuity at a. For instance (0, (I + a)/2, 
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/A) is, for any /A, a solution of (2), but it corresponds to the trivial solu­
tion already mentioned, which has a discontinuous derivative at a. This 
is proven by the fact that for (w, a, /x) $ 2^, u(s)/([x2(o — s) + 
u2(s))1/2 is as many times differentiable with square intergrable deriva­
tives as u is. For (v, a, p) $ 2 a , a Taylor development shows that x?(o 
+ 0) = - *(a - 0) = ± uWG*2 + (w')2(^))1/2-

Let us now look for solutions of (2) in 2^ • u is a solution of the fol­
lowing integral equation: 

J ^& C1 vir) 

* J(T (/x2(a - r)2 + w2(r))1/2 

where ii'(a) = a. On the space C*(a, T) = {w G C(a, T) |sup| v(s)/(s — 
a) | = |u|* < oo} with norm | |*, the above operator with given a is a 
contraction for T > a sufficiently close to a, on a ball |u|* = 2a. It 
then follows that the solution (u, a, /A) E 2 a of the first equation of (2) 
is uniquely determined by v\a) = a and we also must have v(t — a) 
= - u(2a - f). If a = 0, then u = 0. 

Consequently if w has exactly one zero, then a = 1/2 because by 
concavity or convexity there is exactly one point s where u'(s) = 0 for 
s < a and then v'(2o — s) = 0. But from w'(0) = 0, we have s — 0 
and from u'(J) we get 2a — I. The solution v is therefore antisymmetric 
around a = 1/2. 

Obviously the integral in the second line of (2) is then zero. So, no 
solution of (2) with exactly one zero lies in 2 a . Those which do are 
chains with a = 0, and a little thought shows that they are folded 
upon themselves forming a double chain with free end at s — 1/2. This 
is in accordance with the result on stationary kinks in [3]. 

2. The asymptotic equation. We are now interested in the behaviour 
of (2) when co —> oo, that is when /i —* 0. We set u(s) — v(s) -j- c 
with J 0

lv(s) ds = 0. (2) then becomes 

- I,"M V(S) + C = 0 
V W hx2(o - sf + (v(s) + c)2)1'2 U' 

(2a) t/(0) = t/(Z) = 0, 

f Ka - «) , 
J0 ( M 2 ( a _ 5 )2 + ( ü ( s ) + c)2)l/2 a -

Integration of the first equation leads to 

"** t>(s) + g X' (]u2(a - s)2 + (t)(s) + c)2) ,2U/2 
ds = 0. 
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The operator — cP/ds2 with boundary conditions t/(0) = v\J) = 0 is 
boundedly invertible on the space L±

2(0, Z), the space of square in-
tegrable functions orthogonal to the constant function. This implies that 
v is bounded in L2

2(0, l), and therefore in 0 (0 , Z), independently of /i 
and a, because 

v(s) + c 
(ti2(o - s)2 + (v(s) + c)2)1/2 ^ 1 for any /i, a and v. 

Any nontrivial solution u of (2) must have a zero. If not we have ei­
ther u > 0 or u < 0 and (2) then implies that u" < 0 or u" > 0. 
Since M'(O) = u'(I) = 0 it follows that w = 0 because a concave or 
convex function with a continuous first derivative and horizontal tan­
gents at the endpoints of an interval has to be constant. The only con­
stant function satisfying (2) is 0. For all /i and a, v stays uniformly 
bounded in sup-norm. Therefore c must stay uniformly bounded, other­
wise v(s) + c = u(s) would have no zero. This proves that u(s) stays 
uniformly bounded in sup-norm for all \i and a. Since u is even bound­
ed in O-sup-norm, the set of solutions u is precompact in C°. From 

vis) = Mq - *) su) 
{) (1 - (s?(*))1/2 {)t 

or if we set (io = K from 

U(S)(1 - M W ' 2 + l**(8) = K*H 

we conclude that K is bounded as JLI —* 0. This is because for any /i, 
there must be an s(p) E (0, i) such that |a/(*(/i))| = c > 0 for a suitable 
c; otherwise f 0

l(l - {*)2{s))1/2ds > a. 
The conclusion is that we can choose a sequence ^ —* 0 such that o{ 

—• co, K4 —> K0 < co and t^ —• u0 in C°. If fc0 > 0 then (2) leads to 

• = 0 , 
(*o2 + V ) 1 / 2 
*0 1" "0 

(3) V(0) =«'(0 - 0, 

JC -ds = a. 
(K02 + Uff" 

This is the asymptotic equation of a chain. The chain itself is given by 

«•>=r "o(*) 

and 

df 
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sto = £ ^0 M 

K>2 + «oW /2 ' 
In (3) fc0 must be unequal to zero. This does not imply that 0 is not an 
accumulation point of possible K0, as we shall see later. 

The next problem to deal with is to find all solutions of (3). On the 
road to this goal we derive a general relation valid for (2) as well as for 
(3). From 

tttl' - ^Q - s) =A(u2(o _ s)2 , „2)1/2 
( /x2(a _ 8f + „2)1/2 ^ V *> + U ) 

and ti'ti" = (l/2)(d/ds)u1/2, as well as from - u'u" - m//(/z2(a - s)2 

_l_ w2)i/2 _ ô  which comes from (2) by multiplication with u\ we con­
clude 

à [ " I {u? - ^{° ~s? + "2)1/2 ] 
M2(g - ») 0 

(ju2(a - sf + u2)1/2 

Integration leads to 

- (M2(<T - sf + «2) - | ( « ' ) 2 * /»2/Ä _ 0\2 . „2\l /2 
0 - p a = 0, 

0 

or equivalently 

- (/x2(a - /)2 + w2(Z))1/2 + ( A 2 + w2(0))1/2 = pa. 

For (3) an analogous computation gives t*2(0) = w2(Z). (3) is an ordinary 

differential equation, the dependence with respect to u0 being Lipschitz 

because K0 > 0. Therefore u0 has only simple zeroes. u0 must have at 

least one zero because it is an eigenvector for the eigenvalue zero of 

the Sturm-Liouville operator 

But zero is certainly not the lowest eigenvlaue of this operator because 

obviously 

(P 1 d2 

<& (*o2 + "o2)1/2 de ' 

This implies that u0 changes sign at least once. The equation is autono­
mous and of second order so u0 must be symmetric or antisymmetric 
around the point s = Z/2, that is u0(s) = ± u0(l — s). This is because 
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u0
2(0) = u0

2(l) or M0(0) = ± u0(l); but the solution u0 with initial con­
ditions u0(0), w0'(0) = 0 solved in the forward direction must then.be 
identical with the solution ± u0 with end conditions u0(l) = ± u0(0)9 

u0'(l) = 0 solved in the backward direction. 
This fact, together with the existence of at least one zero, allows us 

to describe all solutions of (3) in the following way: Let s|n) = il/2n, i 
= 0, 1, 2, • • -, 2n. Any nonnegative solution of 

- < - /.., A»*/» =0's Gt°>•«• («o2 + V ) 1 

*V(0) = v0(s™) = 0, 

r ds = -?-
«o2 + V ) 1 / 2 2n 

gives rise to a solution of (3) with n zeroes at the points s£>2i, t = 0, 
• • •, n — 1 by the definition 

w0(«ln) + «) 

= ( _ DU/21 . (Ms) i even ] , $ e [0, , / 2 n ] . 
v — v0(l/2n — s) i odd J 

Any solution u0 of (3) with n zeroes has these zeroes at the points 
5ï+2i> a nd Mo restricted to [0, ^n)] is a solution of the above-mentioned 
equations. 

Thus we have reduced the problem of solving (3) to that of finding 
all nonnegative solutions of 

_ f3" Ho o 
° («o2 + V ) 1 / 2 

tV(0) = c0(Z/2n) = 0, 

f/2n ^ =
 a 

** («o2 + V ) 1 / 2 2n' 

with K0 > 0. 
By the scaling uQ(s) — KQ1t)0(fe/2n), s G [0, 1], the system of equa­

tions changes into 

_ u» _ / * V "o - Q 
"° \ 2(K0)"*n / (1 + «0

2)1/2 - ' 

(4) V(0) = «„(1) = 0, 

P L 
•* (1 + % 

_ a 

2)1/2"- 7 

http://then.be


ROTATING CHAIN 419 

Our first aim is to establish the uniqueness of the solutions of (4). We 
start by studying the equation: 

U° Y (1 + «o2)1/2 

< ( 0 ) = «0(1) = 0. 

u0 se 0 is a solution for any y > 0. So, this is a typical bifurcation 
problem. 

Using arguments similar to those in [2] we can show that there is a 
unique branch of nonnegative solutions u0 parametrized by y bifurcat­
ing from zero and defined on the interval [TT2/4, OO). All nonnegative 
solutions belong to that branch. 

To prove these contentions we define on L|0(0, 1) X R a function 
F - L%to(0, 1) is the space of functions which together with their gener­
alized derivatives up to second order, are square integrable and satisfy 
the prescribed boundary conditions. F : L| 0(0, 1) X R —» L2(0, 1) is 
given by 

F(u, y) = - vT - 2X1/2 (1 + U2) 

Suppose (UQ, Y0) is a solution of F(u, y) = 0 with u0 ^ 0, u0 4= 0 and 
Y0 > 0. The Frechet derivative of F with respect to u is given by 

h U(?h o F U 'K Vo)̂  = - h" - Vo ( 1 + V ) 1 / 2 + Yo ( 1 + <)3/2 • 

The operator 

M U°- y ° ; " ds2 (i + V ) 1 / 2 (i + V ) 3 / 2 

is boundedly invertible as an operator from L| 0(0, 1) to L2(0, 1). This 
we show by proving that the spectrum of this selfadjoint operator does 
not contain zero. This in turn is demonstrated by a perturbation argu­
ment. The operator — (cP/ds2) — (YO/(1 + uo2)1/2) n a s z e r o a s a n e*~ 
genvalue with the nontrivial eigenfunction u0 ^ 0. The operator is of 
Sturm-Liouville type. Therefore u0 ^ 0 implies that 0 is the first ei­
genvalue, otherwise u0 would change sign. UUQ, y0) comes from that 
operator. Thus, L(UQ, yQ) is also selfadjoint and has a discrete spectrum 
which is shifted to the right by a positive amount. 

The implicit function theorem establishes the existence of a local 
branch of solutions around (UQ, y0), because Fu' is invertible at that 
point. Let K be inverse of the operator — cP/ds2 with the prescribed 
boundary conditions. The equation F(u, y) = 0 can then be written as 
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U K (1 + „2)1/2 ' 

This implies that there exists a constant C such that ||w|| L2
2 ^ C • y 

for ail solutions (u, y). But K is a compact operator. It follows that any 
bounded infinite set of solutions has a solution as accumulation point. 
Differentiation of F(u(y), y) = 0 leads to 

du du 
_du u dy Y"2 dy n 

dy (1 + 1/2)1/2 ( 1 + „2)1/2 + ( 1 + „2)3/2 " U ' 

This implies that 

du r _ i / v u 

Ty = L (w' Y> (i + u>r* • 

L~\uy y) maps nontrivial nonnegative functions into positive functions. 
It follows that (d/dy) \\u\\2

L2 = 2(u, du/dy) = 2(w, L~\u, y)w/(l + 
u2)i/2 j s positive. This, together with the compactness argument given 
before, shows that the branch around (UQ, y0) can be followed back un­
til it reaches u = 0. But that is only possible at the lowest eigenvalue 
of the linearized problem which is TT2/4. Since bifurcation is unique, all 
positive solutions must lie on this branch of solutions, which can be 
continued indefinitely for y —» oo. Otherwise there would be a solution 
(uo> 7o) ^ t h a maximal y0, which is impossible because the extension 
argument above would work again. 

We go on to prove that (4) has at most one positive solution. The 
idea is to put the unique branch u(y) into the integral and to see if it 
takes the prescribed value for some y in [7r2/4, OO). We differentiate 
the integral with respect to y and get 

-r 
du 
dy 

(1 + «2)3/2 ds = 

- J C I - V Y ) „ , mM» ds<0. (1 + M2)3/2 V ' U (1 + U2)1/2 

This proves that there is at most one y for which the integral takes the 
value a/l. 

What is left open is the question as to whether there is a solution at 
all. We resolve it by Schauder's fixed point theorem. We transform (4) 
into an equivalent form. For this purpose we introduce K, the inverse 
of — cP/ds? with the prescribed boundary conditions. Then (4) can be 
written in the form 
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Un= K Y«0 
u°-~ (1 + u 0 ^ 2 ' 

"o=«o+( S {l + \>r* à*-]Y • 

Let us write K+ = {u G C° | w ê 0}, and R+ = {a \ a ^ 0}. The 
closed convex cone K+ x R+ in C° x R is mapped into itself by the 
mappings defined by the right hand side of (5). This mapping is com­
pact. By the Schauder fixed point theorem it has a fixed point in K+ X 
R+. 

We conclude this paragraph with a summary of what we have pro­
ved for the asymptotic equation. The system of equations 

_ f." uo — o 
° (*o2 + «o2)1 / 2 " ' 

«o'(0) = uo'(Z) = 0, 

«* ("o + «o2)1/2 * = * 
has, for any integer n ^ 1, exactly one solution u0 with n simple 
zeroes located at 4n+2i = ((* + 2t)/2n) • I (i = 0, 1, • • -, n - 1) 
and K0 < (l/nir)2. 

3. The general equation. If we replace [w by K in the system of 
equations (2) then we get 

((* _ ^ ) 2 + „2)1/2 - U> 

fl'(0) = fl'(J) = 0, 

- r „ (K Z P ) 2U/2 * + a = 0. 
^ ((lC - jLW)2 + f ) 

We solve the first equation for u depending upon K and /x. Define 

I \ = {(u, K, p) | M G L|0(0, ^ K G B , ( H « C ) + 0} 
and 

G : rK-L2(0, J) by 
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Let 

2 , = I (u, K, ii) G r j y * o, - G [o, q, u(* ) = o } . 

Then 2K is a closed set in TK. 
For points in 2K, G is not well behaved. But on 1^X2^, G is Fre-

chet-differentiable. We have proved that no solution of (6) lies in 2K. 
Let P be the orthogonal projection on the constant functions in L2(0, l) 
and Q = 1 — P. The operator — cP/ds2 with boundary conditions 
t/'(0) = u'(l) = 0 has an inverse on QL2(0, T) which we denote by K. 
Then the equation 

G(U, Ky li) — — U" 

is equivalent to KQG(u, K, p) + Pu = u. Let us denote this map by H. 
We have 

H:TK^ LyO, I). 

A little thought shows that given any e > 0, H is a compact map 
for all K, y with |K| = * > 0. On sets M which have a positive dis­
tance from 2K, this is obvious because in QL2(0, T) we have 

Hu = KQ 
((K _ JUJ2 + „2)1/2 

Since (K - JUS)2 + u2(s) 4= 0 for all s G [ 0 , i ] and u G L|0(0, J) we 
have u G C1**172^, I), and there must be a ô > 0 such that (K - us)2 

+ u2(s) è 8 for all s G [0, l\ and all M G M. It is then straight­
forward to prove that 

{Uy ** W "" ((K - lis)2 + u2)1/2 

is a bounded map from M C TK to L| 0(0, I). This proves compactness 
of H on M. 

If M H 2K 4= 0, things are more delicate. If u G 2K then K//X = a 
is in [0, q and u(a) = 0. But u G (?+(1/2>(0, I), so there is a finite Tay­
lor-development u(s) - u\o)(s - a) + t»(s - a) with t>(s - a) = o(\s 
- o\) and v G C1+(1/2)(0, I). This implies that v(s - a)/(s - a) is in 
C172^, I). Therefore we get 
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u'(o)(s — a) 4- v(s — a) 
((* - fis)2 + u2(s))1/2 (/i2(a - sf + (u'(o)(s - a) + v(s - a))2)1/2 

v(s — a) 
"w +- c - . ) 

( , ! + ( „ , „ ) + ^ f » ) ' ) 
1/2 

If u $ 2X then the same representation is valid, but the function v(s — 
a)/(s - o) is better than C1/2(0, I). 

Since /i =•= 0 this function is of the same class as v(s — a)/(s — a). 
Furthermore (u, K, H) —* U/((K — fis)2 + u2)1/2 is bounded from TK to 
C1/2(0, I). But C1/2(0, I) is compactly imbedded in C°(0, I) and that is 
continuously imbedded in L2(0, l). Therefore KQ U/((K — fis)2 + w2)1/2 

defines a compact map. In both cases the second part P U/((K — fis)2 + 
u2)1/2 being an integral over a function absolutely bounded by 1, is cer­
tainly compact. 

We have shown earlier that the set of fixed points of H is bounded 
independently of JH and K. Therefore this set is compact for K ^ e > 
0. H is also a continuous map on TK. For points not in 2 this is ob­
vious. So let u(a) = 0. If ux is close to M in L2

2-norm, it is so in C1-
norm. We have to show that 

KQ [^ (K - jis)2 + w2)1/2 <Kl - w)2 + u2)1/2 J 

becomes arbitrarily small in L2
2 when ux —* u in L2

2 and (fxt, fq) —* (/A, 
K). K is an integral operator with bounded kernel. If we split the inter­
val of integration into a small interval around a and the rest, and if [ix 

and KX are sufficently near to /i and K, the term involving the nonlinear 
terms will be small in C°-norm outside the small interval, so this term 
is all right. On the small interval that term is absolutely bounded by an 
expression involving the norms of u and uv Therefore the integration 
leads to an L2

2 function of arbitarily small L2
2-norm as the size of the 

interval is decreased. This proves continuity. 
These properties of H show that a sequence (ui9 Ki9 /i4) of solutions of 

H(u, K, ft) = 0 with K4 —» K0 > 0 and ^ —• /i0 has a solution (UQ, KQ, 
JUQ) as accumulation point. 

We now return to the equivalent equation G(u, K, fi) — 0. We have 
constructed a solution (UQ, KQ, 0) of (6) where u0 has exactly one zero. 
Let (U> 1?, p) be any solution of (6) such that V has exactly one zero, and 
let If > pi/2. Since (% if, p) $ 2 ^ G is differentiable at that solution 
and we get 
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Gu\%K,]Ì)h= - h" -

+ " 

((7? - ILS)2 + tf )1 / 2 

rfh 
((if - Jls)2 - Ü2)3 '2 

= - h" - (* - p*)2 

= L(% If, p) . h + 

((If - ps)2 - jf)3/2 

((if - ps)2 + ïP)3/2 

The linear operator L has ü as an eigenvector for the eigenvalue 0 be­
cause L(l2> 7f, p) • H = G(H> If, p) = 0 • 11. As u has exactly one zero it 
must belong to the second eigenvalue. L is a selfadjointed operator with 
discrete spectrum and the multiplication operator T?/((K — ps)2 + 
Tp)3/2 is a relatively compact symmetric perturbation of it, so the sum 
of both is selfadjoint with discrete spectrum. Since the multiplication 
operator is positive, the spectrum of L gets shifted to the right. The 
worst to happen is that 0 becomes the first eigenvalue of the new oper­
ator. But that is impossible because the eigenfunction would be of con­
stant sign, so that 

h" =- (* - P*)2 

((If - ps)2 + Jf )3/2 

would imply that h is concave or convex with h'(0) = h'(l) = 0. This 
forces h to be identically zero. 

But if 0 is not an eigenvalue for that operator, then Gu'(ü> if, p) is in-
vertible and by the implicit function theorem there is a neighbourhood 
U of (if, p) and a function g : U —• L\ 0(0, I) such that G(g(fc, p), *c, p) 
for all (K, p) G 17. 

The only problem left is to show that for fixed p, we can find a fc 
such that the last equation of (6) is satisfied. We attack that question by 
showing that the function 

/(U, K, p) : = JL x7 OM/o*fe 
•* ((K - ps)2 + u 2 ) 1 / 2 

takes all values between 0 and {as K runs through its maximal interval 
of definition. The first step is, of course, to prove continuity of /, which 
is done in the same way as for H. The next step is to show that we can 
extend the local branch g(*c, u) for fixed p and variable K. Let us first 
ask how far K can be decreased. (u> If, p) is the solution we started with. 
From what we have shown before, we know that (% if, p) $ 2Ä . Since 
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/(ti, Ky fi) = a we can, for a given a > 0, choose a neighborhood V of 
p so that for all ft G V and (ft, K) G 17 we shall have /(g(ic, ft), K, /A) ^ 
a. It follows that (g(ic, ft), ic, ft) $ 2^ for these (ic, ft). We now fix a ft G 
V, with (if, ji) G U and extend g(ic, ft) for fixed ft and K < if as far as 
possible. The extension continues as long as for the extended function 
g(ic, ft) an inequality /(g(fc, ft), K, ft) > 0 is valid. The continuation ends 
when / becomes zero and 2K is reached. For the limiting value ic of K, 
we have k = Zft/2. If / becomes zero but 2K were not reached, then 
the continuation would continue and we could decrease K to zero. This 
is impossible because there are no solutions for K = 0, i.e., a — 0. 

We now try to extend g(ic, ft) for K > k. If we could extend it to K 
= oo we would be done. This is because /(g(ic, ft), ic, ft) —* Z when K —• 
oo irrespective of the behaviour of g(ic, ft), since we know already that 
the latter function is uniformly bounded in L2

2. So we assume that the 
continuation business breaks down before we reach K = oo. Thus there 
exists a finite k > if such that g(ic, ft) cannot be extended beyond £. 
(g(ic, ft), K, ft) has an accumulation point, (u, £, ft) which is a solution of 
G(fi, K, ft) = 0. In order that continuation does not work at this point, 
it is necessary that (ft, k, ft) G 2K, which implies that /(&, K, ft) = 0. 
But we have TS > tß/2, and supposing that V was chosen sufficiently 
small, we have If > lft/2 for all ft G V. 
Therefore along the whole extended branch g(ic, ft), we have k ^ K ^ 
H > Ift/2, which implies that J(u, k, ft) =*= 0. This contradiction shows 
that the extension cannot break down at K =k < oo. 

This proves that we can extend g(ic, ft) in a unique fashion to a re­
gion A = {(K, ft) | ft G [0, ft*}, K ^ ifi/2}» and that there is a con­
nected A* C A whose projection onto the ft-axis is given by [0, ft**], 
such that /(ë(K, ft), K, ft) = a for (ic, ft) G A*. We can even prove that 
any solution with exactly one zero belongs to that sheet g(ic, ft). This 
follows from the fact that on a neighbourhood of the Une ft = 0 the 
sheet is unique. For ft = 0 we know all the solutions of G(u, K, 0) = 0; 
this is just part of the asymptotic equation of the chain. Given any K > 
0, the solutions of G(u, K, ft) = 0 for ft è 0 are unique in some neigh­
bourhood [0, €(K)] by the implicit function theorem. But since any 
sheet g(ic, ft) extends to ft = 0, they all coincide there. But if they coin­
cide there, they coincide everywhere by the unique continuation pro­
cess. 

One can even prove that the solution of (6) is unique in a one-sided 
neighbourhood of ft = 0. This is done by showing that the system of 
equations 

G(u, ic, ft) = 0, 

/(u, ic, ft) = a, 
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with solution (UQ, KQ, 0) has an invertible Frechet derivative with re­
spect to (u, K) at (UQ, KQ, 0), so that a unique solution (w(/i), K(/I), /i) ex­
ists for a neighbourhood of /i = 0. 

To prove uniqueness globally seems to be an extremely difficult job 
which we have not been able to accomplish. As for the asymptotic 
equation one would have to prove that J(g(fc, JU), K, /I) is strictly mono­
tone in K. Differentiation of / with respect to K leads to expressions 
which are not manageable because for /i4= 0 the differential equation is 
no longer independent of s; this destroys all those arguments working 
so nicely for the asymptotic equation. 

Finally, we ask whether /A** = oo. From the physics involved we ex­
pect that /!** is finite because at low to (that is big JLI) the centrifugal 
force is not strong enough to pull the chain out of the vertical. 

Let (uif Ki? /jti) be a sequence of solutions with ux —• 0, /^ —* /x**. 
Then ai = KJ/J^ tends to (I + a)/2 as we have shown earlier. Let xi be 
the function corresponding to ux. Then we get 

From T/g = (o - s)/(l - (xf)1 / 2 = (l//i) (ju2(a - s)2 + u2)1/2 ^ 
\a — s\ we conclude that 

, S xi'lxi,ds X < K - s\xi,ds 

1 & ^ 
Mi S ti2* £ *i2ds 

This leads to 

! X < l a i - «I xi'< 

X xi2ds 

But 

X' v Z + a 

r *<** ! ^ c > 0, 

so that for i sufficiently big ai ^ e /2 . It follows that /i** ^ 2/ e . 
The following proposition gives an account of what we have proved: 
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PROPOSITION Equation (1) of the chain admits at least one solution x 
with no node in the interior of the parameter interval (0, I) for any <o G 
[w**, co], co** > 0. As co —* co the corresponding solutions tend to the 
uniquely determined solution x0 corresponding to the solution (u0, K0) of 
the asymptotic equation (3), u0 having exactly one zero. 

Uniqueness remains an open problem. It is also to be conjectured 
that there are branches of solutions with one, two, etc. nodes starting at 
values w** which form an increasing sequence. For these solutions the 
continuation process via an application of the implicit function theorem 
breaks down. It could be replaced by topological degree but the prob­
lem is to determine the index of the higher solutions of (3). 

That there do exist solutions with nodes is obvious from Kolodner's 
result. Just take one of Kolodner's solutions with many nodes and fix 
the chain at the lowest node to the axis, cutting off the remainder of 
the chain with the free end. This is then a solution of (1) with nodes. 
Nevertheless this does not furnish the existence proof we are looking 
for, because the length I and the distance a are fixed from the outset, 
while the argument above just gives some length I and some distance a. 
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