BOUNDARY BEHAVIOR OF SPACES OF ANALYTIC FUNCTIONS

GEORGE BRAUER*

0 . Introduction. We de fine for $p \geqq 1, b>0$, the space $M_{p, b}$ of function $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$, analytic in the unit disc D, such that

$$
\begin{aligned}
\|f\|_{p, b} & =\limsup _{r \rightarrow 1}(1-r)^{b}\left[\int_{0}^{2 \pi}|f(z)|^{p} d \theta / 2 \pi\right]^{1 / p}<\infty \\
z & =r \exp i \theta
\end{aligned}
$$

Two functions f and g are identified in $M_{p, b}$ whenever $\|f-g\|_{p, b}=0$. We also define for $a>0$, the space $M_{\infty, a}$ of functions $f(z)$, analytic in D such that

$$
\|f\|_{\infty, a}=\lim _{r \rightarrow 1}^{\operatorname{lop}}(1-r)^{a} \max _{|z|=r}|f(z)|<\infty
$$

two functions f and g in $M_{\infty, a}$ are identified whenever $\|f-g\|_{\infty, a}=0$, that is $f(r \exp i \theta)-g(r \exp i \theta)=o(1-r)^{a}$, uniformly in θ.

For $b=0$ a space $M_{p, b}$ reduces to a Hardy space H^{p}; for a description of the Hardy space see $[\mathbf{1 , 6}]$. If f is in a Hardy space H^{p}, then $\|f\|_{p, b}=0$ for all $b>0$.

In addition to the obvious relations $M_{p, b} \subseteq M_{q, b}$ for $p \geqq q$ we also have

$$
\begin{equation*}
M_{p, a-1 / p} \subseteq M_{q, a-1 / q} \tag{1}
\end{equation*}
$$

for $1 \leqq p \leqq q<\infty, a>1 / p$; moreover there exist constants C, C^{\prime} such that

$$
\begin{align*}
& \|f\|_{\infty, a} \leqq C\|f\|_{p, a-1 / p} \\
& \|f\|_{q, a-1 / q} \leqq C^{\prime}\|f\|_{p, a-1 / p} \tag{2}
\end{align*}
$$

(cf. [1, p. 84]).
The relations (2) shows that if a function f is in a space $M_{p, a-1 / p}$, $p \geqq 1, a>1 / p$, then $(1-|z|)^{a} f(z)$ must remain bounded as z approaches a boundary point of D. In this note we will obtain restrictions on the values which $(1-|z|)^{a} f(z)$ approaches as z approaches the boundary of D for functions f in a space $M_{p, a-1 / p}$. We will also study topological properties of the $M_{p, a}$ spaces.

1. In this section we give estimates on the coefficients of a function in $M_{p, b}$ and also on the area of the region onto which a function in an $M_{p, b}$ space maps the disc $|z| \leqq r$. The results are essentially contained in [5]; we will give numerical estimates. We conjecture that for concave functionals on an $M_{p, b}$ space the largest possible value is taken for functions whose Taylor series contain huge gaps while the smallest possible value is taken at functions of the form $C(1-z)^{-a}$ for some constant C. We have been able to confirm our conjecture only in a few cases.

We let p^{\prime} denote the quantity $p /(p-1)$ for $1<p<\infty$; if $p=1$, we let $p^{\prime}=\infty$, while if $p=\infty$, we let $p^{\prime}=1$.

Theorem 1. If $f \in M_{p, a-1 / p}, 1 \leqq p \leqq \infty, a>1 / p$, then

$$
\lim \sup |\hat{f}(n)| /\left.n\right|^{a-1 / p} \leqq[e /(a-1 / p)]^{a-1 / p}\|f\|_{p, a-1 / p} .
$$

Proof. We deal only with the case $1<p<\infty$; the cases $p=1$ and $p=\infty$ are somewhat simpler. We have

$$
|\hat{f}(n)|=\left|\int_{C} f(\zeta) / \zeta^{n+1} d \zeta\right| / 2 \pi
$$

where C is the circle $|\zeta|=n /(n+a-1 / p)$. If we use Hölder's inequality to estimate $|\hat{f}(n)|$ we obtain the result.
In the opposite direction we have the following theorem.
Theorem 2A. Iff $\in M_{\infty, a}$, then

$$
\lim \sup |\hat{f}(n)| / n^{a-1} \geqq\|f\|_{\infty, a} / \Gamma(a) ;
$$

if $f \in M_{p, a-1 / p}$ for some $p, 2 \leqq p<\infty, a \geqq 1$, then

$$
\lim \sup |\hat{f}(n)| / n^{a-1} \geqq\|f\|_{p, a-1 / p}\left[p^{\prime} /[\Gamma(a p-1) /(p-1)]\right]^{1 / p^{\prime}} .
$$

Proof. We treat only the case $2 \leqq p<\infty$. Let $\lambda=\lim \sup |\hat{f}(n)| / n^{a-1}$ where $f(z)=\sum \hat{f}(n) z^{n}$ is a function in $M_{p, a-1 / p}$. By the Hausdorff Young theorem (cf, [2: p. 145]).

$$
\begin{aligned}
\|f\|_{p, a-1 / p} & =\lim \sup (1-r)^{a-1 / p}\left(\int_{0}^{2 \pi}|f(z)|^{p} d \theta / 2 \pi\right)^{1 / p} \\
& \leqq \lim \sup (1-r)^{a-1 / p}\left(\sum_{n=0}^{\infty}|\hat{f}(n)|^{p^{\prime} r^{n p^{\prime}}}\right)^{1 / p^{\prime}} \\
& =\lambda \Gamma[a p-1) /(p-1)]^{1 / p^{\prime}} \mid p^{\prime} .
\end{aligned}
$$

Hence

$$
\lambda \geqq p^{\prime}\|f\|_{p, a-1 / p} / \Gamma[(a p-1) /(p-1)]^{1 / p^{\prime}} .
$$

If $1 \leqq p<2$, we use the Hardy Littlewood theorem [1, p. 95] in place of the Hausdorff Young Theorem to obtain the following theorem.

Theorem 2B. If $f \in M_{p, a-1 / p}$ for some $p, 1 \leqq p<2$, and $a>1 / p$, then

$$
\lim \sup (\hat{f}(n)) / n^{a-1} \geqq\|f\|_{p, a-1 / p}(p / \Gamma(a p-1))^{1 / p}
$$

Theorem 1 is the best possible in that equality is achieved for the function $f(z)=\sum n_{k}^{a-1 / p_{2}}$, where the numbers n_{k} are chosen to increase sufficiently rapidly (for examples, the numbers must be chosen in such a way that n_{k+1} / n_{k} tends to infinity).

The first part of Theorem 2A is also the best possible; here equality is achieved for the function $f(z)=(1-z)^{-a}$; equality is also achieved in the second part of this theorem for these functions in the case $a=1$, $p=2$.

We let $A(r)$ denote the area of the region onto which the function $f(z)$ maps the disc $|z| \leqq r$.

Lemma 1. If $f \in M_{\infty, a}$, then $\left\|f^{\prime}\right\|_{\infty, a+1} \leqq(a+1)^{a+1}\|f\|_{\infty, a} / a^{a} ;$ if $f \in M_{p, b}$, $1 \leqq p<\infty, b>0$, then

$\left\|\boldsymbol{f}^{\prime}\right\|_{\infty, b+1+1 / p}$

$$
\leqq(p b+p+1)^{b+1+1 / p\left\|(1-z)^{-1}\right\|_{2 p^{\prime},(p+1) / 2 p}^{2}\|f\|_{p, b} /(p b)^{b}(p+1)^{1+1 / p} . . . ~}
$$

Duren [1, pp. 65-66] showed that $\left\|(1-z)^{-1}\right\|_{2 p^{\prime},(p+1) / 2 p}$ is finite.
Proof. By the Cauchy integral formula

$$
\left|f^{\prime}(z)\right| \leqq \int_{C}\left(|f(\zeta)| /(\zeta-z)^{2}|d \zeta| / 2 \pi\right.
$$

For the first part of the theorem we take C as the circle $|\zeta-z|=$ (1 - |z|)/(a+1); for the second part we take C as the circle $|\zeta|=$ $|z|+(p+1)(1-|z|) /(p b+p+1)$ and apply Hölder's inequality.

We also have, following [5, p. 430], the next lemma.
Lemma 2. If $f \in M_{2, b}$, then $\left\|f^{\prime}\right\|_{2, b+1} \leqq(b+1)^{b+1}\|f\|_{2, b} / 2 b^{b}$.
Theorem 3. Iff $\in M_{\infty, a}, a>0$, then

$$
\limsup _{r \rightarrow 1}(1-r)^{2 a+1} A(r) \leqq \pi(a+1)^{a+1}\|f\|_{\infty, a}^{2} / a^{a} ;
$$

if $f \in M_{p, b}, 1 \leqq p<\infty, b>0$, then
$\lim \sup (1-r)^{2 b+1} A(r) \leqq \pi\left[(p+1+p b)^{b+1+1 / p} /(p+1)^{1+1 / p}(p b)^{b}\right]$

$$
\times\left\|(1-z)^{-1}\right\|_{2 p^{\prime},(p+1) / 2}\|f\|_{p, b}^{2} .
$$

Proof. We consider only the second part of the theorem; the first part can be dealt with in a similar fashion. For $1 \leqq p<\infty$

```
\(\lim \sup (1-r)^{2 b+1} A(r)\)
\(=\pi \lim \sup (1-r)^{2 b+1} \sum_{n=1}^{\infty} n|\hat{f}(n)|^{2} r^{2 n}\)
\(=\lim \sup (1-r)^{2 b+1} \int_{0}^{2 \pi}\left|f(z) f^{\prime}(z)\right| d \theta / 2, \quad(z=r \exp i \theta)\)
\(\leqq(2 \pi)^{1 / p^{\prime}} \lim \sup (1-r)^{b+1} \max \left|f^{\prime}(z)\right| \cdot \lim \sup (1-r)^{b}\left(\int_{0}^{2 \pi}|f(z)|^{p} d \theta\right)^{1 / p} / 2\),
```

where the maximum is taken over the circle $|z|=r$. Hence
$\lim \sup (1-r)^{2 b+1} A(r)$
$\leqq \pi\|f\|_{p, b}\left\|f^{\prime}\right\|_{\infty, b+1}$
$\leqq \pi\left[(p+1+p b)^{\left.b+1+1 / p /(p+1)^{1+1 / p}(p b)^{b}\right] \cdot\left\|(1-z)^{-1}\right\|_{2 p^{\prime}, p+1 / 2 p}^{2}\|f\|_{p, b}^{2} .}\right.$
We can also conclude from Lemma 2 the following theorem.
Theorem 3B. If $f \in M_{2, b}, b>0$, then

$$
\lim _{r \rightarrow 1} \sup (1-r)^{2 b+1} A(r) \leqq \pi(b+1)^{b+1}\|f\|_{2, b}^{2} / 2 b^{b}
$$

In the opposite direction we have the following theorem.
Theorem 4. If $f \in M_{2, a-1 / 2}, a>1 / 2$. tjen
$\lim \sup (1-r)^{2 a} A(r) \geqq(2 a-1) \pi\|f\|_{2, a-1 / 2}^{2} / 2$.
Proof. We have

$$
A(r)=\pi \sum_{n=1}^{\infty} n|\hat{f}(n)|^{2} r^{2 n}
$$

so that if $\lim \sup (1-r)^{2 a} A(r) \leqq \lambda$, then for each $\varepsilon>0$, there is a number r_{0} in $(0,1)$ such that $A(r) \leqq(\lambda+\varepsilon) /(1-r)^{2 a}$ for $r \geqq r_{0}$. We consider r_{0} fixed; we take r in $\left(r_{0}, 1\right)$ and let r tend to one. We have

$$
\begin{aligned}
\|f\|_{2, a-1 / 2}^{2} & =\lim \sup (1-r)^{2 a-1} \sum_{n=0}^{\infty}|\hat{f}(n)|^{2} r^{2 n} \\
& =2 \lim \sup (1-r)^{2 a-1} \sum_{n=1}^{\infty} n|\hat{f}(n)|^{2}\left(r^{2 n+1}-r_{0}^{2 n+1}\right) /(2 n+1) \\
& =2 \lim \sup (1-r)^{2 a-1} \int_{r_{0}}^{r} A\left(r^{\prime}\right) d r^{\prime} / \pi \\
& \leqq 2(\lambda+\varepsilon) /(2 a-1) \pi .
\end{aligned}
$$

Hence $\lambda \geqq(2 a-1) \pi\|f\|_{2, a-1 / 2}^{2} / 2$. Since ε is arbitrary the result follows.
In the case $a=1$, the theorem is the best possible; for $f(z)=(1-z)^{-1}$, $\|f\|_{2,1 / 2}=2^{-1 / 2}$ and $(1-r)^{2} A(r)$ tends to $\pi / 4$.

Corollary. Iff $\in M_{2, a-1 / 2}, a>1 / 2$, then

$$
\lim \sup (1-r)^{2 a} A(r) \geqq(2 a-1) \pi\|f\|_{\infty, a}^{2} / 2^{2 a}
$$

Proof. We first note that $\|f\|_{\infty, a}<\infty$. We have

$$
\begin{aligned}
\|f\|_{\infty, a} & \leqq \lim \sup (1-r)^{a} \sum_{n=0}^{\infty}|\hat{f}(n)| r^{n} \\
& \leqq \lim \sup (1-r)^{a}\left(\sum_{n=0}^{\infty}|\hat{f}(n)|^{2} r^{n}\right)^{1 / 2}\left(\sum r^{n}\right)^{1 / 2}
\end{aligned}
$$

by the Schwarz inequality, and the above quantity is bounded by $2^{a-1 / 2}\|f\|_{2, a-1 / 2}$. The result follows from the preceding theorem.

Again equality is achieved in the case $a=1$ for the function $(1-z)^{-1}$.
2. In this section we investigate the values which $(1-|z|)^{a} f(z)$ approaches as z approaches a boundary point non-tangentially, for functions f in $M_{\infty, a}$ or in some space $M_{p, a-1 / p}$. We let the symbol $C(\alpha, \eta)$ denote the curve $\theta=\alpha+\eta(1-r)+o(1-r), r \rightarrow 1-$, where α is in $[0,2 \pi)$ and η is a real number, that is, $\mathrm{C}(\alpha, \eta)$ is a stolz ray terminating at $\exp i \alpha$ and making an angle arc $\sin \eta /\left(1+\eta^{2}\right)^{1 / 2}$ with the radius to the point $\exp i \alpha$. We let $q(\eta)$ denote the limit of $[(1-|z|) /(1-z)]^{a}$ as z approaches the point 1 along $C(0, \eta)$, this quantity is also equal to the limit of $[(1-|z|) /(\exp i \alpha-z)]^{a}$ as z approaches the point $\exp i \alpha$ along the Stolz ray $C(\alpha, \eta)$.

Theorem 5. If $f \in M_{\infty, a}, a>0$, and $(1-|z|)^{a} f(z)$ tends to w as z tends to \exp io along $C(\alpha, \eta)$, then $(1-|z|)^{a} f(z)$ tends to $w q\left(\eta^{\prime}\right) / q(\eta)$ as z tends to \exp i α along $C\left(\alpha, \eta^{\prime}\right)$.

Proof. The function $F(z)=(\exp i \alpha-a)^{a} f(z)$ is analytic in the domain bounded by the curves $C\left(\alpha, \pm\left(\max \left[|\eta|,\left|\eta^{\prime}\right|+1\right]\right)\right)$ and the smaller arc of the circle $|z|=1 / 2$. As z tends to the point $\exp i \alpha$ along $C(\alpha, \eta), F(z)$ tends to $w / q(\eta)$. By a theorem of Lindelöf [7, p. 76] $F(z)$ tends to $w / q(\eta)$ as z tends to the point \exp io along $C\left(\alpha, \eta^{\prime}\right)$, that is, $(1-|z|)^{a} f(z)$ tends to $w q\left(\eta^{\prime}\right) / q(\eta)$.

Theorem 6. Let $\left\{z_{n}\right\}$ and $\left\{z_{n}^{\prime}\right\}$ be two sequences from D, each approaching a point in ∂D in such a way that

$$
\left|z_{n}-z_{n}^{\prime}\right| /\left(1-\left|z_{n}\right|\right) \text { and }\left|z_{n}-z_{n}^{\prime}\right| /\left(1-\left|z_{n}^{\prime}\right|\right)
$$

remain bounded by a constant M. If for some function fin $M_{\infty, a}, a>0$,

$$
\lim \left(1-\left|z_{n}\right|\right)^{a} f\left(z_{n}\right)=w, \text { and } \lim \left(1-\left|z_{n}^{\prime}\right|\right)^{a} f\left(z_{n}^{\prime}\right)=w^{\prime}
$$

then

$$
\left|w-w^{\prime}\right| \leqq M\left[(a+1)^{a+1} / a^{a}+a\right]\|f\|_{\infty, a}
$$

Proof. We treat only the case $a \geqq 1$; the case $a<1$ is dealt with in a similar manner. Without loss in generality, we take $\left|z_{n}\right| \geqq\left|z_{n}^{\prime}\right|$. We have

$$
\begin{aligned}
& \left|\left(1-z_{n}\right)^{a} f\left(z_{n}\right)-\left(1-\left|z_{n}^{\prime}\right|\right)^{a} f\left(z_{n}^{\prime}\right)\right| \\
& \quad \leqq\left(1-\left|z_{n}\right|\right)^{a}\left|f\left(z_{n}\right)-f\left(z_{n}^{\prime}\right)\right|+\left(1-\left|z_{n}\right|\right)^{a}-\left(1-\left|z_{n}^{\prime}\right|\right)^{a}| | f\left(z_{n}^{\prime}\right) \mid \\
& \quad \leqq\left(1-\left|z_{n}\right|\right)^{a}\left|z_{n}-z_{n}^{\prime}\right| \max \left|f^{\prime}(z)\right|+a\left|z_{n}-z_{n}^{\prime}\right| \max (1-|z|)^{a-1}\left|f\left(z_{n}^{\prime}\right)\right|
\end{aligned}
$$

where the above maxima are taken over the line segment L joining z_{n} to z_{n}^{\prime}. Thus

$$
\begin{aligned}
& \left|\left(q-\left|z_{n}\right|\right)^{a} f\left(z_{n}\right)-\left(1-\left|z_{n}^{\prime}\right|\right)^{a} f\left(z_{n}^{\prime}\right)\right| \\
& \quad \leqq\left. M\left(1-\mid z_{n}\right)\right|^{a+1} \max \left|f^{\prime}(z)\right|+M a\left(1-\left|z_{n}^{\prime}\right|\right)^{a}\left|f\left(z_{n}^{\prime}\right)\right| .
\end{aligned}
$$

By Lemma 1 for each positive ε

$$
\left(1-\left|z_{n}\right|\right)^{a+1}\left|f^{\prime}(z)\right| \leqq(1-|z|)^{a+1}\left|f^{\prime}(z)\right| \leqq\left[(a+1)^{a+1} / a^{a}\right]\left(\|f\|_{\infty, a}+\varepsilon\right)
$$

for each point z on L provided z_{n} and z_{n}^{\prime} are sufficiently close to one. (We note that the boundedness of $\left|z_{n}-z_{n}^{\prime}\right| /\left(1-\left|z_{n}\right|\right)$ and $\left|z_{n}-z_{n}^{\prime}\right| /\left(1-\left|z_{n}^{\prime}\right|\right)$ insures that if $\left|z_{n}\right|$ and $\left|z_{n}^{\prime}\right|$ are close to one, then each point z on L is close to one.) We now have for $\left|z_{n}\right|$ and $\left|z_{n}^{\prime}\right|$ sufficiently close to one

$$
\begin{aligned}
& \left|\left(1-\left|z_{n}\right|\right)^{a} f\left(z_{n}\right)-\left(1-\left|z_{n}^{\prime}\right|\right) f\left(z_{n}^{\prime}\right)\right| \\
& \left.\quad \leqq M[a+1)^{a+1}\left(\|f\|_{\infty, a}+\varepsilon\right) / a^{a}\right]+a M\left(\|f\|_{\infty, a}+\varepsilon\right)
\end{aligned}
$$

If we let n tend to infinity and thus let $\left|z_{n}\right|$ and $\left|z_{n}^{\prime}\right|$ tend to one and ε tend to zero, we obtain the result.

If a function f is in a space $M_{p, a-1 / p}, p \geqq 1, a>1 / p$, then $(1-|z|)^{a} f(z)$ is bounded; moreover the next theorem shows that there are restrictions on the way in which $\left(1-|z|^{a}|f(z)|\right.$ may tend to a positive limit as z approaches a boundary point of the disc.

Theorem 7A. Let $\left\{z_{n}^{(i)}\right\}, i=1,2, \ldots$, be a collection of sequences of points from D such that

$$
\begin{gather*}
\left|z_{n}^{(1)}\right|=\left|z_{n}^{(2)}\right|=\cdots=r_{n} \tag{3}\\
\lim _{n \rightarrow \infty} r_{n}=1, \text { and } \tag{4}
\end{gather*}
$$

(5) there exists a positive constant ζ such that for $i \neq j$,

$$
\left|z_{n}^{(i)}-z_{n}^{(j)}\right| \geqq \zeta\left(1-\left|z_{n}^{(i)}\right|\right),
$$

then in order that there exist a function f in some space $M_{p, a-1 / p}, p \geqq 1$, $a>1 / p$, such that

$$
\lim _{n}\left(1-r_{n}\right)^{a} f\left(z_{n}^{(i)}\right)=w_{i}
$$

$i=1,2, \ldots$, uniformly in i, it is necessary that the numbers w_{i} satisfy the condition

$$
\sum_{i}\left|w_{i}\right|^{p+1} \leqq K\|f\|_{p, a-1 / p}^{p}
$$

for some constant K depending only on p and a.
Proof. For sufficiently large $n,\left|f\left(z_{n}^{(i)}\right)\right| \geqq\left|w_{i}\right| / 2\left(1-r_{n}\right)^{a}$ for all i. (We may assume that all w_{i} are different from zero.) There is a constant K_{1} depending only on p and a such that

$$
\left|f^{\prime}(z)\right| \leqq K_{1}\|f\|_{p, a-1 / p} /(1-|z|)^{a+1}
$$

(cf. [5, pp. 430-431]). Let $I_{n, i}$ denote the arc with $|z|=r_{n}$ and

$$
\left|\theta-\arg z_{n}^{(i)}\right| \leqq w_{i}\left(1-r_{n}\right) \min \left(\zeta / 3,1 / 4 K_{1}\|f\|_{p, a-1 / p}\right)
$$

On $I_{n, i}$, if r_{n} is sufficiently close to one,
$|f(z)|$

$$
\begin{aligned}
\geqq & w_{i} / 2\left(1-r_{n}\right)^{a} \\
& -\left[w_{i}\left(1-r_{n}\right) \min \left(\zeta / 3,1 / 4 K_{1}\|f\|_{p, a-1 / p}\right)\right] \max \left|f^{\prime}(z)\right| \\
\geqq & w_{i} / 4\left(1-r_{n}\right)^{a} .
\end{aligned}
$$

Since the arcs $I_{n, i}$ are disjoint, if r_{n} is sufficiently close to one,

$$
\begin{aligned}
\int_{|z|=r_{n}}|f(z)|^{p} d \theta & \geqq \sum_{i} \int_{I_{n}, i}|f(z)|^{p} d \theta \\
& \geqq K_{2} \sum_{i}\left|w_{i}\right|^{p+1} /\left(1-r_{n}\right)^{p p-1}
\end{aligned}
$$

where K_{2} is a universal constant. The result follows.
We are actually able to prove slightly more.

$$
\text { Let } \mathscr{F}_{r}(\theta)=\max _{0 \leqq|z| \leq r} f(|z| \exp i \theta)
$$

Then there is a constant K_{3} such that

$$
\int_{|z|=r}\left|\mathscr{F}_{r}(\theta)\right|^{p} d \theta \leqq K_{3} \int_{|z|=r}|f(z)|^{p} d \theta
$$

$1<p<\infty$ (cf. [4, p. 103-108]). Hence, we have the following theorem.
Theorem 7B. Let A_{1} and A_{2} be two positive constants and for each i, let $\left\{z_{n}^{(i)}\right.$ denote a sequence of points such that

$$
\begin{align*}
& A_{1} \leqq\left(1-\left|z_{n}^{(i)}\right|\right) /\left(1-\left|z_{n}^{(j)}\right|\right) \leqq A_{2} \\
& \lim _{n \rightarrow \infty}\left|z_{n}^{(i)}\right|=1, i=12, \ldots, \text { and }
\end{align*}
$$

(5') there exists a positive constant ζ such that

$$
\left|z_{n}^{(i)}-z_{n}^{(j)}\right| \geqq \zeta /\left(1-\left|z_{n}^{(i)}\right|\right)
$$

for all n, i, j, such that $i \neq j$, then in order that there exist a function $f \in$ $M_{p, a-1 / p}$ for some $p \geqq 1, a>1 / p$, such that

$$
\lim \left(1-\left|z_{n}^{(i)}\right|\right)^{a} f\left(z_{n}^{(i)}\right)=w_{i},
$$

$i=1,2, \ldots$, it is necessary that

$$
\sum\left|w_{j}\right|^{p+1} \leqq K\|f\|_{p, a-1 / p}^{p}
$$

for some constant K depending only on p, and a.
3. In this section we determine the duals of the $M_{p, b}$ spaces; we will also give some necessary conditions for weak convergence in the $M_{p, b}$ spaces.

If X is a locally compact space, then X can be densely imbedded in a compact space βX in such a way that every bounded continuous complex function has a continuous extension f^{β} to βX. The space βX is called the Stone-Cech compactification of X (for a description of the Stone-Cech compactification, cf. [3, pp. 82-93]). We will use the symbol βX to denote the Stone-Cech compactification of X; if f is a bounded continuous function on X, then f^{β} will always denote its continuous extension to βX; if ν is a point in βX the symbol f_{ν}^{β} will express the fact that the function f^{β} has been evaluated at ν.

If f is a function in $M_{\infty, a}, a>0$, then the function $F(r, \theta)=$ $(1-r)^{a} f(r \exp i \theta)$ is bounded and continuous in D and consequently has a continuous extension F^{β} to βD. We now respresent $M_{\infty, a}$ as a space of continuous functions on a compact space Δ formed from $\beta D-D$ by identifying two points ν_{1} and ν_{2} in $\beta D-D$ whenever $F_{\nu_{1}}^{\beta}=F_{\nu_{2}}^{\beta}$ for all $f \in M_{\infty, a}$, that is

$$
\left[(1-r)^{a} f(z)\right]_{\nu_{1}}^{\beta}=\left[(1-r)^{a} f(z)\right]_{\nu_{2}}^{\beta}
$$

we give Δ the weakest topology which makes all functions $\left[(1-r)^{a} f(r \exp i \theta)\right]^{\beta}$ continuous. The space Δ admits the metric d given by

$$
\begin{aligned}
d\left(\nu_{1}, \nu_{2}\right) & =\operatorname{Lub}\left|F_{\nu_{1}}^{\beta}-F_{\nu_{2}}^{\beta}\right| \\
& =\operatorname{lub}\left|\left[(1-r)^{a} f(r \exp i \theta]_{\nu_{1}}^{\beta}-(1-r)^{a} f(r \exp i \theta)\right]_{\nu_{2}}^{\beta}\right|
\end{aligned}
$$

where the lub is taken over all functions f in $M_{\infty, a}$ such that $\|f\|_{\infty, a}=1$.
It can be shown that Δ does not contain an analytic disc. To see this note that the function $(1-z)^{-a}$ is in $M_{\infty, a}$ and that the corresponding function $\left\{[(1-r) /(1-z)]^{a}\right\}_{\nu}^{\beta}$ vanishes when ν is outside the closure in Δ of each Stolz angle with vertex at $z=1$, while this function takes values on some curve in the complex plane when ν is in some Stolz angle with vertex at $z=1$.

As in [6, pp. 166-168] we may form the fiber W_{α} above each point exp i α in $\Delta ; W_{\alpha}$ consists of all limit points in Δ of all nets $\left\{z_{\mu}\right\}$ which tend to expia. No point in Δ which is in the closure of the Stolz angle with vertex at the point 1 can lie in the closure of any union of $W_{\alpha}, \alpha \neq 0$.

We denote the half-open interval $[0,1)$ by I.
Theorem 8. The set of linear functionals on $M_{p, b}$ given by

$$
\begin{equation*}
L(f)=\left[(1-r)^{b} \int_{0}^{2 \pi} f(r \exp i \theta) \phi(r, \theta) d \theta\right]_{\rho}^{\beta} \tag{6}
\end{equation*}
$$

$f \in M_{p, b}$, where $\phi(r, \theta)$ ranges over the space $\Lambda_{p^{\prime}}$ of functions which are continuous in r on I, and such that $\int_{0}^{2 \pi}|\phi(r, \theta)|^{p^{\prime}}$ remains bounded for $0 \leqq r<$ 1 , and ρ ranges over $\beta I-I$ are woak $*$ dense in the dual of $M_{p, b}$. Conversely each functional of the form (6) represents a bounded linear functional on $M_{p, b}$ such that

$$
\left.\|L\| \leqq(2 \pi)^{1 / p} \lim _{r \rightarrow 1} \sup \left(\int_{0}^{2 \pi}|\phi(r, \theta)|^{p^{\prime}} d \theta\right)\right)^{1 / p^{\prime}}
$$

Proof. It is easily seen from Hölder's inequality that each functional of the form (6) is a bounded functional whose norm satisfies the stated inequality. To see that functionals of the form (6) are weak $*$ dense in the dual of $M_{p, b}$ we let f be an element of $M_{p, b}$ such that $\| f_{p, b}>0$. We will construct a functional L of the form (6) such that $L(f) \neq 0$. Let

$$
\phi(r, \theta)= \begin{cases}|f(z)|^{p-2} \bar{f}(z) & \text { if } \quad f(z) \neq 0 \\ 0 & \text { if } \quad f(z)=0\end{cases}
$$

We then have, for some $\rho \in \beta I-I$,

$$
L(f)=\operatorname{lub}\left[(1-r)^{b} \int_{0}^{2 \pi}|f(z)|^{p} d \theta\right]_{\rho}^{\beta}=2 \pi\|f\|_{p, b}^{p}>0 .
$$

The result follows.
With a slight modification of the above argument we have
Theorem 8B. The set of functionals on $M_{1, b}$ given by

$$
L(f)=\left[(1-r)^{b} \int_{0}^{2 \pi} f(z) \phi(r, \theta) d \theta\right]_{\rho}^{\beta},
$$

$f \in M_{1, b}$, where ϕ ranges over the space Λ_{∞} of functions which remain bounded in D and ρ ranges over $\beta I-I$ are weak $*$ dense in the dual of $M_{1, b}$. Conversely each functional L of the form $\left(6^{\prime}\right)$ represents a bounded functional on $M_{1, b}$ such that

$$
\|L\| \leqq 2 \pi \underset{r \rightarrow 1}{\lim \sup }|\phi(r, \theta)| .
$$

If we let

$$
\phi(r, \theta)= \begin{cases}\bar{f}(z) & \text { when } \quad f \neq 0 \\ 0 & \text { when } \quad f=0,\end{cases}
$$

then ϕ need not be continuous in r; however, ϕ can be approximated by a continuous function.

Theorem 9. The set of functionals on $M_{\infty, a}$, given by

$$
\begin{equation*}
L(f)=\left[(1-r)^{a} \int_{0}^{2 \pi} f(z) d \mu_{r}(\theta)\right]_{\rho}^{\beta}, \tag{7}
\end{equation*}
$$

$f \in M_{\infty, a}$, where $\mu_{r}(\theta)$ ranges over the measures defined on each circle $|z|=r$, $0 \leqq r<1$, which depend continuously on r and which are such that $\int_{0}^{2 \pi}\left|d \mu_{r}(\theta)\right|$ is uniformly bounded, and ρ ranges over $\beta I-I$ are weak $*$ dense in the dual of $M_{\infty, a}$. Conversely each functional of the form (7) is in the dual of $M_{\infty, a}$ and

$$
\|L\| \leqq \lim _{r} \sup \int_{0}^{2 \pi}\left|d \mu_{r}(\theta)\right| .
$$

Proof. To see that the functionals of the form (7) are weak $*$ dense in the dual of $M_{\infty, a}$ we let f be an element of $M_{\infty, a}$ such that $\|f\|_{\infty, a}>0$. Then there is a sequence of points $\left\{z_{n}\right\}$ approaching the boundary of D such that

$$
\lim \sup \left(1-\left|z_{n}\right|\right)^{a}\left|f\left(z_{n}\right)\right|>0
$$

For $\mu_{r}(\theta)$ we take a measure which is the Dirac delta measure concentrated at z_{n} on each circle $|z|=r_{n}$ and which depends continuously on r. Then

$$
\lim \sup (1-r)^{a} \int_{0}^{2 \pi} f(z) d \mu_{r}(\theta)>0
$$

The result follows.
The $M_{p, a}$ spaces are not complete for $a>0$. However, each space $M_{p, a}$ can be imbedded in a complete space $\mathscr{M}_{p, a}$ consisting of equivalence classes of Cauchy sequences $\left\{f_{n}\right\}$ of elements from $M_{p, a}$; two Cauchy sequences in $M_{p, a}\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are equivalent if $\left\|f_{n}-g_{n}\right\|_{p, a}$ tends to zero as n tends to infinity. As usual the norm of an element of $\mathscr{M}_{p, a}$ can be defined as $\lim _{n \rightarrow 0}\left\|f_{n}\right\|_{p, a}$ where $\left\{f_{n}\right\}$ is a Cauchy sequence of elements from $M_{p, a}$ which represents f; clearly this limit does not depend on the choice of Cauchy sequence. It should be noted that the elements of $\mathscr{M}_{p, a-1 / p}$ are limits (in the norm topology) of Cauchy sequences in $M_{\infty, a}$ and hence each element $\left\{f_{n}\right\}$ of $\mathscr{M}_{p, a-1 / p}$ induces the continuous function

$$
\lim _{n \rightarrow \infty}\left[(1-r)^{a} f_{n}(r \exp i \theta)\right]_{p}^{\beta}
$$

on Δ.
Theorem 10. Let $\left\{z_{n}\right\}$ be an infinite sequence of points on the unit circle.

Let $\left\{f_{n}\right\}$ be a sequence of functions in a space $M_{p, a-1 / p}, 1 \leqq p \leqq \infty, a>$ $1 / p$, such that for each $m \lim \sup (1-|z|)^{a}\left|f_{m}(z)\right|$ is greater than some positive constant ζ as z tends to z_{m} while for $n \neq m(1-|z|)^{a}\left|f_{n}(z)\right|$ tends to zero as z tends to z_{m}. The set $\left\{f_{m}\right\}$ does not have compact closure in $\mathscr{M}_{p, a-1 / p}$.

Proof. The result is rather trivial for $p=\infty$. If $p<\infty$, there is a sequence of points $\left\{z_{n}^{(j)}\right.$ from D which tends to z_{n} as j tends to infinite such that

$$
\left(1-\left|z_{n}^{(j)}\right|\right)^{a} f_{n}\left(z_{n}^{(j)}\right) \geqq \zeta / 2
$$

provided j is sufficiently large. As in the proof of Theorem 7A we construct an arc I containing the point $z_{n}^{(j)}$ such that

$$
(1-|z|)^{a p-1} \int_{I}\left|f_{n}(z)\right|^{p} d \theta
$$

exceeds a positive constant; on the other hand if $m \neq n$,

$$
(1-|z|)^{a p-1} \int_{I}\left|f_{m}(z)\right|^{p} d \theta
$$

can be made arbitrarily small if j is sufficiently large. Thus the distance between each two distinct elements of $\left\{f_{m}\right\}$ exceeds some positive constant. Thus the set $\left\{f_{m}\right\}$ cannot have compact closure.

We give some necessary conditions for weak convergence in $M_{p, b}$.
Theorem 11. If $\left\{f_{n}\right\}$ is a sequence of functions in $M_{p, a-1 / p}, 1 \leqq p \leqq \infty$, $a>1 / p$, which is weakly convergent to zero, then

$$
\lim _{n \rightarrow \infty} \lim _{r \rightarrow 1} \sup (1-r)^{a}\left|f_{n}(z)\right|=0
$$

Proof. This result follows immediately from the fact that for each point ρ in βI - I the functional L on $M_{p, a-1 / p}$ given by

$$
L(f)=\left[(1-r)^{a} f(r \exp i \theta)\right]_{\rho}^{\beta}
$$

$f \in M_{p, a-1 / p}$, is continuous.
Theorem 12. For each $r, 0 \leqq r<1$, let $E(r)$ denote a measurable subset the circle $|z|=r$ such that the measure of $E(r),|E(r)|$, depends continuously on r. If $\left\{f_{m}(z)\right\}$ is a sequence from $M_{p, a-1 / p}$ for some $p>1, a>1 / p$, which converges weakly to zero, then

$$
\lim _{m \rightarrow \infty} \lim _{r \rightarrow 1} \sup (1-r)^{a}\left|\int_{E(r)} f_{m}(z) d \theta\right|=0
$$

The result follows from the fact that for each point $\rho \in \beta I-I$ the functional on $M_{p, a-1 / p}$ given by

$$
L(f)=\left[(1-r)^{a} \int_{E(r)} f(r \exp i \theta) d \theta\right]_{\rho}^{\beta},
$$

$f \in M_{p, a-1 / p}$, is bounded.
Theorem 13. If $\left\{f_{m}\right\}$ is a sequence of functions in $M_{p, a-1 / p}, 1 \leqq 0 \leqq \infty$, $a>1$, which is weakly convergent to zero, then

$$
\lim _{m \rightarrow \infty} \lim \sup _{n} n^{1-a}\left|\hat{f}_{m}(n)\right|=0
$$

Let \mathbf{N} denote the discrete space of natural numbers. The result follows immediately from the fact that for each $\lambda \in \beta \mathbf{N}-\mathbf{N}$ the functional on $M_{p, a-1 / p}$ given by $L(f)=\left[n^{1-a} \hat{f}(n)\right]_{\lambda}^{\beta}$ is continuous.

I am indebted to Professors Lee A. Rubel, Thomas Armstrong and David Storvick for many helpful suggestions.

References

1. H. P. Duren, Theory of H^{p} Spaces, Academic Press, New York and London, 1970.
2. R. E. Edwards, Fourier Series, A Modern Introduction, II, Holt Rinehart and Winston Inc., New York, 1967.
3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
4. G. H. Hardy and J. E. Littlewood. A maximal theorem with function-theoretic applications, Acta Math. 54, (1930), 81-116.
5. -_, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
6. K. Hoffman, Spaces of analytic functions, Prentice-Hall, Englewood, Cliffs, N.J., 1962.
7. R. Nevanlinna, Eindeutige analytische Funktionen, 2nd Edition, Springer-Verlag, Berlin, 1953.
