CYCLIC EXT

FRED RICHMAN AND ELBERT WALKER

1. Introduction. A classical theorem of Baer's [1] states that an abelian p-group G is determined by its endomorphism ring E. More is true; one can recover G as an E-module from the ring E. Let $G=B \oplus D$ with B reduced and D divisible. Richman and Walker [4] showed how to recover G as an E-module if B is unbounded or if $D=0$. The case where B is bounded and $D \neq 0$ was handled by Kuebler and Reid [2], who first recover D and G / D as E-modules, then use an ingenious argument to recapture the E-module G. The exact sequence $0 \rightarrow D \rightarrow G \rightarrow G / D \rightarrow 0$ represents an element of $\operatorname{Ext}_{E}(G / D, D)$. Kuebler and Reid show that $\operatorname{Ext}_{E}(G / D, D)$ is cyclic as a module over the center of E and that if $0 \rightarrow$ $D \rightarrow X \rightarrow G / D \rightarrow 0$ is any generator of this cyclic module, then X and G are isomorphic E-modules. Thus G is recovered by taking the middle term of any exact sequence that generates $\operatorname{Ext}_{E}(G / D, D)$.

Two aspects of this development are intriguing. First, since E determines G as an E-module, you should be able to construct the E-module G directly from E without resorting to homological machinery or going so far afield as Kuebler and Reid do. The theorem is basic and deserves an elementary, readily accessible proof. We provide this in $\S 2$. Second, Kuebler and Reid's proof of the startling phenomenon that $\operatorname{Ext}_{E}(G / D, D)$ is cyclic over the center of E is quite complicated, relying on the isomorphism of $\operatorname{Ext}_{E}(G / D, D)$ with a certain cohomology group, and on a characterization of the endomorphism ring of $\operatorname{Hom}_{Z}(G / D, D)$ as an E-bimodule. In $\S 3$ we show directly how to write a given element of $\operatorname{Ext}_{E}(G / D, D)$ as a multiple of the generator. Finally, in $\S 4$, we provide a concise development of Kuebler and Reid's approach, in a somewhat more general situation, and relate it to ours. In these endeavors, the question of when a direct sum of torsion-free groups of rank one is flat over its endomorphism ring arises. $\S 5$ settles that question.
2. Constructing \boldsymbol{G} as an \boldsymbol{E}-module from \boldsymbol{E}. Let $G=B \oplus D$ be an abelian p-group, where B is reduced and D is divisible. Let E be the endomorphism ring of G. We want to reclaim the E-module G from the ring E. If B is unbounded, or if G is bounded, this is done in [3] in an elementary manner. So we assume that B is bounded and that $D \neq 0$. Let m be the smallest
nonnegative integer such that $p^{m} B=0$. Then E has a maximal idempotent π of additive order p^{m} (e.g., a projection of G onto B). So $G=\pi G \oplus$ $(1-\pi) G$, and from the requirement on π, it follows that πG is isomorphic to B and that $(1-\pi) G=D$. Since B is bounded, it is a direct sum of cyclic groups, and hence has a summand of order p^{m}. Thus π contains a primitive idempotent e of order p^{m}. Since D is a divisible p-group, it is a direct sum of copies of $Z\left(p^{\infty}\right)$, and so $1-\pi$ contains a primitive idempotent ρ of infinite additive order. Finally, let α be an element of E of order p^{m} such that $\alpha=\rho \alpha e$ (so α maps the cyclic summand given by e onto the p^{m}-socle of the $Z\left(p^{\infty}\right)$ given by ρ). Now it is easy to see that $E e$ is isomorphic to $G\left[p^{m}\right]$ and $D=\operatorname{inj} \lim E \rho / p^{n} E \rho$ as E-modules. The element α induces an E-map ϕ from $E \rho / p^{m} E \rho$ to $E e$ by defining $\phi(x \rho+$ $\left.p^{m} E \rho\right)=x \rho \alpha$. It is readily seen that ϕ simply identifies $E \rho / p^{m} E \rho$, which is isomorphic to $D\left[p^{m}\right]$, with the submodule of $E e$ that corresponds to $D\left[p^{m}\right]$. Hence we can construct G, as an E-module, by taking $E e \oplus$ inj lim $E \rho / p^{n} E \rho$ modulo the submodule $\left\{\phi(y) \oplus y: y \in E \rho / p^{m} E \rho\right\}$.
3. Cyclic Ext. In Theorem 1 below we give somewhat more general conditions than Kuebler and Reid for Ext to be cyclic.

Theorem 1. Let G be an R-module, $e \in R$ an idempotent, and $D=\{x \in G$: ex $=0\}$. Suppose further that D is an R-submodule of G, the restriction map $E_{R}(D) \rightarrow \operatorname{Hom}_{R}(D \cap \operatorname{ReG}, D)$ is onto, and ReG is flat. Then $\operatorname{Ext}_{R}(G / D, D)$ is a rank-one free $E_{R}(D \cap \operatorname{ReG})$-module, with generator $D \subset G \rightarrow G / D$.

Proof. Let $D \subset K \rightarrow G / D$ be an element of $\operatorname{Ext}_{R}(G / D, D)$ with π : $K \rightarrow G / D$. Note that D and $\operatorname{Re} G$ are fully invariant R-submodules of G. We shall construct a map $\phi: G \rightarrow K$ such that $\pi \phi=\sigma$, the natural map from G to G / D. Define ϕ on ReG by $\phi\left(\sum f_{i} e x_{i}\right)=\sum f_{i} e \pi^{-1} \sigma x_{i}$. We must show that this is well defined. If $\sum f_{i} e e x_{i}=\sum f_{i} e x_{i}=0$, then, from the flatness of $\operatorname{Re} G$, there exist $y_{j} \in \operatorname{ReG}$ such that $e x_{i}=\sum \lambda_{i j} y_{j}$ and $\sum f_{i} e \lambda_{i j}=0[3 ;$ page $]$. Noting that $\sigma e=\sigma$, we get

$$
\begin{aligned}
\sum f_{i} e \pi^{-1} \sigma x_{i} & =\sum f_{i} e \pi^{-1} \sigma \lambda_{i j} y_{j} \\
=\sum f_{i} e \pi^{-1} \lambda_{i j} \sigma y_{j} & =\sum f_{i} e \lambda_{i j} \pi^{-1} \sigma y_{j}=0 .
\end{aligned}
$$

Now ϕ takes $D \cap \operatorname{Re} G$ to D, which restriction can be extended to D, defining ϕ on all of G. Thus $D \subset G \rightarrow G / D$ is a generator of the $E_{R}(D)$ module $\operatorname{Ext}_{R}(G / D, D)$. If we show that the annihilator of this generator consists of those maps in $E(D)$ that are zero on $D \cap \operatorname{Re} G$, we will be done. But $D \subset K \rightarrow G / D$ splits if and only if there is a map $G \rightarrow D$ that agrees with ϕ on D. Any such map must be zero on $e G$, hence on $\operatorname{Re} G$. Thus ϕ is zero on $D \cap \operatorname{Re} G$. Conversely if ϕ is zero on $D \cap \operatorname{Re} G$, then the restriction of ϕ to D extends to a map $G \rightarrow D$ that takes $e G$ to zero.

Suppose $G=B \oplus D$ is an abelian p-group with D divisible and B reduced. Let R be the endomorphism ring of G, and let e be the projection of G onto B with kernel D. Note that ReG is projective if B is bounded [3; Thm. 4] and $\operatorname{Re} G=G$ is flat if B is unbounded [3; Thm. 2]. Then we have the setup of Theorem 1 , and $E_{R}(D \cap \operatorname{Re} G)=\operatorname{Hom}_{R}(D \cap \operatorname{ReG}, D)$ is the ring of p-adic integers if B is unbounded and is the ring of the integers modulo p^{k} if p^{k} is the bound for B. Hence we have Kuebler and Reid's result on the cyclicity of $\operatorname{Ext}_{R}^{1}(G / D, D)$ [2; page 592].
4. Derivations. If A and B are R-modules, let $\operatorname{Ext}_{R ; Z}(A, B)$ be the subgroup of $\operatorname{Ext}_{R}(A, B)$ consisting of those extensions which split as abelian groups. Let $d: R \rightarrow \operatorname{Hom}_{Z}(A, B)$ be a derivation. Then we can impose an R-module structure on $A \oplus B$ by setting $r(a, b)=(r a, r b+d(r) a)$. This gives a homomorphism from the group of derivations $\operatorname{Der}\left(R, \operatorname{Hom}_{z}(A, B)\right)$ onto $\operatorname{Ext}_{R ; Z}(A, B)$ whose kernel is the group of inner derivations. Now $\operatorname{Hom}_{Z}(A, B)$ is an R-bimodule. Let Γ be the ring of biendomorphisms of $\operatorname{Hom}_{z}(A, B)$. Then for $\gamma \in \Gamma$ and $d \in \operatorname{Der}\left(R, \operatorname{Hom}_{z}(A, B)\right)$, setting $(\gamma d)(r)=\gamma(d(r))$ makes $\operatorname{Der}\left(R, \operatorname{Hom}_{Z}(A, B)\right)$ into a Γ-module, with the inner derivations forming a Γ-submodule. Thus $\operatorname{Ext}_{R ; Z}(A, B)$ is a Γ-module. The thrust of Kuebler and Reid's paper [2] is that $\operatorname{Ext}_{R ; Z}(G / B, B)$ is a cyclic Γ-module when $G=A \oplus B$ is a p-group, B is divisible, A is reduced, and R is the endomorphism ring of G. In this case $\operatorname{Ext}_{R ; Z}(G / B, B)=$ $\operatorname{Ext}_{R}(G / B, B)$. The following theorem generalizes this.

Theorem 2. Let A and B be left R-modules, and $\pi \in R$ such that $\pi A=0$ and $\pi b=b$ for all b in B. If d is a derivation from R to $\operatorname{Hom}_{z}(A, B)$ such that π is in the center of the ring of constants of d, then $d(R)$ is an R-bisubmodule of $\operatorname{Hom}_{z}(A, B)$ and, if e is a derivation from R to $\operatorname{Hom}_{Z}(A, B)$, then there is an R-bimodule map ϕ from $d R$ to $\operatorname{Hom}_{z}(A, B)$ such that $\phi d-e$ is an inner derivation.

Proof. That $d(R)$ is an R-bisubmodule of $\operatorname{Hom}_{z}(A, B)$ follows from the equation $x d(y)=d(x \pi y)$, and $d(y) x=d(y(1-\pi) x)$. The map ϕ is defined by $\phi d(x)=e(x)-x e(\pi)+e(\pi) x$.

If d maps R onto all of $\operatorname{Hom}_{Z}(A, B)$, then Theorem 2 asserts that $\operatorname{Ext}_{R ; Z}(G / B, B)=\operatorname{Ext}_{R}(G / B, B)$ is a cyclic Γ-module because ϕ is then in Γ.

Let A and B be abelian groups with $\operatorname{Hom}(B, A)=0$ and let $R=$ $E(A \oplus B)$ be the endomorphism ring of $A \oplus B$. Then B is an R-submodule of $A \oplus B$, and A is an R-module via its identification with the R-module $(A \oplus B) / B$. Then we have the exact sequence $\varepsilon: 0 \rightarrow B \rightarrow A \oplus B \rightarrow A \rightarrow 0$ of R-modules. Let π be the projection of $A \oplus B$ onto B with kernel A. Then the map $d: R \rightarrow \operatorname{Hom}_{Z}(A, B)$ given by $d(r)(a)=\pi r(a)$ is a derivation, and π is in the center of its ring of constants. Therefore, by Theorem 2,
$\operatorname{Ext}_{R}(A, B)$ is cyclic, and viewing $\operatorname{Ext}_{R}(A, B)$ as short exact sequences, ε is a generator since it is in the extension corresponding to the derivation d. In Kuebler and Reid's case [2; Prop. 2.1, p. 589], A is reduced and B is divisible, so $\operatorname{Hom}_{Z}(A, B)=0$, whence $\operatorname{Ext}_{R}(A, B)$ is cyclic.

Both Theorems 1 and 2 yield Kuebler and Reid's result on the cyclicity of Ext. These two theorems are not directly comparable since they involve different rings in general. The following example shows that Theorem 2 yields a cyclic Ext when the flatness hypothesis of Theorem 1 is not satisfied.

Example 3. Let A and B be rank-one torsion-free groups with $\operatorname{Hom}(A$, $B)=0=\operatorname{Hom}(B, A)$, and $G=A \oplus B \oplus Q$. Let $L=\operatorname{Hom}_{z}(A \oplus B$, $Q) \subset E(G)$. Let λ be an imbedding of A in Q and μ an imbedding of B in Q. Extend λ and μ to G by defining $\lambda(B \oplus Q)=0$ and $\mu(A \oplus Q)=0$. Then λ and μ form a basis for L over Q. Now Q is an $E(G)$-submodule of G, and identification of $(A \oplus B \oplus Q) / Q$ with $A \oplus B$ makes $A \oplus B$ an $E(G)$-module and thus $\operatorname{Hom}_{Z}(A \oplus B, Q)$ an $E(G)$-bimodule. Let Γ be the endomorphism ring of L as an $E(G)$-bimodule. Then $Q \times Q \subset \Gamma$ under the correspondence taking a pair $(p, q) \in Q \times Q$ to the map taking λ to $p \lambda$ and μ to $q \mu$. Moreover if $\gamma \in \Gamma$, then $\gamma(\lambda)=\gamma\left(\lambda \pi_{A}\right)=\gamma(\lambda) \pi_{A}$ so $\gamma(\lambda)=$ $p \lambda$ for some p in Q. Similarly $\gamma(\mu)=q \mu$ for some q in Q, so $\Gamma=Q \times Q$. From Theorem 2 we get that $\operatorname{Ext}_{R}(A \oplus B, Q)$ is a free Γ-module. Theorem 1 does not apply because G is not flat over $E(G)$, as is easily verified, or follows from Theorem 4 below. In fact the conclusion of Theorem 1 does not hold as $\operatorname{Ext}_{R}(A \oplus B, Q)$ is rank 2, so is not a cyclic Q-module.
5. Direct sums of rank one torsion-free groups. Example 3 makes pertinent the question as to when a direct sum of torsion-free groups of rank one is flat over its endomorphism ring. The following theorem has also been proven by Dave Arnold in an unpublished paper.

Theorem 4. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of rank-one torsion free groups. Then $G=\Sigma M_{i}$ is a flat module over its endomorphism ring if and only if whenever $\operatorname{Hom}\left(M_{i}, M_{k}\right)$ and $\operatorname{Hom}\left(M_{j}, M_{k}\right)$ are both nonzero, then there is m in I such that $\operatorname{Hom}\left(M_{m}, M_{i}\right)$ and $\operatorname{Hom}\left(M_{m}, M_{k}\right)$ are both nonzero.

Proof. We identify $\operatorname{Hom}\left(M_{x}, M_{y}\right)$ with the set of elements in $E(G)$ that takes M_{x} into M_{y} and kill the complement of M_{x}. Suppose G is a flat $E(G)$-module and $\lambda \in \operatorname{Hom}\left(M_{i}, M_{k}\right)$ and $\mu \in \operatorname{Hom}\left(M_{j}, M_{k}\right)$ are nonzero. Then there are nonzero elements $a \in M_{i}$ and $b \in M_{j}$ such that $\lambda a=\mu b$. Hence $a=\sum r_{q} a_{q}, b=\sum s_{q} b_{q}$, and $\lambda r_{q}=\mu s_{q}$. We may assume that r_{q} maps into M_{i} and s_{q} maps into M_{j}. Choose q so that $s_{q} b_{q} \neq 0$. Then $s_{q} M_{m} \neq 0$ for some m, so $\operatorname{Hom}\left(M_{m}, M_{j}\right) \neq 0$. Hence also $r_{q} M_{m} \neq 0$, so $\operatorname{Hom}\left(M_{m}, M_{i}\right) \neq 0$.

Conversely, if $a \in M_{x}$, then the cyclic $E(G)$-submodule generated by a is projective, as the annihilator of a is the annihilator of M_{x}, which is a summand of $E(G)$. If the condition of the theorem holds, then G is a direct sum of direct limits of such cyclic submodules, hence is flat.

The simplest completely decomposable G which is not flat as an $E(G)$ module is $G=Q \oplus M \oplus N$ with M and N reduced and $\operatorname{Hom}(M, N)=$ $\operatorname{Hom}(N, M)=0$. Here $\operatorname{Ext}(G / Q, Q)$ is rank-2 over our ring because $G / Q=M \oplus N$ as an $E(G)$-module. However it is rank-one free over the ring Γ of $E(G)$-bimodule endomorphisms of $\operatorname{Hom}(G /(Q, Q)$. Such rings Γ are identified in the next theorem, but whether the relevant Ext is Γ-free or not we do not know.

Theorem 5. Let $G=\Sigma_{I} A_{i}$ be a finite direct sum of rank-one torsion-free groups, and $D=\sum_{J} A_{i}$ a fully invariant subgroup of G. Let \sim denote the equivalence relation on $L=\{(i, j): i \in I \backslash J$ and $j \in J\}$ generated by declaring (i, j) and (u, v) equivalent if $\operatorname{Hom}\left(A_{u}, A_{i}\right)$ and $\operatorname{Hom}\left(A_{j}, A_{v}\right)$ are both nonzero. If τ is an equivalence class of L, set

$$
R_{\tau}=\bigcap\left\{E\left(A_{j}\right):(i, j) \in \tau\right\}
$$

Then the ring Γ of all $E(G)$-bimodule endomorphisms of $\operatorname{Hom}(G / D, D)$ is isomorphic to ΠR_{τ}.

Proof. If $(i, j) \in L$, then $\operatorname{Hom}\left(A_{i}, A_{j}\right)$ is a subgroup of $\operatorname{Hom}(G / D, D)$ which is invariant under Γ. The endomorphism ring of a nontrivial $\operatorname{Hom}\left(A_{i}, A_{j}\right)$ is $E\left(A_{j}\right)$. Suppose $(i, j) \in L$ and $\operatorname{Hom}\left(A_{u}, A_{i}\right), \operatorname{Hom}\left(A_{i}, A_{j}\right)$, and $\operatorname{Hom}\left(A_{j}, A_{v}\right)$ are all nonzero. Then any bimodule endomorphism of $\operatorname{Hom}(G / D, D)$ induces the same map on $\operatorname{Hom}\left(A_{u}, A_{v}\right)$ as on $\operatorname{Hom}\left(A_{i}, A_{j}\right)$, hence yields an element of ΠR_{τ}. This clearly gives a ring homomorphism from Γ to ΠR_{τ}. The kernel of this homomorphism is zero because the $\operatorname{Hom}\left(A_{i}, H_{j}\right)$ generate $\operatorname{Hom}(G / D, D)$. On the other hand, given an element of ΠR_{τ}, we get endomorphisms of $\operatorname{Hom}\left(A_{i}, A_{j}\right)$ for each $(i, j) \in L$. It is readily seen that these fit together to give an $E(G)$-bimodule endomorphism of $\operatorname{Hom}(G / D, D)$.

References

1. R. Baer, Automorphism rings of primary abelian operator groups, Annals of Math. 44 (1943), 192-227.
2. R. Kuebler, and J.D. Reid, On a paper of Richman and Walker, Rocky Mountain J. Math. 5 (1975), 585-592.
3. F. Richman, and E.A. Walker, Primary abelian groups as modules over their endomorphism rings, Math Zeit. 89 (1965), 77-71.
