ON GENERALIZED MID-POINT CONVEXITY

EITAN LAPIDOT

$$
\begin{aligned}
& \text { Abstract. A function } f \text { is said to be convex with respect to a } \\
& T \text {-system }\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\} \text { on the interval }(a, b) \text { if } \\
& \qquad U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \\
t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}
\end{array}\right] \geqq 0 \\
& \text { for all } a<t_{0}<t_{1}<\ldots<t_{n}<b \text {. It is shown that if } f \text { is bounded } \\
& \text { and if the above inequality is satisfied for equally spaced points, } \\
& \text { then } f \text { is convex. }
\end{aligned}
$$

Introduction and background. A function f is said to be mid-point convex if the inequality

$$
f\left(\left(x_{1}+x_{2}\right) / 2\right) \leqq(1 / 2)\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

holds for every pair of real points x_{1} and x_{2} belonging to the interval of definition of the function f. In [1] Blumberg shows that every bounded mid-point convex function is continuous. Later, Popoviciu [4] noticed that every generalized mid-point convex function with respect to $1, x, x^{2}, \ldots$, x^{n-1} (see equivalent definition 2), is convex with respect to these functions, if f and its n-th divided differences are bounded. We generalize these results, showing that every bounded, generalized mid-point convex function with respect to a continuous Tchebycheff-system (T-system) is convex with respect to this T-system.
2. Generalized mid-point convexity. Let $u_{0}, u_{1}, \ldots, u_{n-1}$ be n continuous functions on the closed interval $[a, b]$. We say that they form a (continuous) T-system on $[a, b]$ if for every choice of n points: $a \leqq t_{0}<t_{1}<\cdots<$ $t_{n-1} \leqq b$, the determinant

$$
U\left[\begin{array}{c}
u_{0}, u_{1}, \ldots, u_{n-1} \\
t_{0}, t_{1}, \ldots, t_{n-1}
\end{array}\right]=\left|\begin{array}{cccc}
u_{0}\left(t_{0}\right) & u_{0}\left(t_{1}\right) & \ldots & u_{0}\left(t_{n-1}\right) \\
u_{1}\left(t_{0}\right) & u_{1}\left(t_{1}\right) & \ldots & u_{1}\left(t_{n-1}\right) \\
\vdots & \vdots & & \vdots \\
u_{n-1}\left(t_{0}\right) & u_{n-1}\left(t_{1}\right) & \ldots & u_{n-1}\left(t_{n-1}\right)
\end{array}\right|
$$

is positive.

Definition 1.[2]. A function f, defined on the interval I, is said to be convex (with respect to the T-system $\left\{u_{i}\right\}_{i=0}^{n-1}$) if the determinants

$$
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \tag{1}\\
t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}
\end{array}\right]=\left|\begin{array}{cccc}
u_{0}\left(t_{0}\right) & u_{0}\left(t_{1}\right) & \ldots & u_{0}\left(t_{n}\right) \\
u_{1}\left(t_{0}\right) & u_{1}\left(t_{1}\right) & \ldots & u_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
u_{n-1}\left(t_{0}\right) & u_{n-1}\left(t_{1}\right) & \ldots & u_{n-1}\left(t_{n}\right) \\
f\left(t_{0}\right) & f\left(t_{1}\right) & \ldots & f\left(t_{n}\right)
\end{array}\right|
$$

are non-negative whenever $t_{0}<t_{1}<\cdots<t_{n}$ are $n+1$ points in the interval I.

The set of all convex functions is called the convexity cone and is denoted by $C_{I}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ (or $C\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ if no ambiguity arises).

Definition 2. A function f, defined on an interval I is said to be generalized mid-point convex (GMPC) (with respect to the T-system $\left\{u_{0}, u_{1}, \ldots\right.$, $\left.u_{n-1}\right\}$) if the determinants (1) are non-negative whenever $t_{j}=t_{0}+j h$ $j=1,2, \ldots, n-1, n$ and $h>0$, and both t_{0} and $t_{0}+n h$ are in I. In this case we denote the determinants (1) by $U\left(t_{0}, t_{n} ; f\right)$.

Lemma 1. Let $\left\{u_{i}\right\}_{i=0}^{n-1}$ be continuous functions on $[a, b]$, forming a T-system on it, and let f be defined on (a, b). If

$$
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \tag{2}\\
t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}
\end{array}\right] \geqq 0
$$

and

$$
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \tag{3}\\
t_{1}, t_{2}, \ldots, t_{n}, t_{n+1}
\end{array}\right] \geqq 0
$$

with $a<t_{0}<t_{1}<\cdots<t_{n}<t_{n+1}<b$, then for every $1 \leqq i \leqq n$,

$$
U\left[\begin{array}{ll}
u_{0}, \ldots & \ldots, u_{n-1}, f \tag{4}\\
t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n+1}
\end{array}\right] \geqq 0
$$

Proof. Assume that (4) does not hold for some i, i.e.,

$$
U\left[\begin{array}{lr}
u_{0}, \ldots & \ldots, u_{n-1}, f \tag{5}\\
t_{0}, \ldots, t_{i-1}, t_{i+1}, & \ldots, t_{n+1}
\end{array}\right]<0
$$

Let u be the element of $\operatorname{span}\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ that interpolates f at t_{j} for $j=0,1, \ldots, i-1, i+1, \ldots, n$. The last row in the determinant

$$
U\left[\begin{array}{lr}
u_{0}, \ldots & \ldots, u_{n-1}, f-u \\
t_{0}, \ldots, t_{i-1}, t_{i+1}, & \ldots, t_{n+1}
\end{array}\right]
$$

is $\left(0,0, \ldots, 0,(f-u)\left(t_{n+1}\right)\right)$, and since the determinant is negative, $(f-u)$ $\left(t_{n+1}\right)<0$. But $(f-u)\left(t_{i}\right) \neq 0$ since otherwise the determinant (3) would be negative. Consider now the determinant

$$
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f-u \\
t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}
\end{array}\right] \geqq 0
$$

The only non-zero term in the last row of $\left(2^{\prime}\right)$ is $(f-u)\left(t_{i}\right)$ and since $\left(2^{\prime}\right)$ is non-negative, $(-1)^{n+i}(f-u)\left(t_{i}\right)>0$.

Finally,

$$
\begin{align*}
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f-u \\
t_{1}, t_{2}, \ldots, t_{n}, t_{n+1}
\end{array}\right]= & (-1)^{n+i-1}(f-u)\left(t_{i}\right) U_{i} \\
& +(f-u)\left(t_{n+1}\right) U_{n+1}
\end{align*}
$$

Since both U_{i} and U_{n+1} are positive, (3') would be negative and thus (3) would be contradicted. Hence (4) holds for every i.

Definition 3. For $\alpha<\beta$, two points in the interval $(a, b), R(\alpha, \beta)$ denotes the set $\{x ; a<x<b$ and $(x-\alpha) /(\beta-\alpha)$ is a rational number $\}$.

Corollary 1. Let f be a GMPC with respect to the T-system $\left\{u_{i}\right\}_{i=0}^{n-1}$. Then

$$
U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \\
t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}
\end{array}\right]
$$

is non-negative whenever $t_{0}<t_{1}<\cdots<t_{n}$ are elements of $R(\alpha, \beta)$, for some α, β.

Lemma 2. Let $\left\{u_{i}\right\}_{i=0}^{n-1}$ be as in Lemma 1. Iff is a bounded GMPC function with respect to this T-system, then f is continuous in (a, b).

Proof. Let M be a common bound for $\left|u_{0}\right|,\left|u_{1}\right|, \ldots,\left|u_{n-1}\right|$ and $|f|$ (in (a, b)). Assume that f has a discontinuity at some point $x, a<x<b$. There exists a sequence $\left\{t_{k}\right\}$, converging to x and such that $\lim _{k \rightarrow \infty} f\left(t_{k}\right)$ exists and is not equal to $f(x)$. We discuss the case $t_{k} \rightarrow x$ from the left and $f\left(t_{k}\right)>f(x)$, i.e., $f\left(t_{k}\right)=f(x)+h_{k}, h_{k}>0$ and $\lim _{k \rightarrow \infty} h_{k}=h>0$. For other cases, the proof follows a similar line.

Let $a<x_{0}<x_{1}<\cdots<x_{n-2}<x<b$. We may assume that $x_{n-2}<$ $t_{1}<t_{2}<\cdots<x$. Given $\varepsilon>0$ there exists $\delta>0$ such that
(i) $x_{i}<x_{i+1}-\delta, i=0,1, \ldots, n-3$,
(ii) $x_{n-2}<x-\delta$, and
(iii) for every choice of n points $y_{i} \in\left(x_{i}-\delta, x_{i}\right)$ for $i=0,1, \ldots, n-2$ and $y_{n-1} \in(x-\delta, x)$, the difference

$$
\left|U\left[\begin{array}{ll}
u_{0}, & u_{1}, \ldots, \\
y_{0}, & y_{1}, \ldots, \\
y_{n-1}
\end{array}\right]-U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-2}, u_{n-1} \\
x_{0}, x_{1}, \ldots, \\
x_{n-2}, x
\end{array}\right]\right|
$$

is less than ε. Now, for every k, let $x_{0}^{k}<x_{1}^{k}<\cdots<x_{n-2}^{k}<x_{n-1}^{k}=t_{k}<$ $x_{n}^{k}=x$, with $x_{i}^{k} \in\left(x_{i}-\delta, x_{i}\right)$ for $i=0,1, \ldots, n-2$. By Corollary 1,

$$
U_{k, \varepsilon}=U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-1}, f \tag{6}\\
x_{0}^{k}, x_{1}^{k}, \ldots, x_{n-1}^{k}, x_{n}^{k}
\end{array}\right] \geqq 0 .
$$

Let

$$
M_{j}^{k}=U\left[\begin{array}{ll}
u_{0}, \ldots & \ldots, u_{n-1} \\
x_{0}^{k}, \ldots, x_{j-1}^{k}, x_{j+1}^{k}, \ldots, x_{n}^{k}
\end{array}\right]
$$

Clearly $M_{j}^{k} \leqq n!M^{n-1} \varepsilon$ for $j=0,1, \ldots, n-2$ and for large k, such that $\left|u_{i}\left(t_{k}\right)-u_{i}(x)\right|<\varepsilon$ for $i=0,1, \ldots, n-1$. Expanding (6) along the last row we have

$$
\begin{aligned}
U_{k, \varepsilon} & \leqq(n-1) n!M^{n} \varepsilon-f\left(t_{k}\right) M_{n-1}^{k}+f(x) M_{n}^{k} \\
& \leqq A \varepsilon-\left(f\left(t_{k}\right)-f(x)\right) U\left[\begin{array}{l}
u_{0}, u_{1}, \ldots, u_{n-2}, u_{n-1} \\
x_{0}, x_{1}, \ldots, x_{n-2}, x
\end{array}\right]+B \varepsilon .
\end{aligned}
$$

Since $f\left(t_{k}\right)>f(x)+h / 2, U_{k, \varepsilon}$ can be made negative for some small $\varepsilon>0$ and large k in contradiction to (6).

Combining Corollary 1 and Lemma 2 we have the following theorem.
Theorem 1. Every bounded GMPC function with respect to a continuous T-system $\left\{u_{i}\right\}_{i=0}^{n-1}$ belongs to $C\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$.

Corollary 2. If all the determinants (1) with equally spaced points vanish, then f is a polynomial in the $u_{i}^{\prime} s$, i.e., $f=\sum_{i=0}^{n-1} a_{i} u_{i}$.

In the following section we give an application of the generalized midpoint convexity property.
3. Union of T-systems. The determinant (1) is a function defined on the simplex $S=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) ; a<t_{0}<t_{1}<\cdots<t_{n}<b\right\}$ (or $a \leqq t_{0}$, $t_{n} \leqq b$ if f is defined on the closed interval $\left.[a, b]\right)$. This set is not closed in \mathbf{R}^{n+1} and hence a sequence of points in S need not converge to a point in S even if it does converge in \mathbf{R}^{n+1}. In view of Theorem 1, we consider the points $t=\left(t_{0}, t_{0}+h, \ldots, t_{0}+n h\right)$ with $h>0$. A converging sequence $\left\{t^{k}\right\}$ of such point will converge in S if $t_{n}^{k}-t_{0}^{k} \geqq \varepsilon$ for some $\varepsilon>0$ and all $\left[t_{0}^{k}, t_{n}^{k}\right]$ are contained in a closed subinterval of (a, b). Let $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ be a continuous T-system on the interval $[a, b]$ and let f and g be two continuous functions such that
(i) $\left\{u_{0}, u_{1}, \ldots, u_{n-1}, f\right\}$ is a T-system on $[a, d]$,
(ii) $\left\{u_{0}, u_{1}, \ldots, u_{n-1}, g\right\}$ is a T-system on $[c, b]$, and
(iii) $a<c<d<b$ and $f|[c, d]=g|[c, d]$.

Define u_{n} by $u_{n}=f$ on $[a, d]$ and $u_{n}=g$ on $[c, b]$. We show the following theorem.

Theorem 2. Let $u_{0}, u_{1}, \ldots, u_{n-1}, u_{n}$, f and g be defined as above, satisfying (i)-(iii). The functions $u_{0}, u_{1}, \ldots, u_{n}$ form a T-system on $[a, b]$.

We first prove the following lemma.
Lemma 3. [3]. Let f be a continuous function on $[a, b]$ which belongs to $C\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$. If

$$
U\left[\begin{array}{lll}
u_{0}, u_{1}, \ldots, & u_{n-1}, f \\
\bar{t}_{0}, & \bar{t}_{1}, & \ldots, \\
\bar{t}_{n-1}, & \bar{t}_{n}
\end{array}\right]=0
$$

for some $a \leqq \bar{t}_{0}<\bar{t}_{1}<\cdots<\bar{t}_{n} \leqq b$, then $f\left|\left[\bar{t}_{0}, \bar{x}_{n}\right]=u\right|\left[\bar{t}_{0}, \bar{t}_{n}\right]$ where $u \in \operatorname{Span}\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$.

Proof. We may assume that $f\left(\bar{t}_{j}\right)=0, j=0,1, \ldots, n$. Let $\bar{t}_{j}<t<\bar{t}_{j+1}$ for some $j, 0 \leqq j \leqq n-1$, since the two determinants (1) based or the points $\left(\bar{t}_{0}, \ldots, \bar{t}_{j-1}, t, \bar{t}_{j+1}, \ldots, \bar{t}_{n}\right) \quad\left(\left(t, \bar{t}_{1}, \ldots, \bar{t}_{n}\right)\right.$ if $\left.j=0\right)$ and $\left(\bar{t}_{0}, \ldots, \bar{t}_{j}, t, \bar{t}_{j+2}, \ldots, \bar{t}_{n}\right)\left(\left(\bar{t}_{0}, \ldots, \bar{t}_{n-1}, t\right)\right.$ if $\left.j=n-1\right)$ are non-negative, $f(t)$ must be zero, i.e., $f \mid\left[\bar{t}_{0}, \bar{t}_{n}\right]=0$.

Proof of theorem 2. Since u_{n} is not a polynomial in $u_{0}, u_{1}, \ldots, u_{n-1}$ in any subinterval of $[a, b]$, it will be sufficient to prove that $u_{n} \in C_{[A, B]}$ $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ for all intervals $[c, d] \subset[A, B] \subset[a, b]$. If $u_{n} \notin$ $C_{[A, B]}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$, then there exist maximal intervals $[A, y]$ and $[x, B]$ such that $u_{n} \in C_{[A, y]}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $u_{n} \in C_{[x, B]}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$. Given $D, y<D<B$, since $u_{n} \notin C_{[A, D]}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$, there exists an interval $[\alpha, \beta]$ with $A \leqq \alpha<x$ and $y<\beta \leqq D$ such that $U\left(\alpha, \beta ; u_{n}\right)<0$. Since this is true for all $D>y$, there exists a sequence of closed intervals $\left[\alpha_{k}, \beta_{k}\right] \subset[A, B]$, with $\beta_{k} \downarrow y$ and $\lim _{k \rightarrow \infty} \alpha_{k}=\alpha_{0}<x$ such that $U\left(\alpha_{k}, \beta_{k} ; u_{n}\right)<0$. By a continuity argument $U\left(\alpha_{0}, y ; u_{n}\right) \leqq 0$, which is in contradiction to the maximality of $[A, y]$. So $\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ is a T system on (a, b) and by the continuity of u_{n} on $[a, b]$, using Lemma 3, it is a T-system on $[a, b]$.

References

1. H. Blumberg, On convex functions, Trans. AMS 20 (1919), 40-44,
2. S.J. Karlin and W.J. Studden, Tchebycheff-systems: With Applications in Analysis and Statistics, Interscience, New York, 1966.
3. E. Lapidot, On Complete Tchebycheff-systems, J. of Approximation Theory 23 (1978), 324-331.
4. T. Popoviciu, Les Fonctions Convexes, Hermann and Cie., Paris, 1945.
