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«-CLOSURE IN FUZZY TOPOLOGY 

ALBERT J. KLEIN 

ABSTRACT. Let X be an L-fuzzy topological space, let a e L, and 
let A be a crisp subset of X. The a-closure of A is the set of points x 
for which G(x) > a implies G(a) # 0 for some a e A whenever G is 
fuzzy open. With appropriate restrictions on a (which always are 
satisfied if L is a chain), a-closure is a semi-closure operator but 
may not be a closure operator. Relations between a-closure and 
recently introduced a-level properties are studied and a characteriza­
tion of a-closure in the fuzzy unit interval is obtained. The non-
suitability of the fuzzy unit interval and fuzzy open unit interval fol­
lows as a simple corollary. 

Introduction. Recently Gantner et al. [2] and Rodabaugh [4, 5] have 
studied L-fuzzy topological spaces by considering properties which a 
space may have to a certain degree or at a certain a-level, where a is a 
member of the underlying lattice. As part of this approach in [5], the con­
cept of a-closure was introduced. It is the purpose of this paper to study 
a-closure in more detail as a closure operator, to examine its relations 
with other a-level properties, and to characterize it in Hutton's fuzzy 
unit interval [3]. 

Throughout this paper L will denote a completely distributive lattice 
with 0, 1 (0 7E 1) and with an order-reversing involution a -• a. As in 
[2], Lc = { a e L : a is comparable to each /3 e L} and La = {aeLc: 
if j8 > a and y > a, then ß A y > a}. 

1. a-Closure as a semi-closure operator. Let (X, T) be an L-fuzzy to­
pological space (L-fts). The following definition can easily be shown 
equivalent to the definition in [5]. 

DEFINITION 1.1. Let a eL-{\} and let A be a crisp subset of X. ca(A) = 
{x: if G e T and G(x) > a, then G A %A ^ 0}. 

Clearly ca(0) = 0 and A E ca(A) for every A. With a restriction on 
a one obtains the following lemma. 

LEMMA 1.2. Let aeLa - {1} and let A, B g X. Then ca(A \J B) = 
cM) U ca(B). 
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The proof is routine with the La hypothesis needed only for the inclusion 
ca(A UB)^ ca(A) U ca(B). 

Thus, in the terminology of Cech [1], ca is a semi-closure operator on 
X provided a G La — {1}. It is easy to construct simple examples to show 
that, for a ^ 0 in La — {1}, ca need not be a closure operator, i.e., that 
ca(A) may be a proper subset of ca(ca(A)) for some subsets A. Such ex­
amples appear later in connection with the fuzzy unit interval. 

One can obtain a partial result by using a-compactness (defined in [2]) 
and the a-Hausdorff property (defined in [5]). 

LEMMA 1.3. Let a^L — {1} and let A ü X. If (X, T) is a-compact, 
then ca(A) is a-compact. 

PROOF. Let ^ be an a-shading of ca(A). For each y eX - ca(A)there 
Gy G T with Gy(y) > a and Gy A %A = 0. Then ^ U {Gy: y e X - ca(A)} 
is an a-shading of X and so has a finite subshading ^ . For x e ca(A) 
and FeßF with F(x) > a, since F A %A ̂  0, F$ {Gy: y e X - ca(A)}. 
Thus <F fi ̂  is a finite subshading of ^ . 

LEMMA 1.4. Lef a, 0 e La - {1} and let A ^ X. If(X, T) is a-Hausdorff 
and A is a-compact, then ca(A) = A. 

PROOF. Let x e ca(A). If x $ A, then for each ae A there exist Ua, VaeT 
such that Ua(x) > a, Va(a) > a, and Ua A Va = 0 by a-Hausdorff. 
By a-compactness there is a finite subshading {Va: a e J}. For U = 
A {C/a: a e J } , since a: G La, U(x) > a. Thus there is t e A with U(t) > 0. 
But for some a G J , Fa(0 > a: and so, since 0 G LÖ, £/ß A Va(t) > 0, a 
contradiction. 

THEOREM 1.5. Let a, 0eLa - {1}. If (X, T) is a-Hausdorff and a-
compact, then ca is a closure operator. 

2. Relations to the a-property and suitability. Cech [1] has shown that 
for any semi-closure operator k the set of &-fixed subsets is the set of 
closed subsets of a topology; moreover k(A) E Cl(A) (the closure of A 
in this topology) with equality for every A if and only if & is a closure 
operator. Thus, in considering an L-fts at the <x-level where a G La — {1}, 
one can consider the topology generated by ca. Throughout this section 
let (X, T) denote an L-fts and let Wa denote the topology generated by 
ca. There is also another natural a-level topology. 

DEFINITION 2.1. Let a e L - {1} and let G e T. a(G) = {x: G(x) > a}. 

LEMMA 2.2. Let a e La - {1}. Then {a(G): G e T} is a topology for X. 

ForaGL* - {1} let Ta denote {a(G): GeT}. It is natural to ask 
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whether Wa and Ta are related. First recall from [5] the definition of 
the a-property. 

DEFINITION 2.3. Let aeL - {1}. (X, T) has the a-property provided, 
for A g X, ca(A) = A if and only if there is Ue T with A = {x: U(x) 
^ a}. 

THEOREM 2.4. Let atLa - {1}. Then 
(i) Wa g r a 

Arca? 
(ii) Wa = Ta if and only if(X, T) has the a-property. 

PROOF. For i), given Us Wa, ca(X - U) = X - U. Let x e U. Then 
there is G G J T with G(x) > a and G A Xx-u = 0. Clearly, a(G) g U. 
For ii), note that the definition of the a-property simply identifies the 
^-closed sets and the ra-closed sets. 

THEOREM 2.5. Let a e La — {1}. If (X, T) has the a-property, then ca 

is a closure operator. 

PROOF. Let A g X and let x $ ca{A). Then there is G e T such that 
G(x) > a and G A %A = 0. Since (X, T) has the a-property, ca({y: 
G(y) S a}) = {y: G(y) ^ a). Then ca(ca(A)) g {y: G(y) ^ a} and so 
x i ca(ca(A)). 

Examples in the fuzzy unit interval will show that the converse of 
2.5 is false. However, with additional hypotheses, one can obtain partial 
results. 

THEOREM 2.6. Let a, 0eLa - {1}. If (X, T) is a-Hausdorff, Ta is 
minimal Hausdorjf and ca is a closure operator, then (X, T) has the a-
property. 

PROOF. Let x # y and let U, VeT with U(x) > a, V(y) > a and 
U A V = 0. Let A = {t: U(t) = 0} and B = {t: V(t) = 0}. Since 0 G La, 
A U B = X. Thus X - ca(A), X - ca(B) are disjoint, PFa-open 
subsets with xeX - ca(A) and yeX- ca(B). Then (X, Wa) is Hausdorff. 
Since (X, Ta) is minimal Hausdorff, Wa = Ta and so (X, T) has the a-
property. 

In [5] Rodabaugh gives a direct proof of the following corollary, which 
is immediate from 1.5 and 2.6. 

COROLLARY 2.7. Let 0, aeLa - {1}. 7/* (X, T) is a-compact and a-
Hausdorjf, then (X, T) has the a-property. 

Suitable closed subsets of an L-fts were introduced in [4] as proper, 
crisp, fuzzy-closed subsets and were studied there in connection with 
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fuzzy extension theorems. Suitable spaces are those which contain a 
suitable closed subset. The following result has an interesting application 
in the fuzzy unit interval. 

THEOREM 2.8. Let a e L — {1} and let A ü X. If A is suitable closed, 
then ca(A) = A. 

PROOF. For x <£ A and G = (XA)'> G(X) > a a n c i G A
 XA = 0. Since 

A is suitable closed, G e T and x $ ca(A). 

3. «-Closure in the fuzzy unit interval. The first two lemmas for a 
general space will be used implicitly in much of what follows. The concept 
of an L-fuzzy subspace is defined in [6]. Both proofs are routine. 

LEMMA 3.1. Let (X, T) be an L-fts and aeL - {1}. Let A ü X and 
let Ca denote the a-closure in the L-fuzzy subspace A. Then, for B ^ A, 
c£(B) = A[) ca(B). 

LEMMA 3.2. Let (X, T) be an L-fts and let aeLc — {1}. Let & be a base 
for T and let A g X. Then ca(A) = {x: if B e & and B(x) > a, then 
B A XA * 0}. 

Throughout this section the notation of [2] will be used for I(L) and 
(0, 1) (L). It is easy to verify that the closed intervals in the next lemma 
do not depend on the choice of representative from the equivalence class. 

LEMMA 3.3. Let a e Lc — {1}, let Xe I (L), and let seR. Then 
i) RS(X) > a if and only if there is ô > 0 with s + ö e Cì{x: X(x) > a}. 

ii) LS(X) > a if and only if there is ö > 0 with s - ô e Cì{x: À(x) < a'} 

PROOF. \/X>S À(X) > a if and only if À(t) > a for some t > s and so 
i) holds. (A*<s^(*))' > ce if and only if A*<s À(x) < a', which holds if 
and only if X(t) < a' for some / < s and so ii) holds. 

DEFINITION 3.4. Let a e Lc - {1} and let 1 e I(L). 

[Cl{x: X(x) < a'} fi Cl{x: X(x) > a} if a < a' 

{C\(R - {x: X(x) < a'}) fl G(R - {x: l(x) > a}) if a £ a' 

LEMMA 3.5. Let atLc - {1} and let Xel(X). Then HJj) is a non-
smpty closed subinterval of[0, 1] 

PROOF. Suppose a ^ a'. Let C\{x: A(x) < a'} = [b, oo] and Cl{x: 
À(x) > a} = ( -oo , a]. If b < a, then for b < y < a, A(y) < a' and 
X(y) > a which contradicts a ^ a'. Thus a ^ b and Ha(X) = [a, b]. 
If b > 1, then there is x > 1 with X(x) ^ a! > 0. Thus b ^ 1. Similarly 
a ^ 0. The case a < a' is similar. 
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It is worth noting that the endpoints of Ha(X) are the numbers a(X, a) 
and b(X, a) which were used extensively in [4] and [5]. 

LEMMA 3.6. Let a^La - {1} with a ^ a', let s, teR, and let X G I(L). 
Then Rs A Lt(X) > a if and only if s < t and Ha(X) E (s, t). 

PROOF. Suppose Rs A Lt(X) > a. By 3.3 there is ö > 0 with (— oo, 
s + 5) g Cl{jc: X(x) > a} and (t - 5, oo) g Cl{x: A(x) < a '}. Then 
7/a(/l) E [s + 5, oo) fi ( — °°> * — 5] and so, for x e Ha(X), x > s and 
x < /. If s ^ t, then /l(» g A(0- From above X(s) > a and X{t) < a!. 
With a ^ a', AO) > X(t)9 a contradiction. To see the sufficiency of the 
condition, let Ha(X) = [a, b] where C\{x: X(x) > a} = (— oo, a] and 
C1{A:: A(X) < a'} = [b, oo). Since s < a and è < f, by 3.3, RS(X) > a 
and Lt(X) > a. Since a G LÛ, /^5 A Lt(X) > a. 

LEMMA 3.7. Let cceLa — {1} w/fA a < a'. Le/ s, t eR and let X G /(L). 
TAe« 

i) //'s < t, Rs A Lt(X) > a if and only if Ha(X) fl C?» 0 7e 0 , 
and 

(ii) i / j ^ f, Rs A L,U) > a if and only if[t, s] g Int //„(A)-

PROOF. Let i/a(/l) = [a, b] where Cl{x: A(x) > a} — (— oo, b] and 
Cl{x: A(x) < a'} = [fl, oo). Since aeLa and 3.3 applies, i?s A Lt(X) > a 
if and only if s < b and a < t. Then i) and ii) are immediate. 

Note that the necessity of the conditions in 3.6 and 3.7 requires only 
aeL<- {1}. 

THEOREM 3.8. Let a, OeLa - {1} with a ^ a'. Let A g /(L). JAe« 
A G ca(A) if and only if Ha(X) fi Cl( U {Hfo) : a G ^}) * 0 . 

PROOF. A £ ca04) if and only if there exist s,teR such that Äs A Lt(X) > 
a and Rs A L,0) = 0 for every a e A. By 3.6 and 3.7 i), X £ c«04) if and 
only if there exist s < t in R with Ha(X) g (s, t) and H0(a) f| (s, 0 = 0 
for every * G ,4, i.e., X £ ca(A) if and only if Ha(X) fl Cl( U {#<)(*) •' ^ e ^}) 

= 0. 
COROLLARY 3.9. Let a,0eLa — {1} with a ^ a'. 
i)If(je I(L) is such that 0 < a(x) < 1 /ör all x G (0,1), then ca({a}) = 

/(A 
ii) If a G /(L) w swcA that a ^ <r(x) ^ a' for all x G (0, 1), then for every 

non-empty A Q I(L), a G ca(A). 

PROOF. In i) H0(a) = [0, 1] and in ii) Ha{a) = [0, 1]. 

The second and third parts of the following corollary are obtained in 
[5] and [4] by different methods. 
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COROLLARY 3.10. Let a, 0 e La - {]} with a ^ a . Then 
i) ca is not a closure operator ; 

ii) I(L) does not have the a-property; and 
iii) I(L) is not suitable. 

PROOF. Let 6, X be the canonical images of 1/4, 1/2 respectively in I(L). 
HJfi) = {1/4} and H0(X) = {1/2}. By 3.8, d <£ ca({X}) and by 3.9, with 
a(x) = a for x e (0, 1), ca(ca({X})) = I(L). Part ii) now follows from 2.5. 
Lastly by 3.9 no proper subset of I(L) is a-closed and so iii) follows from 
2.8. 

With a slight modification of these methods one obtains analogous 
results for (0, 1)(L). In 3.12 and 3.13, ca refers to the a-closure in the 
subspace (0, 1) (L). 

LEMMA 3.11. Let a e L — {0, 1} with a ^ a' andO < a ^ b < 1. Then 
there is X e (0, 1) (L) with Ha(X) = [a, b]. 

PROOF. Use 

(1 if t < a 

X(t) = iaifa ^ t ^b 

IO if / > b. 

COROLLARY 3.12. Let a, 0 G La — {1} with a ^ a'. For n ^ 3 choose 
Xn e (0, 1) (L) with Ha{Xn) = [\/n, (n - l)//i]. Then 

i) for any k ^ 3, ca({Xn:n ^ k}) = (0, \)(L),and 
ii) for any a e (0, 1)(L), there is some k ^ 3 with {Xn: n ^ k} E ^({Ö*})-

COROLLARY 3.13. Let a, 0 e La - {1} w/fA a ^ a'. 77*67? 
i) ca is not a closure operator, 

ii) (0, 1)(L) does not have the a-property, and 
iii) (0, 1)(L) is not suitable. 

The next example shows that the converse of 2.5 fails and that the a-
Hausdorff hypothesis in 2.7 is necessary. 

EXAMPLE 3.14. Let a, 0 eLa - {1} with a ^ a'. Choose X, fi e/(L) 
with Ha(X) = [1/2, 3/4] and Ha(p) = [1/4, 3/4] and let A = {X, /*}. By 
3.8, X e ca{{fj)) and /ueca({X}) and so, in the notation of §2 for the sub-
space A, Wa is indiscrete. By 3.6, if 1/4 < s < 1/2 < 3/4 < t, Rs A Lt(X) 
> a while Rs A Lt(/x) ^ a and so {/l} e Ta where T is the fuzzy topology 
for the subspace A. By 2.4, A does not have the a-property. However, 
ca is a closure operator in any two-point space. 

For the case a < a the characterization of the a-closure is quite dif­
ferent. The second parts of 3.18 and 3.20 were obtained by different 
methods in [5]. 
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THEOREM 3.15. Let a, OeLa - {1} with a < a'. Let A g I(L). Then 
À e ca{A) if and only if Ha(X) g Cl( (J {H0(a) : a e A}) and, for every com­
pact K g Int Ha(À), there is a e A with K g Int HQ(a). 

PROOF. Let X e ca(A) and let x e Ha(X). For any s < t with x e (s, t), 
by 3.7, Rs A Lt(X) > a and so there is a e A with Rs A Lt(a) > 0. Again 
by 3.7, (s, t) fi #o(tf) * 0 a n d s o *eCl(U{#o(<7): o* A}). Now let 
A: ^ 0 be compact with K g Int Ha(X). Then, for 5 ^ ^ with K g [>, 5] g 
Int Ha(X), Rs A L,(/l) > a and so there is a e A with i?s A L/cr) > 0. 
Then by 3.7, K g [t, s] g Int HQ(a). For the converse let the two condi­
tions hold for X relative to A and let Rs A Lt(X) > a. If s < t, (s, t) f| 
( U {HQ(G)' o e A}) ^ 0 and so by 3.7, Rs A Lt(a) > 0 for some a e A. 
If s ^ /, |7, 5] g Int /f0(ö") f° r some er e ,4 and so Rs A L,0) > 0. Thus 
X e ca(A). 

LEMMA 3.16. Let a e Lc — {0, 1} with a < a'. 
i)lf0^a^ 1, then there is XeI(L) with Ha(X) = {a} and H0(X) = 

[0, 1]. 
ii) If 0 < a S b ^ c < 1, then there is X e (0, \)(L) with Ha(X) = {b} 

and HQ(X) = [a, c]. 

PROOF. For i) let 

H0 = 

For ii) let 

W) = 

r 1 if / < 0 

a' if 0 ^ t ^ a 

a if tf < t ^ 1 

,0 if/ > 1. 

1 if t < a 

a'ifa^t^b 

a if b < t ^ c 

0 if r > c. 

COROLLARY 3.17. Let a, 0 eLa - {1} wiYA a ^ 0 and a < a'. Let 
0 9̂  A g /(L). 77ie/i ca(^[) w a-closed if and only ifca(A) = /(L). 

PROOF. LctreA with # 0(r) = ta> *]• L e t ^ G 7(L) w i t h #otf) = ^ !] 
and Ha(X) = W - By 3.15, X e ca(A) and I(L) = ca({^}) g ca(ca(^)). 

COROLLARY 3.18. Lef a, 0 G La — {1} with a ^ 0 and a < a'. Then 
i) ca is not a closure operator on I(L), and 

ii) I(L) does not have the a-property. 
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PROOF. Let 0, G be the canonical images of 1/4, 1/2 respectively in I(L). 
By 3.15, G $ ca({0}) and i) follows from 3. 17. 

COROLLARY 3.19. Let a, 0eLa — {1} with a ^ 0 a«J a < a:'. Let 
0 7* -4 E (0, 1)(L). Then ca(A) is a-closed if and only ifca(A) = (0, 1)(L). 

PROOF. Let G e A and let b e H0(G). Using 3.16 pick a sequence jlw e 
(0, 1)(L) with H0(X„) = [\/n, (n-\)/n] and Ha(Àn) = {b} (for « sufficiently 
large). Then by 3.15, Xn e C(X({G}) g ca(A) and ca({Xn: n ^ k}) = (0, 1)(L). 

COROLLARY 3.20. Let a, 0 e L f l - {1} with a ^ 0 ««Ja < a'. 77K?H 

i) ca is not a closure operator on (0, \)(L), and 
ii) (0, \)(L) does not have the a-property. 
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