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THE DUNFORD-PETTIS PROPERTY OF SOME SPACES
OF AFFINE VECTOR-VALUED FUNCTIONS

PAULETTE SAAB

ABSTRACT. Let K be a Choquet simplex, E be a Banach space,
let C(K, E) denote the Banach space of all continuous E-valued
functions defined on K with supnorm, and let A(K, E) be the
subspace of C(K, E) consisting of affine functions. We show that
A(K, E) has the Dunford-Pettis property whenever C(K, E) has
the same property. We also exhibit a compact convex set C that is
neither a Choquet simplex, nor a dual unit ball of a Banach space
with the Dunford-Pettis property such that A(C, R) has the Dun-
ford-Pettis property.

Introduction. Let K be a compact convex subset of a locally convex
Hausdorff space, and let E be a real or complex Banach space. In this
paper we investigate the Dunford-Pettis property of A(K, E), the space of
all continuous and affine F-valued functions defined on a Choquet simplex
K. This study is motivated by the fact that when K is a Choquet simplex, it
is well known [10] that A(K, R)* is linearly isometric to an L1-space, thus
A(K, R) has the Dunford-Pettis property. This raises the following inter-
esting problem.

Problem. For a Choquet simplex K, and for a Banach space E, does
A(K, E) have the Dunford-Pettis property whenever E does?

It turns out that the above problem is closely related to another still
open problem of whether the space C(Q, E) of all continuous E-valued
functions defined on a compact Hausdorff space Q2 has the Dunford-
Pettis property whenever E does. In this paper, we will show that, for a
Choquet simplex K, the space A(K, E) has the Dunford-Pettis property
whenever C(K, E) has the Dunford-Pettis property.

We also observe that there are compact convex sets Z such that A(Z, R)
does not have the Dunford-Pettis property. For it can be shown that a
real Banach space ¥ has the Dunford-Pettis property if and only if the
space A(B(E*), R) of all continuous and affine functions on the unit ball
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of E*, has the Dunford-Pettis property. Finally, we exhibit a compact
convex set C that is neither a Choquet simplex nor a dual unit ball of a
Banach space with the Dunford-Pettis property such that 4(C, R) has the
Dunford-Pettis property.

1. Definitions and preliminaries. If ¥ is a real or complex Banach space,
we shall denote by V* the topological dual of V.

If Q is a compact Hausdorff space, and if F is a Banach space, we
shall denote by C(Q, E) the Banach space of all continuous E-valued
functions on Q under the supremum norm.

If K is a compact convex subset of a locally convex Hausdorff space, and
E is a Banach space, the symbol A(K, E) will stand for the (closed) sub-
space of C(K, E) consisting of affine functions.

In this paper we shall mostly consider Choquet simplexes, we shall
mainly use the characterization given in [8]. For a detailed study of
Choquet simplexes and other equivalent definitions we refer the reader to
[2], [7], and [8].

2. The Dunford-Pettis property for A(K, E).

DEFINITION 2.1. A Banach space V has the Dunford-Pettis prcperty (DP)
if whenever (x,) and (x}) are weakly null sequences in ¥ and V* respec-
tively, then

lim x*(x,) = O.

The best-known spaces with the Dunford-Pettis property are Ll(u)
spaces, C(2) spaces, where  is a compact Hausdorff space, Banach spaces
with the Schur property (i.e., weakly compact sets are norm compact)
and complemented subspaces of Banach spaces with (DP).

The next theorem reduces the study of the Dunford-Pettis property of
A(K, E) to that of C(K, E).

THEOREM 2.2 Let K be a Choquet simplex, and let E be a Banach space,
then A(K, E) has the Dunford-Pettis property whenever C(K, E) does.

PRrOOF. Suppose that C(K, E) has (DP). Let (a,),>; and (4,),=; be se-
quences in A(K, E) and A(K, E)*, respectively, such that lim,qa, = 0
weakly and lim, 4, = 0 weakly. Since K is a Choquet simplex it follows
from [8] that there exists an isometric linear selection mapping S from
A(K, E)*into C(K, E)*, i.e., S: A(K, E)* - C(K, E)* is linear, S(/) =/
on A(K, E) and ||S(9)| = ||7| for each 7 in A(K, E)*. It follows that
lim,S(4) = 0 weakly in C(K, E)*. Also, since lim,a, = 0 weakly in
A(K, E), lim,a, = 0 weakly in C(K, E). Hence, since C(K, E) is supposed
to have the Dunford-Pettis property, we have
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lim /(a,) = lim S(4)a,) = 0.
n n

This completes the proof.

It is known [4] that if £ has the Schur property or if £ = L! [1], and Q
is a compact Hausdorff space, then C(Q, E) has the Dunford-Pettis prop-
erty. The following corollary is now immediate.

COROLLARY 2.3. If K is a Choquet simplex and E is a Banach space that
is either L! or has the Schur property, then A(K, E) has the Dunford-
Pettis property.

When the Banach space E is a real or complex predual of an L!-space
one can say more about the space A(K, E), namely we have the following
theorem.

THEOREM 2.4. If K is a Choquet simplex and E is a real (resp. complex)
predual of an L'-space, then A(K, E) is a real (resp. complex) predual of an
Ll-space. In particular A(K, E) has the Dunford-Pettis property.

PrOOF. Let E be a real (resp. complex) Banach space such that E* is
isometrically isomorphic to an Ll-space. Without loss of generality one
can assume that E* is a real (resp. complex) L!-space. It is known [9]
that the dual of C(K, E) is isometrically isomorphic to the Banach space
M(K, E*) of all w*-regular E*-valued measures m defined on 2 the g-field
of Borel subsets of K, and that are of bounded variation with |m| =
|m|(K) where |m| denotes the variation of m [3]. Since E* is an Ll-space,
the space M(K, E*) is easily checked to be an ordered linear space under
the order defined as follows: for m € M(K, E*), m = 0if m(B) = O for all
Be 3. Moreover, if me M(K, E*), one can define the absolute value of
m as follows. Let Be 3 and let == (B,),<, denote a finite Borel partition
of B. For each B; € r let |m(B;)| denote the absolute value of m(B;) in E*.
Since E* is an L1-space, for each partition 7 = (B;),<, of B we have

|z o] = 5

m(B)| < Imi(B).

Hence the family

{B.-ZEW Im(B)| : B = UB:‘}”

is a norm bounded family in £* and is easily seen to be directed upward.
Since E* is an L!-space, we can define the element |m|,(B) of E* as follows:

Imlo(B) = sup 33 |m(B))

and



494 P. SAAB

2 m(B)|
m(B;)

= |m|(B).

| imlu(B)| = sup

= sup

T B34

Hence |m|, is a well defined set function on Borel subsets of K and takes
its values in E*, and if we compute its variation, we get | [m|,|(B) = |m|(B),
for each B € 3. This shows that |m|, € M(K, E*) whenever m € M(K, E*).
Hence M(K, E*) is a Banach lattice. Moreover, it can easily be verified
that the variation norm is additive on the positive elements. Thus
M(K, E¥) is itself linearly isometric to an Ll-space. Since K is a Choquet
simplex, it follows from [8] that A(K, E)* is isometrically isomorphic to
a closed linear subsapce of C(K, E*)~ M(K, E*) and that there exists a
contractive linear projection from M(X, E*) onto A(K, E)*. Thus, it
follows from [5] that A(K, E)* is itself linearly isometric to an Ll-space.
This completes the proof. The last assertion of Theorem 2.4 follows from
the fact that if the dual V* of a Banach space V has the Dunford-Pettis
property then so does V.

3. More spaces with the Dunford-Pettis property. Theorem 2.4 shows
that if K is a Choquet simplex then A(K, R) has (DP). This raises the
following question: Besides Choquet simplexes, for what compact convex
set K, does A(K, R) have (DP)?

Let us first observe that if V is a rea/ Banach space, then a simple ap-
plication of the Hahn-Banach theorem shows that the Banach space ¥V is
linearly isometric to 4y(B(V *)), the Banach space of all affine and continu-
ous real valued functions defined on the unit ball of V*, and that are zero
at the zero functional. Moreover, we have the following proposition.

PrOPOSITION 3.1. Let V be a real Banach space, then A(B(V*), R) is
linearly isometric to V@® A R.

Hence A(B(V*), R) has the Dunford-Pettis property if and only if V
does. In particular, this shows that there are compact convex sets K such
that A(K, R) does not have the Dunford-Pettis property. These observa-
tions motivated the search for a compact convex set C that is neither a
Choquet simplex nor the unit ball of a dual of a Banach space with the
Dunford-Pettis property, such that 4(C, R) has (DP). The first step in
this direction is given next.

Let X; and X, be two compact convex sets. Denote by BA(X; x X,)
(or simply BA) the Banach space of all continuous functions that are
affine for each variable (separately). It is well known that BA separates the
points of the compact convex set X; x X,, and contains the constant
functions.
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LeMMA 2.9. If K is a compact convex set and E is a Banach space, then
A(K, E) embeds isometrically into BA(K x B(E*)). Moreover if E is
a real Banach space, the space A(K, E) considered as a subspace of
BA(K x B(E*)) is complemented in BA(K x B(E*)) with complement
A(K, R) and BA(K x B(E¥*)) is linearly isomorphic to A(K, E) @ » A(K, R).

PrOOF. Let I: A(K, E) - BA(K x B(E*)) be defined as follows: for a
in ACK, E),

I(a)(x, x*) = x*(a(x)) for each (x, x*) in K x B(E*).

It is easily checked that I defines an embedding of A(K, E) into
BA(K x B(E*)). Moreover, if E is a real Banach space, we can define
the following map P: BA(K x B(E*)) —» A(K, E), where for each b in
BA(K x B(E*)) we let Pb(x)(x*) = (b(x, x*) — b(x, —x*)/2, for
each x in K and x* in B(E*). Note that for each x in K and b in
BA(K x B(E¥)), Pb(x) is in Ay(B(E*)), and hence it is in E, since E is
identified with Ay(B(E*)). This shows that P is well defined and takes its
values in A(K, E). Moreover it is easy to check that P is a linear projection
and that |P|| = 1. Anelement b in BA is in the complement of A(K, E) if
Pb = 0; that is, for each x* in B(E*) and for each x in K, (b(x, x*) —
b(x, —x*))/2 = 0. It follows that b(x, x*) = (b(x, x*) + b(x, —x*))/2 =
b(x, 0). This shows that if b is in the complement of A(K, E), then b can
be identified with the element b(-, 0) of A(K, R). Conversely, each element
of A(K, R) defines an element of BA(K x B(E*)) as follows: for each x in
K and x* in B(E¥), a(x, x*) = a(x). It follows that Pa = 0. Also it can
easily be shown that for each b in BA(K x B(E¥*)),

Il = IPbIl + 16 — P®)| = 2|b].

Hence BA(K x B(E*)) is linearly isomorphic to A(K, E) ® 1 A(K, R).
The following proposition is now immediate.

ProposITION 3.2. If K is a Choquet simplex and if, E is a real Banach
space with Schur property, then BA(K x B(E*)) has the Dunford-Pettis

property.
The next example ends the search.

ExaMPLE 3.3. A compact convex set C that is neither a Choquet sim-
plex nor the unit ball of the dual of a Banach space with the Dunford-
Pettis property such that A(C, R) has the Dunford-Pettis property.

Let K be a Choquet simplex and let E be a real Banach space with the
Schur property. Consider BA = BA(K x B(E¥*)), and let C denote the
state space of BA; thatis C = {/e BA* /(1) = ||/|| = 1}. We know that
C is a weak*-compact convex subset of BA* and it can be shown that B4
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is linearly isometric to 4(C, R). Hence A(C, R) has the Dunford-Pettis
property by Proposition 3.2. Moreover C is neither a unit ball in a dual
space nor a Choquet simplex because it follows from [6, 2.10] that the
state space of BA is a Choquet simplex if and only if K and B(E*) are
Choquet simplexes. But B(E*) is never a Choquet simplex, for any measure
p of the form (e« + ¢_,+)/2, where x* is an extreme point of B(E*), is a
maximal probability measure whose barycenter is O [7] or [2].
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NOTE ADDED IN PROOF. Recently, M. Talagrand has constructed a separable Banach
space E, such that E* has the Schur property but such that C(4, E) fails the Dunford-
Pettis property, here 4= {0, 1} ¥ is the Cantor group. This answers in the negative the
problem mentioned in this paper.





