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EXTENSIONS OF /-HOMOMORPHISMS 

ELEANOR R. ARON, ANTHONY W. HAGER1 AND JAMES J. MADDEN 

ABSTRACT. It is shown that, in abelian /-groups, each morphism 
to a complete vector lattice extends over any majorizing embedding. 
This extends a result of the first author for Archimedean /-alge
bras with identity, and the recent Luxemburg-Schep theorem for 
vector lattices, and solves a problem of Conrad and McAlister. 
The proof presented here differs substantially from the Luxem
burg-Schep proof. Ours uses the Yosida representation and 
Gleason's theorem on topological projectivity—this is novel, and 
seems relatively economical and transparent. The /-group theorem 
is shown to imply, and with some modestly categorical machinery, 
to be implied by, certain similar statements in subcategories of 
/-groups. 

1. Introduction. Recall that, in a category <£\ an object V is called 
injective if given the morphisms 0 : G -+ V and p. :G -+ H, with p monic, 
there is a morphism e: H -• V with e ° p = ^. We consider the category 
of Archimedean /-groups (i.e., lattice-ordered groups), with morphisms 
the /-homomorphisms, (i.e., group homomorphisms preserving finite 
meets and joins). Here, there are no injectives [4], but the theorem of the 
abstract, stated precisely below, shows that the complete vector lattices 
behave like injectives with respect to a restricted class of monies. 

THEOREM 1.1 Let (j)\ G -• V and p. G -> H be morphisms of Abelian 
/-groups. Then, there is a morphism e : H -• V with e ° p = <p provided 
that 

(a) V is a complete vector lattice, and 
(b) p is a majorizing embedding. 

Here, complete means Dedekind complete; embedding is another word 
for monic or one-to-one; the subset S of the /-group / / i s said to majorize 
H if given he H there is s e S with \h\ ^ s; and the morphism p.G-*H 
is called majorizing if p(G) majorizes H. 

xThis author is indebted to Dompier's HRS and Wesleyan University for support 
during a sabbatical of Spring 1980. 
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§4 discusses vector lattices, including the sharpness of 1.1, and §5 
discusses various kinds of uni tary morphisms. 

The proof of 1.1 given here differs substantially from tha t of the vector 
lattice theorem in [14]; this is one of the main points of this paper . The 
proof in [14] is lengthy, proceeds th rough several special cases, and in the 
end it is no t easy to tell what the extension e really is ; e comes indirectly 
from a theorem of Kantorovich on extending positive linear t ransforma
tions. Our proof can be described as follows; First, consider the d iagrams 

G >H SQ< Sff 

4 Stone duality 
is « -* i / 
V Sy (Boolean algebras) (Boolean spaces) 

Here, y. is monic if and only if ju% (the associated continuous function) is 
epic, and V is complete if and only if the Stone space Sv is extremally 
disconnected (see [16]). Now apply the following theorem. 

THEOREM 1.2. (GLEASON [10]). In the category of compact Hausdorff 
spaces, extremally disconnected is equivalent to projective. 

"Projective" is the exact dual of "injective". (Note that in compact 
Hausdorff spaces, epic is equivalent to onto.) Thus, given /u and 0, there 
is a morphism e% completing the diagram of Boolean spaces. Then, since 
S is a duality, there is a morphism e completing the diagram of Boolean 
algebras. (This is Sikorski's Theorem, that in Boolean algebras, complete 
implies injective [16].) Now consider 

G-Ï-+H YGJ^-YH 
I / . T 71 

<P\ 4 Yosida functor <l>*\ / e* 
1 / > I / 
V Yy 

(Archimedean /-groups) (topological spaces) 
The Yosida representation describes each G as an /-group G of [— oo, 
4- oo]-valued functions on a space YG. Interpreted properly, this provides 
a functor, so that, given ju and <J)9 there are //# and ^#; if V is complete, 
Yy is extremally disconnected, so an application of Gleason's Theorem 
1.2 provides s#. But, 7 is not a duality; in order to produce e from e#, 
another use of that fact that V is both complete and a vector lattice is 
required as well as some hypothesis on /u (e.g., that /u be majorizing). 

This proves 1.1 for Archimedean /-groups, and a short separate argu
ment reduces the general case to this. 

The details follow in §2 and §3. 
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2. Yosida representation. We summarize the features which will be used. 
We shall assume some familiarity, but the basic information can be found 
in [2] and [15]. The material on functoriality comes from [12] and [13]. 

Let G be an /-group and let e e G+. YG(e) denotes the set of ideals 
(solid subgroups) which are maximal with respect to not containing e, 
endowed with the hull-kernel topology; YG(e) is a compact Hausdorff 
space. For each g e G, we define g: YG{é) -> [— oo, + oo] in a well-known 
way, so that ê is constantly 1, each g is continuous, and {coz g\g e G) 
is an open basis in YG(e). (Here, coz g = {M\g(M) ± 0} = {M\g$M}.) 

For disjoint £ g G + (i.e., e ^ e' => e A e' = 0), YG(E) will denote 
2Le£ YG(e), the topological sum. For each geG, we define g: YG(E) 
-> [—oo, +oo] piecewise on each YG(e) as in the previous paragraph. 
E1- denotes {g e G\ \g\ A e = 0 for each e e E}. 

For Y a topological space, D(Y) is the set of all continuous f: Y -+ 
[—oo, +oo] with /_ 1(—oo, +oo) dense. With natural definitions of 
operations, D(Y) is a lattice but usually not a group (nor much else), 
though it has "subgroups" (and various other "substructures"); in case 
Y is extremally disconnected, D(Y) is an /-group (vector lattice, /-ring, 
and /-algebra). 

For the rest of this section, G and H denote Archimedean /-groups. 
Morphism (as in 1.1) means /-homomorphism. The version of the 

Yosida representation which we shall use is as follows. 

THEOREM 2.1. Let E g G+ be disjoint. Then G is an "/-subgroup" of 
D(YG(E)), and G H-> G is a morphism which preserves all existing joins and 
meets, and whose kernel is E1-. 

2.1 is standard, if a little more detailed than usual. Note that EL = (0) 
if and only if E is maximal disjoint, and then G »-> G is an isomorphism. 
Note too, that an "/-subgroup" of any D{Y) must be Archimedean, 
and therefore any GjEL = G is Archimedean. In fact, for any /-subgroup 
S g G and maximal disjoint E g S+, we have S1- = E\ whence G/S1-
is Archimedean. 

THEOREM 2.2. Let <p: G -+ H be a morphism, let E g G+ be disjoint, 
(so that ç(E) g H+ is disjoint), and let G g D(YG(E)) and H g 
D(YH(ç(E))) be the morphic images of 2.1. Then, 

(a) a morphism (p: G -> H is defined by (p(g) = <p(g)~, 
(b) for each e e E, a continuous map q>\ : YH(cp{e)) -• YG(e) is defined 

by (pl(M) = <p-\M), and <p% = %eç=E <p\ (the topological sum) defines a 
continuous map <pf. YH(<p(E)) -» YG(E), 

(c) 0(g) — S ' 9% for eacn geG> and <p% is the unique map with these 
properties, and 

(d) if <p is one-to-one (resp., onto), then <p% is onto (resp., one-to-one). 
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2.2 is an immediate consequence of §2 of [13] (and comes from §2 of 
[12]), except for the "onto implies 1 — 1" part of (d) which we don't need. 

It is easy to see that the process of 2.1 and 2.2 maps 1: G -• G to 
1 : YG(E) -> YG(E), and maps the composition 

A-^B-^C 

to the composition 

YAE) ^ YB(a(E)) J?- Yc(ß(a(E))). 

Thus we have a functor to topology defined on the category with objects 
(G, E) and morphisms <p : (G, E) -+ (Gf, E') the /-group morphisms 
<p: G -+ G' with (p(E) = E'. This may be awkward-looking, but the 
category is a natural analogue of rings with identity, which fact is exploited 
here in §5 (and elsewhere). 

The following is closely related to 13.4.2 of [2]. 

PROPOSITION 2.3. Let E § G+ be disjoint. 
(a) If G has the projection property (in particular, if G is a complete 

/-group), then YG(E) is extremally disconnected. 
(b) If G is a complete divisible /-group (whence a complete vector 

lattice), then G is a solid subgroup of the /-group D(YG(E)). 

PROOF, (a) A topological sum is extremally disconnected if and only if 
each summand is, and so it suffices that each YG(e) be extremally discon
nected. A typical open set is of the form coz / = (J{coz g\g G /} = {M\I 
is not contained in M}, for some ideal / in G. The hull-kernel topology 
has the property that cl(coz / ) = {M\I1- ü M). With the projection 
property, IL g M if and only if ILL is not contained in M, and thus 
cl(coz / ) = QOZ(ILLY which is open. 

(b) Suppose feD( YG(E)Y with / ^ g0, and let s = V{£ e G \ g g / } . 
Then s e G and s ^ / . If s ^ f there is coz gx ^ 0 with closure compact 
and contained in coz(/ — s). We may suppose 0 ^ gi ^ 1 (by replacing 
gì by Igil A e for appropriate e G E). Then, for large enough n, 0 < 
(0/") * £ L T < ( / - s), whence s < s + ((1/«) • gx)~ < f. This con
tradicts the definition of s, s o / = s e G, as required. 

3. Proof of Theorem 1.1. We first reduce to the Archimedean case. 
Suppose given (in Abelian /-groups) the morphism </>: G -> V, with Ka 
complete vector lattice (hence itself Archimedean ([2] or [15]), and the 
majorizing embedding ju: G -> H. Consider Diagram 1. 

In Diagram 1 (ker <p) is the generated ideal in H, v exists by a homo-
morphism theorem, and / is an ideal chosen (by Zorn's lemma) maximal 
with repsect to / fl v[///(ket </>)] = (0). To lift c]j over ju, it suffices to 
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[ H / ( k e r i fO]/I 

Diagram 1 

produce e with e ° {% ° v) = i, and this amounts to proving 1.1 in Archi
medean /-groups, because G/ker cp is Archimedean as a subgroup of V. 
Since ^ is a majorizing embedding, so is y, and then so is % o v. By 
maximality of /, % o y has large image (i.e., each nonzero ideal in the 
codomain meets the image in a nonzero ideal) and thus [///(ker <J))]/I 
is Archimedean, by the following lemma (which is essentially 2.3 of [15]). 

LEMMA 3.1. If A -> B is a large majorizing embedding, and A is Archi
medean, then B is Archimedean. 

PROOF. Let IA and IB be the ideals of infinitely small elements in A and 
B. Since A majorizes B, we have IA = IB f| A. Since A is Archimedean, 
JA = (0). Since A is large in B, we have IB = (0), i.e., B is Archimedean. 

We now prove 1.1 for Archimedean /-groups. Suppose given the 
morphism $: G -• V, with F a complete vector lattice, and the majorizing 
embedding JLL: G -> H. We prepare to apply 2.2. Consider the diagram 

^H-^HIfxiGY 
/ 

/ 

V+-D(J,(G)±A-

It suffices to produce a dotted arrow making the diagram commute. 
Notice that <p(GYL is a complete vector lattice, since it is an ideal in V; 
(jj(GY^ Ü (J)(G) so that (])\G-+ <])(GY^ is a morphism. Regarding q o ^ : G -> 
Hlfji(G)L, notice that H/ju(GY is Archimedean, as pointed out after 2.1, 
/^(G)x fi Ju(G) = 0, whence q is one-to-one on /*((/), whence q o ^ is an 
embedding, and q o ^ is majorizing because /̂  is majorizing and # is onto. 
Finally note that whenever E E G+ is maximal disjoint, then ^(is) and 
q{fi{E)) are maximal disjoint in cj)(GY^ and H/jLt(GY, respectively. 
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Thus, it suffices to prove 1.1 for <jj: G -> V and pt:G -> H assuming a 
maximal disjoint E E G+ for which <J){E) and /u(E) are maximal disioint. 

By 2.1, G -> G g £(FG(£)), 77 -+ # g D(YH(ft(E))) and F -+ F g 
£>(}V(0CE))) a r e isomorphisms. So, to produce the desired e:H -> F, it 
suffices to produce a suitable £ : H -> F. 

Consider the diagrams 

I / Î /» 

F W ( £ ) ) 
M) 0») 

That is, if ê exists in (A), then, by 2.2, e is produced by composition with a 
certain continuous map e#, with (5) commuting. We shall produce sp 
then ê. 

There is £# with m o £# = ^# because the diagram (.5) is the sum of the 
diagrams 

YG{e)-^Y(e) 

(Be) 4 (esE). 

Yv(e) 

Gleason's Projectivity Theorem 1.2 produces ef because Yv(e) is ex-
tremally disconnected (by 2.4 (a)), and /4 is onto (by 2.2). Then let e# = 
HeeE £$> the topological sum. (There is a generalization of Gleason's 
theorem in [8] which applies to (B) directly to produce e#.) 

Define ê(h) = h o e% for h e H. Note that for g s G, we have e(ß(g)) = 

(/2(g)) o ^ = (ri«#)o^ = r 0% °^) = r Ä = (̂£)-
Regarding the other required features of ê, we digress a bit. 

REMARK 3.2. With R* = [— oo, + oo] and 7 any topological space, 
the set of continuous functions C(Y, i?*) is a lattice containing D(Y). 
Any continuous zf Z -• F induces a lattice homomorphism r : C(F, R*) 
-> C(Z, i?*) defined by r ( / ) = / o r. We need not have T(D(Y)) g D(Z). 
However, if A is an "/-subgroup" of D(Y) and B is an "/-subgroup" 
of £>(Z), and if z"(̂ 4+) g B, then the restriction r : A -> i? is a morphism. 
This comes directly from the definition in §2 of the partial operations in 
D(Y). Clearly, the same is true for other kinds of "algebraic substructures" 
of D(Y). 

Returning to e, we see from 3.2 that to have the required morphism 
ê: H -> V, it is enough that ê(h) e V for each h e H+: Given h, choose 
geG with 0 ^ h ^ fi(g). Then 0 ^ A ^ fi(g\ whence 0 ^ ê(A) ^ 
e(fi(g)) = 0(g) e F (because ê is a lattice homomorphism, and ê oft = $), 
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In particular, this shows that e(h) is real-valued whenever 0(g) is real-
valued, so that ê(h) e D(Yv(<p(E))). Since F is a complete vector lattice, 
Kis a solid subgroup (by (2.3(b)) thus e(h) e V, as desired. 

4. Vector lattices. We discuss the special place of vector lattices in the 
context of the extension problem, the Luxemburg-Schep theorem, and 
the need for the hypotheses in 1.1. Let ^ denote the category of /-groups 
with /-homomorphisms, and TT the category of vector lattices with vector 
lattice homomorphisms. Recall that each Archimedean G e \g\ has an 
essentially unique ^-completion, a dense and majorizing ^-embedding 
G c—> G, with G complete, and similarly for ^-completions. See [7], [2], 
[15]. 

We begin with a problem of Conrad and McAlister : Example VI of [7] 
shows that a complete /-group containing G need not contain a ^-com
pletion of G, and question 1. at the end of [7] asks if the following pro
position is true. 

PROPOSITION 4A. If G is an /-subgroup of the complete vector lattice V, 
then V contains a ^-completion ofG. 

PROOF. By 1.1, the hypothesized inclusion <p: G -* V extends over the 
embedding G -> G in the ^-completion, to e: G -• V. According to 4.2 
below, e is monic and thus e(G) is the desired completion of G within V. 

LEMMA. 4.2. Suppose /-group morphisms satisfy e ° fi = (J). If [x has 
large image and </> is monic, then e is monic. 

PROOF. If <fi = e ° /x is monic, then im(^) f| ker(s) = 0; since im(/z) 
is large, ker(e) = 0. 

4.3, We explain the connection between 1.1 and the Luxemburg-Schep 
theorem, 3.1 of [15]. This is the statement "1.1 ( y ) " : Given i^-morphisms 
<j)\ G ~+ Vand fi: G -+ H, with V complete and [x a majorizing embedding, 
there is a "T-morphism s: H -* V with s ° (x = (j). 

Our method of proving 1,1 proves 1.1 (i^). §2 is completely valid "in 
TT" and then the proof in §3 goes through without change (noting 3.2). 

But further, there are interesting "formal connections" between 1.1 
and 1.1 Or) existing by virtue of the Conrad-Bleir vector lattice hulls. It is 
shown in [3] and [4] that (a) each ^-morphism between Archimedean 
^-objects is already ^r-morphism (i.e. i r is full in ^ ) , and that (b) each 
G e \<g\ ^"-embeds into an Archimedean vG e \V\ so that each ^-mor-
phism (p: G -> L with L e \ir\ has a unique -^-extension v<p: vG -• vL 
(we can say, arch -jT is embedding-reflective in arch ^ ) . 

We show now how 1.1 implies, and is implied by 1.10^). As at the 
beginning of §3, it suffices to consider only Archimedean /-groups and 
vector lattices. Now, 1.1 implies 1.1 Or), using (a): Given appropriate ^ 
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and fi in arch f , 1.1 yields a ^-morphism e with e ° fi = <fi; and e is a 
y-morphism. And, 1.1(f) implies 1.1 using (b): Given appropriate 
(J) : G -* F and fi: G-^ H in arch ^ , we have f-morphisms v^ : vG -> v F = 
F and v//: vG -• vH. One checks that the operator v preserves majorizing 
embeddings. So 1.1 (V~) provides a y-morphism e':vH -+ V with e' o 
(v^) = v^. Then 

e = G-^->H • vi/ — V 

is as desired. 

4.4. Veksler [17] has proved "4.1(-f ) " : If in TT, G c—> Kwith Fcom-
plete, then F contains a f-completion of G. 

Again, 4.1 implies and is implied by 4.1(f), just as in 4.3, but this ad
ditional fact is needed: for (Archimedean) Ge\&\, the f-completion 
of vG is v (the ^-completion of G) [4]. 

We note that Veksler's proof used the Kantorovich Theorem (as does 
the proof of 1.1(f) in [14]). So again we see Gleason's Theorem 1.2 re
placing the Kantorovich Theorem. 

5. Unitary morphisms. We have considered, and will now consider 
further, subcategories <% of ^ , and the statements l . l (^) : Given ^-mor
phisms (]>: G -> V and fi\G -• H, Va complete vector lattice, and fi a 
majorizing embedding, there is a ^-morphism e: H -• V with e ° fi = ^. 

We distinguish rather imprecisely two types of situation where 1.1 (#) 
holds: (1) (As arch f in arch ^ ) <g is full in ^ i , and l . l(^i) holds. The 
proof of 1.1 (#) is then the triviality "e ° fi = (fi in # l 9 but e e <̂  already". 
(It may not be particularly trivial that ^ is full in <^v) (2) ^ is not full in 
<^1, but e o fi = (fi in ^ with ju, </>e<g imply e e <£\ 

5.1. /-groups with weak unit. An object of ĵ f is a G e \&\ with a distin
guished weak unit êG (i.e., <f£ = (0)), and a morphism is a ^-mor-
phism preserving weak unit. Then «£f E ^ is type (2), and 1.1 (j£?) holds. 

Actually, 1.1 (arch j£?) implies 1.1 (arch ^ ) (whence 1.1 (^)) by a method 
which is more-or-less "algebraically formal". The ^-diagram e ° fi = </> 
is a subdirect product of jgf-diagrams ee ° fie = cff over e ranging in a 
maximal disjoint is E (domain //)+; to produce e it is enough to produce 
all ee, i.e., to have l.l(j£P). Of course, we used this procedure in §2 and §3. 

5.2. /-groups with strong unit, y is the full subcategory of £g with objects 
G for which G = (eG). y E & is type (1), so l . l (^ ) holds. Since in y 
every morphism is majorizing, 1.1 («9*) says that each complete vector 
lattice is ^-injective. Moreover, by 3.2, within ^ , a complete vector 
lattice is isomorphic to a C(Y) for 7compact and extremally disconnected, 
and conversely, by the Stone-Nakano Theorem [9]. 
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5.3. Boolean algebras. Let <% be this category, construed as a full sub
category of Sf by the device of identifying B e |$&\ with the /-group C(SB) 
of continuous real-valued functions on the Stone space SB. Then, & ü S? 
is type (1), whence \.\(0) holds. (It is hardly surprising that 1.1 implies 
\.\{0) since our proof of 1.1 generalizes a proof of \.\{$). 3.6 of [14] 
notes also that 1.1 (iT) implies 1.1(^).) About ^ , more is known, of course 
[S] : B is ^-injective if and only if B is complete and if and only if SB is 
extremally disconnected. 

5.4./-rings with identity. An object of & is an/-ring G with ring identity 
\G which is a weak unit. Just as arch is* is (a) full, and (b) embedding-
reflective in arch <?, as described in 4.3, arch ^ is (a) full and (b) embed-
ding-reflective in arch «£?, by [6] and [13]. Then (a) says that arch <% g 
arch S£ is of type (1), whence \.\(0$) holds. Conversely, so to speak, 1.1 
(arch ^) implies l.l(jÇP) by (b), just as in 4.3. (This requires verifying, as 
can be done, that the functor arch j£? -• arch ^ which embeds each G into 
a ring pG has the property of preserving majorizing embeddings.) We 
thus have the curious observation that 1.1 (arch <%) implies 1.1 (y ) (since 
by 5.1, l . l(if) implies l . l(^)). 

[1] contains the theorem (with a proof like §3 here) that in ^-Archi
medean/-algebras with identity which is a weak order unit, each G -• V, 
with V complete, lifts over the Dedekind completion of G. This is a little 
weaker than 1.1(0), which itself follows from l.l(arch ^) and l . l (y ) . 

Note that we have not proved \.\{0)\ we don't know if this is true 
since there seem to be difficulties with reducing to the Archimedean case. 
Further, we have not proved 1.1 (/-rings), whether or not Archimedean, 
and we don't know if these are true. 

Added later (12/2/80). [11] will contain the following: the "converse" 
of 1.1 ; another proof of 1.1, which is not terribly complicated and does not 
use representations; a discussion of "majorizing-injectivity" qua in-
jectivity theory. 
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