UNIVALENCE CRITERIA AND THE HYPERBOLIC METRIC

C. D. MINDA AND D. J. WRIGHT

1. Introduction. We shall consider restrictions on the derivative of a function $f \in H(\mathbf{B})$ (i.e., holomorphic in the unit disk \mathbf{B}) which imply that f is univalent. Perhaps the best known result of this type, due to Wolff [13], Warschawski [12] and Noshiro [11], involves only the argument of f^{\prime}. It states that f is one-to-one if $f^{\prime}(z) \neq 0$ and $\arg f^{\prime}(z)$ lies in an interval of length $\pi, z \in \mathbf{B}$. If the length of the interval is larger than π, then f need not be univalent, and, in fact, the valence of f need not be bounded [6].

On the other hand, there is a criterion for univalence due to John [7] which involves only the modulus of f^{\prime}. For non-constant $f \in H(\mathbf{B})$ let $M_{f}=\sup _{z \in \mathbf{B}}\left|f^{\prime}(z)\right|, m_{f}=\inf _{z \in \mathbf{B}}\left|f^{\prime}(z)\right|$ and $\mu_{f}=M_{f} / m_{f}$. The John constant γ is defined by $\gamma=\sup \left\{t: \mu_{f} \leqq t\right.$ implies f is univalent $\}$. If $\mu_{f} \leqq \gamma$, then f is univalent.

The condition $\mu_{f}<\infty$ is equivalent to $f^{\prime}(\mathbf{B})$ lying in an annulus centered at zero. We may introduce symmetry relative to the unit circle by considering $g=f / \sqrt{m_{f} M_{f}}$. Then $M_{g}=\sqrt{M_{f} / m_{f}}=1 / m_{g}, \mu_{g}=\mu_{f}$, and, of course, f is univalent if and only if g is. It follows that

$$
\frac{1}{2} \log \gamma=\sup \left\{M: e^{-M} \leqq\left|f^{\prime}\right| \leqq e^{M} \Rightarrow f \text { is univalent }\right\} .
$$

The best known estimates for γ are $e^{\pi / 2} \leqq \gamma \leqq e^{\pi}$; the lower and upper bounds being given by John [8] and Yamashita [14], respectively.

In the next section we consider the problem of determining which plane regions Ω have the property that $\log f^{\prime}(\mathbf{B}) \subset \Omega$ implies f is univalent. The above two criteria correspond to the cases in which Ω is a horizontal or vertical strip, respectively. We obtain conditions on Ω, involving the hyperbolic metric on Ω, which insure that f is one-one. Our results rely on the following theorem due to Becker [3].

Becker's Univalence Criterion. If $f \in H(\mathbf{B}), f^{\prime}(\mathbf{0}) \neq 0$, and

$$
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq 1, z \in \mathbf{B},
$$

[^0]then f is univalent.
In $\S 4$ we consider the case in which Ω is a rectangle with horizontal and vertical sides. This gives a chain of univalence criteria with the Wolff-Warshawski-Noshiro result and the John criterion as limiting cases.

In §3 we establish some properties of the hyperbolic metric which may be of independent interest.
2. The hyperbolic metric. Let $\Omega \subset \mathbf{C}$ be a hyperbolic region, i.e., $\mathbf{C} \backslash \Omega$ contains at least two points. Let ϕ be an analytic universal covering projection of \mathbf{B} onto Ω. The hyperbolic metric, $\lambda_{\rho}(z)|d z|$, is defined as follows: if $z \in \Omega$ and $w \in \phi^{-1}(z)$, then

$$
\lambda_{\Omega}(z)=\frac{1}{\left|\phi^{\prime}(w)\right|\left(1-|w|^{2}\right)}
$$

The value of $\lambda_{\rho}(z)$ is independent of both the choice of $w \in \phi^{-1}(z)$ and of the selection of the covering ϕ. The collection of analytic coverings of B onto Ω consists of the functions $\phi \circ T$, where T is a conformal selfmapping of \mathbf{B}. Thus, for fixed $z \in \Omega$, there is a unique analytic covering ϕ for which $\phi(0)=z$ and $\phi^{\prime}(0)>0$. In this case, $\lambda_{\rho}(z)=1 / \phi^{\prime}(0)$. If Ω is simply-connected, then ϕ is just a conformal mapping of \mathbf{B} onto Ω. The function λ_{Q} is real-analytic on Ω.

Examples. (i) $\lambda_{\mathbf{B}}(z)=1 /\left(1-|z|^{2}\right)$.
(ii) If $H=\{z: \operatorname{Re} z>0\}$, then $\lambda_{H}(z)=1 /(2 \operatorname{Re} z)$.
(iii) If $S(b)=\{z:|\operatorname{Re} z|<b\}$, then $\lambda_{S(b)}(z)=\pi / 4 b \cos (\pi \operatorname{Re} z / 2 b)$.

For a general discussion of the hyperbolic metric we refer the reader to [1], [5], and [10]. We shall need the following basic properties, which are stated without proof.

Assume Ω and Δ are hyperbolic plane regions.
CONFORMAL INVARIANCE. If f is a conformal mapping of Ω onto Δ, then

$$
\lambda_{\Delta}(f(z))\left|f^{\prime}(z)\right|=\lambda_{\Omega}(z)
$$

Principle of Hyperbolic Metric. If $f \in H(\Omega)$ and $f(\Omega) \subset \Delta$, then

$$
\lambda_{\Delta}(f(z))\left|f^{\prime}(z)\right| \leqq \lambda_{\Omega}(z)
$$

Equality occurs at some point if and only if f is an anlaytic covering of Ω onto Δ.

Monotonicity. If $\Omega \subset \Delta$, then for $z \in \Omega, \lambda_{\Delta}(z) \leqq \lambda_{0}(z)$. If equality holds at a single point, then $\Omega=\Delta$.

We may now prove the following distortion theorem, which, together with Becker's result, gives a criterion for univalence.

THEOREM 1. Let Ω be a hyperbolic plane region and let $\Lambda(\Omega)=\inf \left\{\lambda_{\rho}(z)\right.$: $z \in \Omega\}$. If $f \in H(\mathbf{B}), f^{\prime}(z) \neq 0, z \in \mathbf{B}$, and $\log f^{\prime}(\mathbf{B}) \subset \Omega$, then

$$
\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq \frac{1}{\Lambda(\Omega)}, \quad z \in \mathbf{B}
$$

If $\Lambda(\Omega)>0$, then equality occurs at a single point if and only if $\log f^{\prime}$ is a universal analytic covering of \mathbf{B} onto Ω.

Proof. Applying the Principle of Hyperbolic Metric to $\log f^{\prime}$, we have

$$
\lambda_{\Omega}\left(\log f^{\prime}(z)\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq \lambda_{\mathbf{B}}(z)=\frac{1}{1-|z|^{2}}, z \in \mathbf{B}
$$

and the result follows.
Corollary. Under the hypotheses of Theorem $1, f$ is univalent if $\Lambda(\Omega)$ $\geqq 1$.

Remark. From Example (iii) we see that $\Lambda(S(b))=\pi / 4 b$. Thus, if $b \leqq \pi / 4$ and $\log f^{\prime}(\mathbf{B}) \subset S(b)$, then f is univalent. This gives $\gamma \geqq e^{\pi / 2}$.
3. Evaluating $\Lambda(\Omega)$. Throughout this section Ω denotes a hyperbolic plane region.

Proposition 1. If a is a finite boundary point of Ω, then $\lim _{z \rightarrow a} \lambda_{\Omega}(z)=$ ∞.

Proof. Let $b \in \mathbf{C} \backslash \Omega, b \neq a$, and let $\lambda_{a, b}=\lambda_{\mathbf{C} \backslash a, b\rangle}$. Since $\Omega \subset \mathbf{C} \backslash\{a, b\}$ and $w=(z-a) /(b-a)$ is a conformal mapping of $\mathbf{C} \backslash\{a, b\}$ onto $\mathbf{C} \backslash\{0,1\}$, we see from Conformal Invariance and Monotonicity that

$$
\lambda_{\Omega}(z) \geqq \lambda_{a, b}(z)=|b-a|^{-1} \lambda_{0,1}\left(\frac{z-a}{z-b}\right)
$$

It is known [1, p. 18], that

$$
\log \lambda_{0,1}(z)=-\log |z|-\log \log \left(\frac{1}{|z|}\right)+O(1)
$$

as $z \rightarrow 0$. Thus,

$$
\lim _{z \rightarrow a} \lambda_{\rho}(z) \geqq|b-a|^{-1} \lim _{z \rightarrow 0} \lambda_{0,1}(z)=\infty
$$

It is necessary that a be finite, as seen by Example (ii). Here, we have $\lim \sup _{z \rightarrow \infty} \lambda_{H}(z)=\infty$ and $\lim \inf _{z \rightarrow \infty} \lambda_{H}(z)=0$. If Ω is bounded, then $\lim _{z \rightarrow a} \lambda_{\Omega}(z)=\infty$ for all $a \in \partial \Omega$, so λ_{Ω} necessarily has a minimum in Ω.

Proposition 2. If Ω is symmetric about the straight line L, then λ_{Ω} is symmetric about L.

Proof. There exist complex numbers $a, b,|a|=1$, such that $f(z)=$ $a z+b$ maps L onto the real axis \mathbf{R}. If z and z^{*} are symmetric about L, then $f\left(z^{*}\right)=\overline{f(z)}$. By Conformal Invariance, $\lambda_{\rho}(z)=\lambda_{f(\Omega)}(f(z))\left|f^{\prime}(z)\right|=$ $\lambda_{f(O)}(f(z))$. Thus, it suffices to consider the case $L=\mathbf{R}$. Let $z \in \Omega$ and let ϕ be the analytic covering of \mathbf{B} onto Ω with $\phi(0)=z, \phi^{\prime}(0)>0$. Since Ω is symmetric about $\mathbf{R}, \psi(\zeta)=\overline{\phi(\bar{\zeta})}$ is also an analytic covering of \mathbf{B} onto Ω, and $\psi(0)=\bar{z}, \psi^{\prime}(0)=\phi^{\prime}(0)$. Thus $\lambda_{\Omega}(\bar{z})=1 / \psi^{\prime}(0)=1 / \psi^{\prime}(0)=$ $\lambda_{\rho}(z)$.

Theorem 2. If Ω is convex, L is a straight line, and $\Omega \cap L \neq \varnothing$, then $1 / \lambda_{\Omega}$ is concave on $\Omega \cap L$.

Proof. Consider distinct points $z_{0}, z_{1} \in \Omega \cap L$ and let $z_{t}=(1-t) z_{0}+$ $t z_{1}, t \in[0,1]$. Let ϕ_{t} be the conformal mapping of \mathbf{B} onto Ω with $\phi_{t}(0)=z_{t}$, $\phi_{t}^{\prime}(0)>0$, and let $f_{t}=(1-t) \phi_{0}+t \phi_{1}$. Then $f_{t} \in H(\mathbf{B}), f_{t}(0)=z_{t}$ and, since Ω is convex, $f_{t}(\mathbf{B}) \subset \Omega$. By the Principle of Hyperbolic Metric,

$$
\lambda_{\Omega}\left(f_{t}(0)\right)\left|f_{t}^{\prime}(0)\right| \leqq \lambda_{\mathrm{B}}(0)=1
$$

or equivalently,

$$
\frac{1}{\lambda_{\varrho}\left(z_{t}\right)} \geqq(1-t) \phi_{0}^{\prime}(0)+t \phi_{1}^{\prime}(0)=\frac{1-t}{\lambda_{\Omega}\left(z_{0}\right)}+\frac{t}{\lambda_{\Omega}\left(z_{1}\right)}
$$

Corollary. Suppose Ω is convex.
(i) If Ω is symmetric about a line L and L^{\prime} is a line perpendicular to L, then the restriction of λ_{0} to $\Omega \cap L^{\prime}$ attains a minimum value at $L \cap L^{\prime}$.
(ii) If Ω is symmetric about two intersecting lines L and L^{\prime}, then λ_{Ω} attains a minimum at $L \cap L^{\prime}$.

Proof. (i) By Proposition 2 and Theorem 2, the restriction of $1 / \lambda_{\Omega}$ to $\Omega \cap L^{\prime}$ is both concave and symmetric about $L \cap L^{\prime}$, thus attaining a maximum at $L \cap L^{\prime}$. Part (ii) follows from (i).

The proof of the following lemma is elementary and therefore omitted.
Lemma. Suppose fand gare real-analytic functions on an open set $U \subset \mathbf{C}$, and let $/$ be an open line segment contained in U. Iff and g agree on a subset of ℓ which has a limit point in ℓ, then f and g agree on ℓ.

Theorem 3. Assume Ω is convex, L is a line, and $\Omega \cap L \neq \phi$. If the restriction of λ_{ρ} to $\Omega \cap L$ attains a minimum at two distinct points, then Ω is either a strip or a half-plane.

Proof. Suppose the restriction of λ_{Q} to $\Omega \cap L$ attains a minimum at distinct points z_{1} and z_{2}. Since $1 / \lambda_{\Omega}$ is concave on $\Omega \cap L, \lambda_{\Omega}$ is constant on the segment $\left[z_{1}, z_{2}\right]$. By the lemma, λ_{Ω} is necessarily constant on $\Omega \cap L$,
say with value c. If L meets $\partial \Omega$ at a point $a \in \mathbf{C}$, then $\lambda_{D}(z) \rightarrow e$ as $z \rightarrow a$ along L, contrary to Proposition 1 . Thus Ω contains L. Being covex, Ω must be either a strip or a half-plane.

We have observed that λ_{0} does not have a minimum when Ω is a halfplane. In the case of the strip $S(b)$, the minimum exists and occurs at each point of the center line of the strip.

Corollary. If Ω is convex and λ_{Ω} has a minimum, then either Ω is a strip or the minimum occurs at a unique point of Ω.
4. The case of a rectangle. For $M, A \in(0, \infty]$, let $R(M, A)=\{z:|\operatorname{Re} z|<$ $M,|\operatorname{Im} z|<A\}$ and let $\mathscr{F}(M, A)=\left\{f \in H(\mathbf{B}): \log f^{\prime}(\mathbf{B}) \subset R(M, A)\right\}$. We wish to determine $\tau(A)=\sup \{M: f \in \mathscr{F}(M, A)$ implies f is univalent $\}$. Since $\mathscr{F}(M, A)$ increases with A, τ is a decreasing function on $(0, \infty]$. By the Wolff-Warschawski-Noshiro result, $\tau(A)=\infty$ for $0<A \leqq \pi / 2$. The John criterion gives $\tau(\infty)=(1 / 2) \log \gamma$.

Suppose $f \in \mathscr{F}(M, A)$ and $t>0$. Let

$$
f_{t}(z)=f(0)+\int_{0}^{z}\left[f^{\prime}(\zeta)\right]^{t} d \zeta
$$

where the branch of the power function is determined by the choice of $\log f^{\prime}$ satisfiyng $\log f^{\prime}(\mathbf{B}) \subset R(M, A)$. Then $f_{t} \in \mathscr{F}(t M, t A)$ and $f_{t} \rightarrow f$ locally uniformly as $t \rightarrow 1$. If $f \in \mathscr{F}(\tau(A), A)$ and $0<t<1$, then $f_{t} \in$ $\mathscr{F}(t \tau(A), t A) \subset \mathscr{F}(t \tau(A), A)$, implying f_{t} is univalent. Thus, f is one-toone, and $\mathscr{F}(\tau(A), A)$ consists entirely of univalent functions.

We shall now apply our work in the preceding sections to obtain a lower bound for $\tau(A)$. If both M and A are finite, then $R(M, A)$ is convex, bounded and symmetric about both axes. Thus, $\lambda_{R(M, A)}$ has a minimum value, say $\Lambda(M, A)$, which is attained only at the origin. If exactly one of M and A is finite, then the minimum value, $\Lambda(M, A)$, is attained at each point of the center line of the strip and, in particular, at $z=0 . \Lambda(M, A)$ has the following properties.

Proposition 3. Assume at least one of M and A is finite.
(i) $\Lambda(M, A)=\Lambda(A, M)$.
(ii) $\Lambda(t M, t A)=t^{-1} \Lambda(M, A), 0<t<\infty$.
(iii) $\Lambda(M, A)$ is strictly decreasing in each variable.
(iv) $1 / \Lambda(M, A)$ is concave.

Proof. Parts (i) and (ii) follow from Conformal Invariance and the observation that $w=i z$ and $w=t z \operatorname{map} R(M, A)$ onto $R(A, M)$ and $R(t M, t A)$, respectively. If $M_{1}<M_{2}$, then $R\left(M_{1}, A\right)$ is a proper subregion of $\left(M_{2}, A\right)$. By Monotonicity, $\Lambda\left(M_{1}, A\right)=\lambda_{R\left(M_{1}, A\right)}(0)>\lambda_{R\left(M_{2}, A\right)}(0)=$
$\Lambda\left(M_{2}, A\right)$. Similiarly, $\Lambda(M, A)$ is strictly decreasing as a function of A. As for (iv), consider distinct finite points $\left(M_{0}, A_{0}\right)$ and (M_{1}, A_{1}). For $t \in[0,1]$, let $\left(M_{t}, A_{t}\right)=(1-t)\left(M_{0}, A_{0}\right)+t\left(M_{1}, A_{1}\right)$, and let ϕ_{t} be the conformal mapping of \mathbf{B} onto $R\left(M_{t}, A_{t}\right)$ with $\phi_{t}(0)=0, \phi_{t}^{\prime}(0)>0$. Then

$$
\frac{1}{\Lambda\left(M_{t}, A_{t}\right)}=\frac{1}{\lambda_{R\left(M_{t}, A_{t}\right)}(0)}=\phi_{t}^{\prime}(0), 0 \leqq t \leqq 1
$$

Now, $\psi_{t}=(1-t) \phi_{0}+t \phi_{1} \in H(\mathbf{B}), \psi_{t}(0)=0$ and $\psi_{t}(\mathbf{B}) \subset R\left(M_{t}, A_{t}\right)$. By the Principle of Hyperbolic Metric,

$$
\lambda_{R\left(M_{t}, A_{t}\right)}\left(\psi_{t}(0)\right)\left|\psi_{t}^{\prime}(0)\right| \leqq \lambda_{\mathbf{B}}(0)=1,
$$

or equivalently, $(1-t) \phi_{0}^{\prime}(0)+t \phi_{1}^{\prime}(0) \leqq \phi_{t}^{\prime}(0)$. This is the desired inequality.

When both M and A are finite, we can obtain an expression for $\Lambda(M, A)$ using the Jacobian elliptic functions sn , cn , and dn, relative to the parameter $\tau=i A / M$. We refer the reader to [9, Chapter VI, §3] for many of the results quoted below. Let $k=\sqrt{\lambda(t)}$, where here λ denotes the elliptic modular function. If

$$
K=\int_{0}^{1} \frac{d t}{\left[\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right]^{1 / 2}}
$$

and $K^{\prime}=K\left(\left(1-k^{2}\right)^{1 / 2}\right)$, then

$$
f(z)=\left(\frac{1-\operatorname{cn}(z)}{1+\operatorname{cn}(z)}\right)^{1 / 2}
$$

maps the rectangle $R\left(K, K^{\prime}\right)$ conformally onto \mathbf{B} with $f(0)=0$ [9, pg. 297]. Moreover, $i A / M=\tau=i K^{\prime} / K$, so $R(M, A)$ is similar to $R\left(K, K^{\prime}\right)$. By Proposition 3(ii), $\Lambda(M, A)=(K / M) \Lambda\left(K, K^{\prime}\right)=(K / M)\left|f^{\prime}(0)\right|$. Various identities for the Jacobian ellitptic functions show that $f^{\prime}(z)=\operatorname{dn}(z) /$ $(1+\operatorname{cn}(z))$. Furthermore, $\operatorname{dn}(0)=\operatorname{cn}(0)=1$, so $f^{\prime}(0)=1 / 2$ and $\Lambda(M, A)$ $=K / 2 M$. Although K is determined implicitly by M and A, it is possible to express $\Lambda(M, A)$ more explicitly in terms of M and A. If $q=e^{i \pi \tau}=e^{-2 \pi A / M}$ then [4, pgs. 385, 410]

$$
K=\frac{\pi}{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1+q^{2 n-1}\right)^{4}=\frac{\pi}{2}\left(1+\sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}
$$

and so

$$
\Lambda(M, A)=\frac{\pi}{4 M}\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}
$$

Although it is not obvious that the preceding formula for $\Lambda(M, A)$ is symmetric in M and A, it can be established by means of identities for elliptic functions.

Proposition 4. Suppose $M, A \in(0, \infty)$.
(i) $\lim _{M \rightarrow \infty} \Lambda(M, A)=\pi / 4 A=\Lambda(\infty, A)$.
(ii) $\lim _{A \rightarrow \infty} \Lambda(M, A)=\pi / 4 M=\Lambda(M, \infty)$.
(iii) $\lim _{M \rightarrow 0} \Lambda(M, A)=\infty=\lim _{A \rightarrow 0} \Lambda(M, A)$.

Proof. As $A \rightarrow \infty, q \rightarrow 0$, so $\Lambda(M, A) \rightarrow \pi / 4 M$. That $\Lambda(M, \infty)=\pi / 4 M$ follows from Example (iii). Moreover, $M \rightarrow 0$ implies $q \rightarrow 0$ and, consequently, $\Lambda(M, A) \rightarrow \infty$. The other three conclusions follow from the symmetry of $\Lambda(M, A)$ (Proposition 3(i)).

We have shown that for fixed $A \in(0, \infty), \Lambda(M, A)$ is a strictly decreasing function of M on $(0, \infty)$ with limits ∞ and $\pi / 4 A$ at the left and right end points, respectively. If $A \leqq \pi / 4$, then $\Lambda(M, A)>1$ for all $M \in$ $(0, \infty)$. For $A>\pi / 4$ there is a unique value of M, say $\gamma(A)$, such that $\Lambda(\gamma(A), A)=1$. If $0<A \leqq \pi / 4$, we set $\gamma(A)=\infty$.

Proposition 5. The function Υ has the following properties.
(i) $\Upsilon(A) \leqq \tau(A), 0<A \leqq \infty$,
(ii) Υ is a strictly decreasing, convex function on $(\pi / 4, \infty)$,
(iii) The graph of $M=\Upsilon(A)$ is symmetric about $M=A$,
(iv) $\Upsilon(A) \rightarrow \infty$ as A decreases to $\pi / 4$.

Proof. (i) follows directly from the Corollary to Theorem 1. For (ii), consider $\pi / 4<A_{0}<A_{1}<\infty$ and let $\left(M_{t}, A_{t}\right)=t\left(\gamma\left(A_{1}\right), A_{1}\right)+(1-t)$ $\left(\Upsilon\left(A_{0}\right), A_{0}\right), 0 \leqq t \leqq 1$. By Proposition 3 (iii), $1=\Lambda\left(\Upsilon\left(A_{0}\right), A_{0}\right)>$ $\Lambda\left(\Upsilon\left(A_{0}\right), A_{1}\right)$, so $\Upsilon\left(A_{1}\right)<\Upsilon\left(A_{0}\right)$. Furthermore, by Proposition 3 (iv),

$$
\frac{1}{\Lambda\left(M_{t}, A_{t}\right)} \geqq \frac{t}{\Lambda\left(\Upsilon\left(A_{1}\right), A_{1}\right)}+\frac{1-t}{\Lambda\left(\Upsilon\left(A_{0}\right), A_{0}\right)}=1
$$

Thus, $\Lambda\left(M_{t}, A_{t}\right) \leqq 1=\Lambda\left(\Upsilon\left(A_{t}\right), A_{t}\right)$, which gives $\gamma\left(A_{t}\right) \leqq M_{t}=t \Upsilon\left(A_{1}\right)$ $+(1-t) \gamma\left(A_{0}\right), 0 \leqq t \leqq 1$. Part (ii) follows from Proposition 3(i). As to (iv), if $\gamma(A)$ had a finite limit, L, as A decreases to $\pi / 4$, then $1=$ $\Lambda(\Upsilon(A), A) \rightarrow \Lambda(L, \pi / 4)$, contrary to the remarks preceding this proposition.

The following two examples provide an upper estimate for $\tau(A)$.
Example 1. Suppose $\pi / 2<A<\pi, 0<r<1$, and consider the function f such that

$$
f^{\prime}(z)=(1+r z)^{A / a r c s i n} r, f^{\prime}(0)=1
$$

Then

$$
\frac{A \log (1-r)}{\operatorname{arscin} r}<\operatorname{Re}\left\{\log f^{\prime}(z)\right\}<\frac{A \log (1+r)}{\arcsin r}
$$

$\left|\arg f^{\prime}(z)\right|<A$, and $f \in \mathscr{F}(-A \log (1-r) / \arcsin r, A)$. Now the univalence of f is determined by that of $\exp \{(1+A / \arcsin r) \log (1+r z)\}$.

The image of \mathbf{B} under $w=\log (1+r z)$ is a convex region D, which lies in the strip $\{w:|\operatorname{Im} w|<\arcsin r\}$. The points $\log \left(1-r^{2}\right)^{1 / 2} \pm i \arcsin r$ lie on the boundary of D. Thus, by the periodicity of $\exp (z), f$ will fail to be univalent if and only if $A+\arcsin r>\pi$. For $r>\sin A$, we have $\arcsin r>\pi-A$, so f is not univalent, and $\tau(A) \leqq A \log (1-r) / \arcsin r$. Letting r decrease to $\sin A$, we obtain

$$
\tau(A) \leqq \frac{-A \log (1-\sin A)}{\pi-A}, \quad \pi / 2<A<\pi
$$

The quantity on the right side has limit π as $A \rightarrow \pi$.
Example 2. Suppose $\pi<A, 0<r<1$, and consider the function f determined by

$$
f^{\prime}(z)=(1+r z)^{-i A / \log (1-r)}, f^{\prime}(0)=1
$$

Estimates on the real and imaginary parts of $\log f^{\prime}$ show that $f \in$ $\mathscr{F}(-A \arcsin r / \log (1-r), A)$. For the univalence of f we consider $\exp \{(1-i A / \log (1-r)) \log (1+r z)\}$. The region D in Example 1 is symmetric about both the real axis and the line $\operatorname{Re} w=\log \left(1-r^{2}\right)^{1 / 2}$. It can be shown that D contains the disk of radius $\arcsin r$ centered at $\log \left(1-r^{2}\right)^{1 / 2}$, but we omit the details. Then, the image of \mathbf{B} under $(1-i A / \log (1-r)) \log (1+r z)$ is a convex region containing a disk of radius $\rho(r)=|1-i A / \log (1-r)| \arcsin r$, and by periodicity of $\exp (z), f$ fails to be univalent when $\rho(r)>\pi$. Now, $\rho(0)=A>\pi$ and $\rho(1)=\pi / 2$, so there is a smallest positive root, $r_{0}(A)$, of $\rho(r)=\pi$. This gives the implicit estimate

$$
\tau(A) \leqq \frac{-A \arcsin \left(r_{0}(A)\right)}{\log \left(1-r_{0}(A)\right)}
$$

This estimate cannot be sharp, since we lost some ground by considering the largest disk contained in D.
2. Comments. It is not known if the constant 1 in Becker's Theorem is sharp. It would be of considerable interest to determine the supremum, say c, of constants k such that $\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right| \leqq k$ implies f is one-to-one. Of course $c \geqq 1$. An example of Becker [2] shows that $c \leqq 4 / e$. From Proposition 5 we obtain $\tau(A) \geqq r(A)=\infty, 0<A \leqq \pi / 4$, whereas the Wolff-Warschawski-Noshiro Theorem gives $\tau(A)=\infty$ for $0<A \leqq$ $\pi / 2$. To obtain the latter conclusion from our method would require c to be 2 . On the other hand, if one could demonstrate that $\gamma=e^{\pi / 2}$, then it would follow that $c=1$.

After the completion of this research, S. Yamashita brought to our attention the work of Avhadiev and Aksent'ev [Sufficient conditions for univalence of analytic functions, Soviet Math. Dok1, 12 (1971), 859-863]. Their paper overlaps with the application, in $\S 4$, of our main results.

We would like to thank J. Becker for several useful communications. In particular, he has shown that $\tau(A) \leqq 2 \gamma(A / 2)$. His proof, which he has permitted us to give here, goes as follows. Let $\phi_{M, A}$ denote a univalent mapping of \mathbf{B} onto $R(M, A)$ sending zero to zero. For $A>\pi / 4, \gamma(A)$ is the unique value of M for which $\Lambda(M, A)=1$, or equivalently for which $\left|\phi_{M, A}(0)\right|=1$. Now, suppose $M>2 \gamma(A / 2)$ and let $a=\phi_{M, A}(0)$. Then, for $A>\pi / 2$,

$$
|a|>\left|\phi_{2 r(A / 2), A}^{\prime}(0)\right|=2\left|\phi_{r(A / 2), A / 2}^{\prime}(0)\right|=2 .
$$

If

$$
f(z)=\int_{0}^{z} \exp \left\{\phi_{M, A}\left(\zeta^{n}\right)\right\} d \zeta=z+\frac{a}{n+1} z^{n+1}+\ldots
$$

then $f \in \mathscr{F}(M, A)$, but since $|a|>2, f$ is not univalent when n is sufficiently large [5, page 494]. Thus $\tau(A)<M$ for each $M>2 r(A / 2)$. We note that $2 r(A / 2) \rightarrow \pi / 2$ as $A \rightarrow+\infty$.

Finally, Prokhorov, Szynal and Waniurski [New upper estimate of the John constant, Abstracts Amer. Math. Soc 1 (1980), 380] have announced the estimate $\gamma \leqq 19.93$.

References

1. L. V. Alfors, Conformal invariants, Topics in geometric function theory, McGrawHill, New York, 1973.
2. J. Becker, Über Subordinationskette und quasikonform fortsetzbare schlichte Funktionen, Thesis, Technische Universität Berlin, 1970.
3. ——, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math 225 (1972), 23-43.
4. E. T. Copson, An introduction to the theory of functions of a complex variable, $\mathrm{Ox}-$ ford Univ. Press, London, 1935.
5. G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, vol. 26, Amer. Math. Soc., Providence, 1969.
6. A. W. Goodman, A note on the Noshiro-Warschawski theorem, J. Analyse Math. 25 (1972), 401-408.
7. F. John, On quasi-isometric mappings II, Comm. Pure Appl. Math. 22 (1969), 265278.
8. ——, A criterion for univalency brought up to date, Comm. Pure Appl. Math. 29 (1976), 293-295.
9. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
10. R. Nevanlinna, Analytic functions, Die Grundlehren der math. Wissenschaften, Band 162, Springer-Verlag, New York, 1970.
11. K. Noshiro, On the theory of schlicht functions, J Fac. Sci. Hokkaido Univ. Jap. (1), 2 (1934-1935), 129-155.
12. S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340.
13. J. Wolff, L'intégrale d'une fonction holomorphe et à partie réelle positive dans un demi plan est univalente, C. R. Acad. des Sci. (Paris) 198 (1934), 1209-1210.
14. S. Yamashita, On the John constant, Math. Z. 161 (1978), 185-188.

[^0]: Received by the Editors on September 9, 1980, and in revised form on November 27, 1980.

