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UNIVALENCE CRITERIA AND THE HYPERBOLIC METRIC 

C. D. MINDA AND D. J. WRIGHT 

1. Introduction. We shall consider restrictions on the derivative of a 
function/e //(B) (i.e., holomorphic in the unit disk B) which imply that/ 
is univalent. Perhaps the best known result of this type, due to Wolff [13], 
Warschawski [12] and Noshiro [11], involves only the argument of / ' . 
It states that/is one-to-one if f\z) ^ 0 and arg/'(z) lies in an interval of 
length 7C9 z e B. If the length of the interval is larger than TC, then/need not 
be univalent, and, in fact, the valence of/need not be bounded [6]. 

On the other hand, there is a criterion for univalence due to John [7] 
which involves only the modulus of / ' . For non-constant fe //(B) let 
Mf = supzeB|/'(z)|, mf = infzeB|/'(z)| and /// = Mf/mf. The John constant 
y is defined by y = sup {t: [if ^ t implies/is univalent}. If /if ^ y, then 
/ i s univalent. 

The condition /^ < 00 is equivalent to/'(B) lying in an annulus centered 
at zero. We may introduce symmetry relative to the unit circle by consider
ing g = / / y/nifMf. Then Mg = ^/Mfjmf = \\mg, fig = fif, and, of course, 
/ i s univalent if and only if g is. It follows that 

-j- log y = sup {M: e~M g | / ' | ^ eM =>/is univalent}. 

The best known estimates for 7* are e*72 ^ y ^ e*; the lower and upper 
bounds being given by John [8] and Yamashita [14], respectively. 

In the next section we consider the problem of determining which plane 
regions Q have the property that log/'(B) c Q implies/is univalent. The 
above two criteria correspond to the cases in which Q is a horizontal or 
vertical strip, respectively. We obtain conditions on Û, involving the 
hyperbolic metric on Û, which insure that / is one-one. Our results rely 
on the following theorem due to Becker [3]. 

BECKER'S UNIVALENCE CRITERION. Iffe //(B), /'(0) ^ 0, and 

(1 - |Z|2) 
zf'Xz) 
/'(*) 

g 1, zeB, 
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then fis univalent. 

In §4 we consider the case in which Û is a rectangle with horizontal 
and vertical sides. This gives a chain of univalence criteria with the Wolff-
Warshawski-Noshiro result and the John criterion as limiting cases. 

In §3 we establish some properties of the hyperbolic metric which may 
be of independent interest. 

2. The hyperbolic metric. Let Q <=. C be a hyperbolic region, i.e., C\û 
contains at least two points. Let <f> be an analytic universal covering pro
jection of B onto 0. The hyperbolic metric, AQ(z)\dz\, is defined as follows: 
if z e Q and w e ^rl{z), then 

Uz) = 0WIO - M2) * 
The value of XQ(z) is independent of both the choice of w e (jrl(z) and 

of the selection of the covering ^. The collection of analytic coverings of 
B onto Q consists of the functions $ o T, where T is a conformai self-
mapping of B. Thus, for fixed z e 0, there is a unique analytic covering 
$ for which 0(0) = z and 0'(O) > 0. In this case, lQ(z) = 1/0'(O)- If Q is 
simply-connected, then ^ is just a conformai mapping of B onto Q. The 
function 1Q is real-analytic on Q. 

EXAMPLES, (i) AB(z) = 1/(1 - |z|2). 
(ii) If H = {z: Re z > 0}, then lH(z) = 1/(2 Re z). 

(iii) If S(b) = {z: \Rez\ < b}, then As(w(z) = ^/4è cos (# Re z/26). 

For a general discussion of the hyperbolic metric we refer the reader to 
[1], [5], and [10]. We shall need the following basic properties, which are 
stated without proof. 

Assume Q and A are hyperbolic plane regions. 

CONFORMAL INVARIANCE. Iff is a conformai mapping of û onto J, then 

PRINCIPLE OF HYPERBOLIC METRIC. Iff e H(Q) andf(Q) c J, then 

uf(mf(z)\ ^ û*)-
Equality occurs at some point if and only iff is an anlaytic covering of Q 
onto A. 

MONOTONICITY. If Q c J , then for z e û, Xâ(z) <; A0(z). If equality 
holds at a single point, then û = A. 

We may now prove the following distortion theorem, which, together 
with Becker's result* gives a criterion for univalence. 
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THEOREM 1. Let Qbe a hyperbolic plane region and let A(Q) = inf {\Q(z) : 
z e Q). Iff e H(B),f\z) * 0, z e B, andlogf'QS) c Q, then 

(1 - |Z|2) f\z) 1 , z e B. 
>1(0) 

IfA{Q) > 0, fAe« equality occurs at a single point if and only if log f is a 
universal analytic covering ofB onto Q. 

PROOF. Applying the Principle of Hyperbolic Metric to log / ' , we have 

Xo(logf'(z)) 

and the result follows. 

/"(*) 
/ '(*) 

^U*)= ! _ ' | z | r ^ B , 

COROLLARY. Under the hypotheses of Theorem \, fis univalent if A(Q) 

^ 1. 

REMARK. From Example (iii) we see that A(S(b)) = %\Ab. Thus, if 
b ^ TC/4 and log/ '(B) <= S(b), then/ is univalent. This gives y ^ e%/2. 

3. Evaluating A(Q). Throughout this section Q denotes a hyperbolic 
plane region. 

PROPOSITION 1. If a is a finite boundary point ofQ, then lim2_>a lQ(z) = 
00. 

PROOF. Let b e C\û, b ^ a, and let Xa,b = ^c\{«,«- s i n c e û c c \( a> *} 
and w = (z — a)/(A — a) is a conformai mapping of C\{a, b} onto C\{0, 1}, 
we see from Conformai Invariance and Monotonicity that 

XQ(z) ^ XaM) = I* - a\~l hi(^i} 

It is known [1, p. 18], that 

log A<u(z) = - log \z\ - log l o g ( ^ ) + 0(1) 

as z -> 0. Thus, 

lim ÄQ(Z) ^ \b - al'1 lim A0)i(z) = oo. 

It is necessary that a be finite, as seen by Example (ii). Here, we have 
lim supz_>oo A#(z) = oo and lim inf^«, XH(z) = 0. If Q is bounded, then 
lim^ß XQ(Z) = oo for all a e dû, so XQ necessarily has a minimum in 0. 

PROPOSITION 2. If Q is symmetric about the straight line L, then XQ is 
symmetric about L. 
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PROOF. There exist complex numbers a, b, \a\ = 1, such that/(z) = 
az + b maps L onto the real axis R. If z and z* are symmetric about L, 
then /(z*) = f(z). By Conformai Invariance, XQ(z) = Xf(Q){f{z))\f'(z)\ = 
Àf(Q)(f(z)). Thus, it suffices to consider the case L = R. Let z e fl and let 
0 be the analytic covering of B onto Q with 0(0) = z, 0'(°) > 0- Since 
Û is symmetric about R, 0(Q = 0(£) is also an analytic covering of B 
onto Q, and 0(0) = z, 0'(O) = 0'(O). Thus ^(z) = 1/0'(O) « 1/0'(O) = 

THEOREM 2. If Q is convex, L is a straight line, and û Ç] L ^ 0 , then 
XJXQ is concave onO f] L. 

PROOF. Consider distinct points z0, zx e Q f| L and let zt = (1 — t)z0 -f 
telf f G [0,1], Let <j)t be the conformai mapping of B onto Q with 0,(0) = z„ 
$(0) > 0, and let/, * (1 - O0o + tyi- Then ft e H(B), ft(0) = zt and, 
since 0 is convex, ft(B) a Q. By the Principle of Hyperbolic Metric, 

W,(0))l /;(0) | ^ xB(0) = i, 

or equivalently, 

COROLLARY. Suppose Q is convex. 
(i) If Q is symmetric about a line L and L' is a line perpendicular to L, 

then the restriction ofXQ to Q [) L' attains a minimum value at L f| L'. 
(ii) IfQ is symmetric about two intersecting lines L andV, then XQ attains 

a minimum at L f| L'* 

PROOF, (i) By Proposition 2 and Theorem 2, the restriction of 1/ÀQ to 
Q fi V is both concave and symmetric about L f| II, thus attaining a 
maximum at L f| L'. Part (ii) follows from (i). 

The proof of the following lemma is elementary and therefore omitted. 

LEMMA. Suppose fand g are real-analytic functions on an open set U c C, 
and let /be an open line segment contained in U. Iff and g agree on a subset 
of/ which has a limit point in /, then fand g agree on /. 

THEOREM 3. Assume Q is convex, L is a line, and Q f| L # 0. If the 
restriction of XQ to Q f| L attains a minimum at two distinct points, then 
Q is either a strip or a half plane. 

PROOF. Suppose the restriction of XQ to Q f| L attains a minimum at 
distinct points zx and z2. Since l/X0 is concave on Q f| L, XQ is constant on 
the segment [z\, z2]. By the lemma, XQ is necessarily constant on Q fi L, 
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say with value c. If L meets dû at a point a e C, then XQ(z) ->e as z -> a 
along L9 contrary to Proposition 1. Thus Q contains L. Being co vex, Q 
must be either a strip or a half-plane. 

We have observed that XQ does not have a minimum when Q is a half-
plane. In the case of the strip S(b)9 the minimum exists and occurs at each 
point of the center line of the strip. 

COROLLARY. If Q is convex and XQ has a minimum, then either Q is a 
strip or the minimum occurs at a unique point ofQ. 

4. The case of a rectangle. For M9 A e (0, oo], let R(M9 A) = {z: |Re z\ < 
M, |Im z\ < A} and let &(M9 A) = {fe H(B): \ogf\B) c R(M9 A)}. We 
wish to determine z(A) = sup {M: fe^(M9 A) implies/is univalent}. 
Since J*(M, A) increases with A, z is a decreasing function on (0, oo]. By 
the Wolff-Warschawski-Noshiro result, z(A) = oo for 0 < A g TC/2. The 
John criterion gives r(oo) = (1/2) log y. 

Suppose/e «^(M, A) and / > 0. Let 

/(z)=/(0) + £[/ r(o?^ 

where the branch of the power function is determined by the choice of 
log / ' satisfiyng log / '(B) c R(M9 A). Then ft e ^(tM, tA) and ft-+f 
locally uniformly as t -* 1. If fe ^(T(A)9 A) and 0 < t < 1, then fte 
^(tz(A), tA) c ^{tz{A)9 A\ implying ft is univalent. Thus, / is one-to-
one, and <F(z(A)9 A) consists entirely of univalent functions. 

We shall now apply our work in the preceding sections to obtain a 
lower bound for z{A). If both M and A are finite, then R(M, A) is convex, 
bounded and symmetric about both axes. Thus, XR(M, A) n a s a minimum 
value, say A(M, A), which is attained only at the origin. If exactly one of 
M and A is finite, then the minimum value, A(M9 A), is attained at each 
point of the center line of the strip and, in particular, at z = 0. A(M9 A) 
has the following properties. 

PROPOSITION 3. Assume at least one of M and A is finite. 
(i) A(M, A) = A(A, M). 

(ii) A(tM9 tA) = rM(M, A), 0 < t < oo. 
(iii) A(M, A) is strictly decreasing in each variable. 
(iv) 1/A(M, A) is concave. 

PROOF. Parts (i) and (ii) follow from Conformai Invariance and the 
observation that w = iz and w = tz map R(M9 A) onto R(A9 M) and 
R(tM, tA)9 respectively. If Mx < M2, then R(Ml9 A) is a proper subregion 
of (M2, A). By Monotonicity, A(Ml9 A) = XR(MhAy(0) > ÀR(M2,A)(0) = 

file:///ogf/B
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A(M2, A). Similiarly, A(M, A) is strictly decreasing as a function of A. 
As for (iv), consider distinct finite points (M0, A0) and (Ml9 A{). For 
t e [0, 1], let (Af„ At) = (1 - t) (M0, A0) + t(Ml9 A{), and let <j)t be the 
conformai mapping of B onto R(Mt9 At) with (f>t(Q) = 0, $(0) > 0. Then 

A(Mt, At) XRiMt,At)(°) 

Now, <l>t = (1 - 0 0o + tyi e #(B), 0,(0) = 0 and 0,(B) c i*(M„ ,4,). 
By the Principle of Hyperbolic Metric, 

(W0)) |0XO)| ^AB(0) = 1, 

or equivalente, (1 - 0 00(0) + t<f>[(0) ^ <f>'t(0). This is the desired 
inequality. 

When both M and A are finite, we can obtain an expression for A(M, A) 
using the Jacobian elliptic functions sn, en, and dn, relative to the parame
ter z = iA/M. We refer the reader to [9, Chapter VI, §3] for many of the 
results quoted below. Let k = ^/X(t), where here A denotes the elliptic 
modular function. If 

K_ f1 dt 
J0[(1 - *2)0 -£2f2)]l/2 

and K' = K((l - k^/2)9 then 

f(z) = / l - c n ( z ) y 2 
/ l Z ) Vl +cn(z ) J 

maps the rectangle i?(#, # ' ) conformally onto B with/(0) = 0 [9, pg. 297]. 
Moreover, iA/M = z = itf'/JT, so R(M, A) is similar to R(K, K'). By 
Proposition 3(ii), A(M, A) = (K/M)A(K, K') = (#/M)| / ' (0) | . Various 
identities for the Jacobian ellitptic functions show that f\z) = dn(z)/ 
(1 + cn(z)). Furthermore, dn(0) = cn(0) = 1, so/ '(0) = 1/2 and A(M, A) 
= K/2M. Although Ä îs determined implicitly by M and A, it is possible to 
express A(M, A) more explicitly in terms of M and A.Iïq = e*™ = e~2lcA/M 

then [4, pgs. 385, 410] 

K = \ Ff (1 - <72»)20 + q2»-1)* = 4 -0 + S <7"2)2, 

and so 
_ OO 

Although it is not obvious that the preceding formula for A(M, A) is 
symmetric in M and A, it can be established by means of identities for 
elliptic functions. 
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PROPOSITION 4. Suppose M9Ae (0, oo). 
(i) lim^oo ,4(M, A) = iz\4A = A(co9 A). 

(ii) lim^oo A(M, A) = %\4M = A{M9 oo). 
(iii) limM_*o A(M, A) = oo = l i m ^ 0 A(M, A). 

PROOF. AS A -» oo, q -» 0, so ^[(M, 4) -* #/4M. That y4(M, oo) = 7zr/4M 
follows from Example (iii). Moreover, M -> 0 implies # -> 0 and, con
sequently, A(M9 A) -• oo. The other three conclusions follow from the 
symmetry of A(M, A) (Proposition 3(i)). 

We have shown that for fixed A e (0, oo), A(M, A) is a strictly decreasing 
function of M on (0, oo) with limits oo and 7Ü/4A at the left and right 
end points, respectively. If A ^ AT/4, then A(M9 A) > 1 for all Me 
(0, oo). For A > %\4 there is a unique value of M, say 7*04), such that 
A(Y(A\ A) = 1. If 0 < A g 7zr/4, we set 7(^) = oo. 

PROPOSITION 5. The function T has the following properties. 
(i) Ï(A) g r(^), 0 < A g oo, 

(ii) 7* w a strictly decreasing, convex function on (iu/4, oo), 
(iii) 77*e grapft of M = Y(A) is symmetric about M = A, 
(iv) T(A) -+ oo as A decreases to %\4. 

PROOF, (i) follows directly from the Corollary to Theorem 1. For (ii), 
consider %\4 < A0 < A1 < oo and let (Mt9 At) = t(J{A{)9 Ax) + (1 - t) 
(Ï(A0), A0), 0 ^ t ^ 1. By Proposition 3 (iii), 1 = A(T(A0)9 A0) > 
A(Y(AQ), AI), so T(Ai) < Y(A0). Furthermore, by Proposition 3 (iv), 

1 - ' ' + * - ' = 1 -A(Mt9 At) = AÇTiAÙ At) A(X(A0)9 A0) 

Thus, A{Mt9 At)£l= A(T(At)9 At)9 which gives T(At) ^ Mt = t r(Aà 
+ (1 - 0 T(A0)9 O ^ ^ l . Part (ii) follows from Proposition 3(i). 
As to (iv), if T(A) had a finite limit, L, as A decreases to %\49 then 1 = 
A(Y(A)9 A) -» A(L9 TLJ4)9 contrary to the remarks preceding this proposition. 

The following two examples provide an upper estimate for z(A). 

EXAMPLE 1. Suppose %\2 < A < %9 0 < r < 1, and consider the func
tion/such that 

f\z) = (1 + rz)A/™s™r
9fXG) = 1. 

Then 

^ l o g O - ' ) < Re {log/'(*)} < ^ o g O + ' O 
arscm r ^ } arcsin r 

|arg/"(z)l < A, and fe^(— A log (1 — r)/ arcsin r, ^4). Now the uni-
valence of/ is determined by that of exp {(1 + ^4/arcsin r) log (1 + rz)}. 
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The image of B under w = log (1 + rz) is a convex region D, which lies in 
the strip {w: |Im w\ < arcsin r}. The points log (1 — r2)1/2 ± i arcsin r 
lie on the boundary of D. Thus, by the periodicity of exp(z),/will fail to 
be univalent if and only if A + arcsin r > %. For r > sin A, we have 
arcsin r > % — A, so / i s not univalent, and z(A) S A log (1 — r)/arcsin r. 
Letting r decrease to sin A, we obtain 

t(A) g - ^ l Q 8 ( l - s i n ^ > „/2<A< %. 
% — A 

The quantity on the right side has limit % as A -> %. 

EXAMPLE 2. Suppose % < A, 0 < r < 1, and consider the function/ 
determined by 

f\z) = (1 + rz)-iA/^l-r\f\0) = 1. 

Estimates on the real and imaginary parts of log / ' show that fe 
^( — A arcsin r/log (1 — r), A). For the univalence of / we consider 
exp {(1 - iA/log(l - r)) log (1 + rz)}. The region D in Example 1 is 
symmetric about both the real axis and the line Re w = log (1 — r2)1/2. 
It can be shown that D contains the disk of radius arcsin r centered at 
log (1 — r2)1/2, but we omit the details. Then, the image of B under 
(1 — iA/log (1 — r)) log (1 + rz) is a convex region containing a disk 
of radius p(r) = |1 — iA/log (1 — r)| arcsin r, and by periodicity of 
exp(z), / fails to be univalent when p(r) > %. Now, p(0) = A > % and 
p(l) = ^/2, so there is a smallest positive root, r0(A)9 of p(r) = %. This 
gives the implicit estimate 

T(A\ < - A arcsin (rQ(A)) 
ZKA) = log (1 - r0(A)) ' 

This estimate cannot be sharp, since we lost some ground by considering 
the largest disk contained in D. 

2. Comments. It is not known if the constant 1 in Becker's Theorem is 
sharp. It would be of considerable interest to determine the supremum, 
say c, of constants k such that (1 - \z\2) \f\z)/f\z)\ ^ k implies / is 
one-to-one. Of course c ^ 1. An example of Becker [2] shows that c ^ 4/e. 
From Proposition 5 we obtain T(A) ^ T(A) = oo, 0 < A g %\A, whereas 
the Wolff-Warschawski-Noshiro Theorem gives z(A) = oo for 0 < A ^ 
TU/2. To obtain the latter conclusion from our method would require c to 
be 2. On the other hand, if one could demonstrate that y = e%/2, then it 
would follow that c = 1. 

After the completion of this research, S. Yamashita brought to our 
attention the work of Avhadiev and Aksent'ev [Sufficient conditions for 
univalence of analytic functions, Soviet Math. Dokl, 12 (1971), 859-863]. 
Their paper overlaps with the application, in §4, of our main results. 
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We would like to thank J. Becker for several useful communications. 
In particular, he has shown that z(A) ^ 2Y(A/2). His proof, which he has 
permitted us to give here, goes as follows. Let <j>Mi A denote a univalent 
mapping of B onto R(M, A) sending zero to zero. For A > TT/4, T(A) is 
the unique value of M for which A(M, A) = 1, or equivalently for which 
I0M,A(O)I = 1- Now, suppose M > 27{Aß) and let a « <f>MtA (0). Then, 
for A > %\2, 

M > WinA/2\A (°)l = 2\<f>nA/2),A/2(V)\ = 2-

If 

/(z) = £exp{cW,A(Cw)K = * + ~~T zn+1 + • • • ' 

t hen /e J*(M, A), but since |a| > 2,/ is not univalent when n is sufficiently 
large [5, page 494]. Thus z(A) < M for each M > 2Y(Aj2). We note that 
2T(A/2) -> 7c/2tisA -> +oo. 

Finally, Prokhorov, Szynal and Waniurski [Afew w/?/?er estimate of the 
John constant, Abstracts Amer. Math. Soc 1 (1980), 380] have announced 
the estimate ï ^ 19.93. 
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