ERRATA TO VOLUMES 11 AND 12

Volume 11, page 132, line 35.

If \mathscr{P} is a class of polyhedra, then a compact Hausdorff space X is said to be \mathscr{P} -like if for each open cover V of X there is $P \in \mathscr{P}$ and a maping f of X onto P such that $f^{-1}(p)$ is contained in a member of V for each $p \in P$.

The above definition is not equivalent to the one given in our paper. See S. Mardesic and J. Segal, ϵ -mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164, Example 5. We are indebted to Professor J. Segal for the above comments.

Volume 12, page 230, line 28.

Hence if Γ is not convex, there are at least two distinct inflection points at which $dV/d\zeta$ is parallel to V. But $dV/d\zeta = dV/dW \cdot dW/d\zeta = (A(W) - s)V$, and so V must be a right eigenvector of A, parallel to r_2 in this case. Let W_1 and W_2 be consecutive inflection points of Γ . Now it is impossible for Γ to be tangent to both $R_2(W_1)$ and $R_2(W_2)$ because of the nested property of the R_2 curves [7]. Thus there cannot be two such points, and so Γ is convex.