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1. Introduction. One of the most useful techniques in proving the 
existence of multiple solutions of nonlinear boundary value problems 
(BVP for short) is the monotone iterative method, which yields monotone 
sequences that converge to extremal solutions of the problem. Recently, 
because of applications, this technique has attracted much attention, see 
[1, 2, 4-7,11,12,14,15]. To explain this method, let us consider the scalar 
BVP 

u" =f(t,u,u'),0<t< 1, 

Wu = OiU{i) + ( - l)<+1/3,w'(0 = bi9 i = 0, 1, 

where ai9 ft ^ 0, a? + $ * 0 a n d / e C[I x R x R, R], / being the in
terval [0,1]. Suppose that v0, w0 e C2[7, R] with v0(0 ^ w0(0 on / and 

Vo^MvQ,v'0XB%^bh 

H>o g f(t9 W0, U>0), B(WQ ^ bi. 

Then v0, vv0 are called lower and upper solutions of (1.1). Suppose also 
that fu, fu, exist and / satisfies a Nagumo condition. In order to obtain 
monotone iterations, one considers the auxiliary BVP 

(1.3) u" = F(t, w, u% B*u = b{ 

where F{t, u, u') = /(f, 7](t), u') + Mx(c)(u - 7){t)\ v0(0 ^ rj(t) ^ w0(t), 
\fu(t, w, «01 ^ M(c) for t e /, v0(t) g u ^ w0(0 and |w'| g c for some 
suitable c > 0 which is related to the Nagumo constant. To proceed fur
ther with the monotone method it becomes necessary to show that there 
exists a unique solution for the BVP (1.3). For this purpose, one proves 
that (i) v0, w0 are also lower and upper solutions of (1.3) and (ii) F satisfies 
a Nagumo condition. Then it follows from known results [3, 8, 9, 10, 12, 
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13] that the auxiliary BVP (1.3) possesses a solution. The uniqueness of 
solutions follows by the maximum principle in view of the fact that F is 
linear in u and Mi(c) > 0. We recall that these known results crucially 
depend on the modification off, namely/, where 

/(*, u, u') = f(t, p(t, II), q(u')) + r(U u)9 

p(t, u) = max[v0(0, min(w, w0(t))], 

q{u') = max[ — c, min(w', c)], 

f (w- w0(t))l(\ +u*)ifu>w0(t\ 

r(t, w) = 0 ifv0(t) g u ^ w0(t), 

1(1/ - V0(0)/d + W2) ifu< V0(0, 

c > 0 being a number such that c > |vó(/)|, |H>Ó(0I °n I- These results 
have been extended to finite and countably infinite systems of BVP's 
where the inequalities between vectors are understood as componentwise, 
see [3,7,10,13]. 

If one desires to extend this attractive monotone method to BVP's in 
an arbitrary Banach space E, one needs to induce a partial ordering by 
means of a cone K in E. Then it is easy to define lower and upper solu
tions and a Nagumo condition, as before. Corresponding to this setting, 
we need an existence and uniqueness result for the BVP (1.3) where F 
is now a nonlinear function in a Banach Space. The modified function 
approach followed earlier makes sense only when E = Rn and K = R!f_, 
the standard cone. Consequently, the problem of proving existence of 
solutions of the BVP (1.3) becomes difficult. One is faced with the prob
lem of proving such an existence result directly by other means (say 
by Lyapunov-like methods [3, 8]) which need extra assumptions. Unfor
tunately, the results obtained in [4] for the general case, are correct only 
in special Banach spaces since the modified function approach which is 
not valid in general, is followed there. 

However, i f /does not depend on w', the situation becomes quite sim
ple, that is, we will have 

(1.5) vT = F(r, u) =/(*, V(t)) + Mx(u - rj{t% B<u = bt, 

In view of the fact, Fis linear in u and Mi > 0, there results 

((w - v), F(t, u) - F(t, v))_ ^ Mx\u - v|2 

where (x, y)_ is the generalized inner product and hence existence and 
uniqueness of solutions of (1.5) follows from abstract results. This is 
precisely the method adapted in [15] for extending the monotone method 
to a Banach space for the case where/does not depend on ü'. 

(1.4) 

and 
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In this paper, we wish to develop the monotone method for those / 
that are linear in u' by means of a linear procedure; that is, we consider 
the BVP 

(1.6) u" =f{t, 7), if) 4- M^c^u - rj) + M2(u' - 77'), B'u = bh 

for y] G [v0, w0] and \\rj'\\ ^ c on /, instead ot (1.3). Here Mx is as before. 
Unfortunately, Mx depends on c which is the bound on \u'\ which causes 
considerable problems since we must make sure that every solution of 
(1.6) for every 77, satisfies \u'\ g c for some c > 0. However, it turns out 
that these difficulties can be surmounted and the entire procedure of the 
linear monotone method works well to our advantage. As a rich dividend, 
one is pleased to have the iterates as unique solutions of linear BVP's 
(1.6) with constant coefficients instead of the solutions of nonlinear BVP 
(1.3) considered so far. Thus, our results are more constructive than be
fore as a result of computable iterates one gets in the process. We have 
also obtained an extension of the results in [6] where only the scalar equa
tion was considered. Our method would be applicable to other situations 
such as partial differential equations and we plan to attempt this elsewhere. 
Finally, we mention that attempts are being made to remove the linearity 
assumption o f /on u'. This leads to two different approaches: one con
tinues in the same spirit of this paper; the other follows the nonlinear 
procedure alluded to earlier in the introduction. 

2. Preliminaries. Let E be a real Banach space with || • || and let E* 
denote the dual of E. Let K e: E be a cone, that is, a closed convex 
subset such that XK c K, for every A ̂  0 and {K} f| {-K} = {0}. By 
means of K a partial order <£ is defined as v g u if u — v 6 K. We let 
K* = {<f>eE*: <f>(u) ^ 0 for all u e K}. A cone K is said to be normal if 
there exists a real number N > 0 such that 0 ^ v ^ u implies ||v|| g N 
\\u\\ where TV is independent of w, v. We shall always assume in this paper 
that K is a normal cone. 

Let a denote the Kuratowski measure of noncompactness, the prop
erties of which may be found in [8]. 

For any v0, w0 e C[I, E] such that vQ(t) ^ wQ(t) on / where / = [0, 1], 
we define the conical segment 

Oo, wol = {w e C[/, E]:vQ£u£ W0}. 

We consider the boundary value problem (BVP for short) 

(2 1) * " = / ( > , " , " ' ) , 
&u = atii(i) + . ( - l)'+1fti#'(i) = *,-, / = 0, 1, 

where/e C[I x E x E, E\ b{ e E, ah ß{ è 0 and a? + ßj > 0. 
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Let us list the following assumptions for convenience: 
(A{) v0, WQ e C2[I, E] with v0(t) ^ wQ(t) on /such that 

Vo ^ f(t, v0, vó), B% ^ bh 

WQ ^ / ( / , H>0, wo), B'WQ ^ Z>„ i = 0, 1. 

(A2) f(t, x, y) - /(*, x, 7) ^ ^i(c)(x - *) + M2(y - j>)> whenever 
v0(f) ^ x ^ x ^ w0(t), tel and || y\\, \\y\\ ^ c, c being any positive con
stant (recall (A2) is equivalent to/being linear in y). 

(A3) || f(t, x,y)\\ £j(\\y\\) whenever tel, v0(t) S x ^ w0(t) where j is 
is continuous on [0, oo). 

(At)j\ Mi and M2 are increasing and positive functions satisfying 

h(s) = j(s) + RMx(s) + 2M2^ = tf(s2) as s -» oo 

(this is equivalent to ./(s) = o(s2) since the other terms are linear in s) 
where R = max[max||v0(0 - w0(0ll> max||v0(r)||, max||w0(OII5 te[09 l]). 

(y45) a(f(I x A x B)) ^ L max(a(y4), a(B)), for any bounded sets A, 
B'mE. 

REMARKS, (i) The condition (A2) implies that / is quasimonotone non-
increasing relative to K. that is, if x :g y9 <j>(x — y) = 0 and <j>(x' — y') = 
0 for some <j> e K* then <f>(f(t, x, x') - f(U y, y')) ^ 0. 

(ii) The assumption (A5) implies that /maps bounded sets into bounded 
sets. 

Let us consider the linear BVP 

(2.2) u" = F(t, w, u'), B*u = *,-, i = 0, 1, 

where F(t, u, u') =f(t, 7](t\ rj\t)) + Mx(c)(u - V(t)) + M2(u' - T?'(0X 

and 7] e Cl[I, E] with TJ e [v0, w0] and ||ç'(OII ^ c. 
We want to show that F satisfies a Nagumo condition in order to guar

antee a bound on u' for any solution u of (2.2). To do this we need con
dition (AA). If Mi(c) is independent of c, then j(s) = o(s2) as s -> oo is 
sufficient. In the case of scalar BVP (1.1) we only need lims_>ocj(s

,)/'s2 is 
finite, or more specifically, a quadratic growth on j . In this case, if we 
further suppose that Mi(c) in (1.3) is independent of c, then clearly F 
satisfies a Nagumo condition. This is in essence what is assumed in [1] 
where the use of a truncation argument seems to indicate that one can 
avoid requiring M^c) to be independent of c. When this assumption is 
not imposed implicitly, it becomes necessary as in [2] to demand Mx(c) = 
o(c2) as c -> oo. 

Let us begin with the following lemma whose proof is adapted from [13]. 

LEMMA 2.1. Let (A%) and (AA) hold and let u(t) be any solution of (2.2) 
such that u e [v0, w0]. Then there exists a c* > 0 depending only on v0, w0 

and h such that ||w'(0ll ^ C* °n J-
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PROOF. Let c = ||w'('o)ll = maxII«'(Oil- If/z is a real number such that 
\ft\ ^ 1 / 2 and tQ + [x e /, then it follows from 

"Co + fu = "Co) + ftiiVd + £w"('<> + ^W1^ 

that |//|c g IR + (/i2/2)A(c), where Ä is the number defined in (AA). If ^ 
is such that \/j,\c = 3R and this choice is possible for c ^ 6R, then 7? g 
(l/2)|//2|A(c) = (9/2)R2(h(c)/c2) which leads to a contradiction for large c. 
Thus, it is enough to choose c = c* such that c* ^ 6Ä and A(c*)/(c*)2 g 
1/6JR. It then follows that ||i*'(OII ^ c* on /proving the lemma. 

Let us fix c = c* and assume that (A2) holds for this c*. We next show 
that the BVP (2.2) possesses a unique solution on /. 

LEMMA 2.2. Assume that (A2), (A3) and (A4) hold. Then there exists a 
unique solution u e C2[I, E] for the BVP (2.2) such that ifue [v0, w0] then 
\\u'(t)\\ ^ c* on I. 

PROOF. Let y e Cl[I, E] be such that TJ e [v0, w0] and || if (Oil ^ c* on 
/. Write (2.2) in the form 

u" - M2u' - Mi(c*)u = o(t\ B<u = bi9 

where a (0 =f(t, 7]{t\ ç'(0) - Afi(c*)?(0 - M27)\t). Let G(M) be the 
Green's function associated with the scalar BVP 

u" - M2u' - Mxu = a(t), B*u = 0 

and let cj) be the unique function satisfying cj)" — M2(p' — M^ = 0 and 
B*(J> = bi9 i = 0, 1. The existence of G{t, s) is a consequence of the fact 
Mi > 0 and the maximum principle. Then is easy to see that the unique 
solution of the BVP (2.2) is given by 

(2.3) u(t) = f1 G(t, s)a(s)ds + (fit). 

As a result, if u e [v0, w0], it follows by Lemma 2.1 that || w'(0ll ^ c* o n I-

We now prove that u e [v0, w0]. 

LEMMA 2.3. Assume that (A{), (A2)9 (A3) and (A±) hold. Then u e [v0, w0]. 

PROOF. For any <f> e K*, we set p(t) = <f>(u(t) - v0(0)- Then using (A{)9 

(A2) we have 

p* = ^u" - v5) g 4U(t9 V, if) + Mi(W - rj) + M2(W' - ?/) - /(*, v0, v̂ ] 

^ ^[Mi(77 - v0) + M2{rj' - vó) + Mx(w - rj) + M2(u
f - rj')] 

= Mi/? + Af2/>'. 

Also 2?1/? ^ 0, i = 0,1. Hence, by the maximum principle, we getp(t) ^ 
0 on /. Since <j> e K* is arbitrary, it follows that v0(/) ^ u(t)jon I. Using a 
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similar argument, we can show that u(t) ^ w0(t) on /. Hence u e [v0, w0] 
and the proof is complete. 

For each 77 e Cl[I, E] such that 77 e [v0, w0] and \\7]'(t)\\ ^ c* on /, we 
define a mapping v4 by ATJ = u where u is the unique solution of the 
BVP (2.2) corresponding to 77. The following result concerning the map 
A holds. 

LEMMA 2.4. Suppose that the assumptions (A{), (A2), (A$) and (A4) hold. 
Then 
(i) v0 ^ Av0; Aw0 g vv0; tf«d 
(ii) A is monotone on [v0, w0]. 

PROOF. Suppose that Av0 = v^ Set /?(f ) = <j>[v\(t) — v0(0] for any ^ e 
#*. Then 

p" Û <f>[f(t, v0, vó) + Mi(v! - v0) + M2(v[ - v̂ ) - /(f, v0, v̂ )] 

= Mxp + M2p', 

in view of (^x). Furthermore, the respective boundary conditions yield 
B*p ^ 0. Hence, we have p(t) ^ 0 o n / which implies v0 ^ v\ = >4v0. 
Similarly, we can show that Aw0 ^ vv0 proving (i). 

To prove (ii), let 771, T]2 e C1!/, £ ] such that 771, TJ2 e [v0, w0], 771 ^ 772 and 
libili» II92II ^ c*. Suppose that 7̂71 = wi and Arj2 = w2 and set p(t) = 
^["2(0 — ui(t)] for 0 e K*. Using (A2), we get 

/>" = $f(t, V2> Ìò + M\(u2 - 772) + ^2(^2 - V2) - / ( ' , ?i, Vi) 

- M&! - Vl) - M2(u[ - 77O] 

g §\Mx(u2 - 771) + M2(«2 ~ 7O - ^ i ( w i - 9i) - M2(wi - 77O] 

= Mip + M2/?'. 

Clearly, B*p = 0 and hence p(t) ^ 0 on / which yields 7̂71 ^ ^772. This 
proves the Lemma. 

In view of Lemma 2.4, we can define the sequences {vn}, {wn} as follows : 
vn = Avn_1 and wn = Awn^. It is easy to see that {v„}, {wn} are monotone 
sequences such that vn ^ wn, vn9 wne[v0, w0] and ||v^||, ||w£|| ^ c* for 
all n. We shall now show that there exist subsequences of {v„, v^}, {wn, w^} 
which converge uniformly on /. 

LEMMA 2.5. Let K be normal and let the assumptions (At), (A2), (A3), 
(A±) and (A5) hold. Suppose further that Q(L + Mx 4- M2) < 1 where 
Q = max[max/x/ \G(t, s)\, maxIXI\Gt(t, s)\]. Then the sequences {vn, v^}, 
(w„, w^} are uniformly bounded, equicontinuous and relatively compact on I. 

PROOF. Since the cone K is assumed to be normal, it follows from vw, 
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wn
 e [vo> wo] that {vn}, {wn} are uniformly bounded on /. We also know 

that || v j , || w j S c* on /. This implies the equicontinuity of the sequences 
{vn> v»}> {wm wn} because of the fact /maps bounded sets into bounded 
sets. Since vn satisfies the relation 

vw(0 = ^QG(t, s)an^{s)ds + # 0 , 

where an-i(s) = f(s, vn^(s\ v'^s)) - M^^s) - M2v'n-l{s\ we see that 

K(t) = £ Gt(U s)an^(s)ds + 0'(O. 

Letting Q = max[max/x/|(j(f, s)\, maxIXI\Gt(t, s)\] and using (v45), we 
get, using arguments similar to those in [8], the estimates 

a({vn(t)}) S Q(L + Mx + M2)maxW{vw(0}), a(W(0})), 

a (K(0}) g ß(L + Mx + M2)max(a({vM(0}), a(Wu)})). 

Since ß(L -h Mx -f Af2) < 1, it follows from these estimates that 
cc({vn(t)}) = 0 and a({v^(r)}) = 0. Similar conclusions are true relative to 
the sequences {wn}, {w„}. The proof of Lemma 2.5 is therefore complete. 

We now apply Ascoli's theorem to the sequences (vw, v^}, {wn, w^} to 
obtain subsequences {vnk, v'nk}, {w„k, w^J which converge uniformly 
on /. Since the sequences {vw}, {wn} are monotone, it follows that the full 
sequences {vn}, {w„} converge uniformly and monotonically to continu
ous functions, that is, limw^oovw(0 = p(t) and l i n v ^ w ^ O = r(t) on /. It 
is now easy to conclude that the full sequences {v^}, {w'n} also converge 
uniformly to p\t), r\t) respectively on /. It then follows from (2.2) and 
(2.3) that p(t), r(t) are solutions of BVP (2.1). 

Finally, let us show that p{t), r(t) are minimal and maximal solutions 
respectively of BVP (2.1) in [v0, wQ] on /. To this end, let u(t) be any 
solution of BVP (2.1) on / such that u e [v0, vv0] on /. Assume that for 
some n ^ 0, vn g u ^ wn on /. Set p(t) = <j)(u(t) — vw+1(f)) for <j>eK* 
so that we obtain B*p = 0. Then by (A2), we have 

P" = <f>[f(t, u, W) - f(t, vn, v0 - Mi(vw+1 - vn) - M2(v'n+1 - <)] 

^ fiMiiu - vn) + M2(u' - v'n) - Mx(vn+1 - vn) - M2(v'n+1 - v'n)] 

= Mip + M2p'. 

It therefore follows that vn+1 ^ u on /. A similar argument yields u ^ wn+i 

on /. Since u e [v0, w0], we have by induction vw g w g w„ on / for all n. 
Thus, we obtain by taking the limit as n -> oo, p(/) g w(0 g r(/) on /, 
proving p, r are minimal and maximal solutions of BVP (2.1) on /. We 
have therefore proved the following main result. 
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THEOREM 2.1. Let K be a normal cone and let the assumptions (Ax), (A2), 
(As), (A±) and (A5) hold. Then, ifQ(L + M1 + M2) < 1, there exist mo
notone sequences {vn}, {wn} which converge uniformly and monotonically 
to the minimal and maximal solutions p(t), r(t) respectively of the BVP 
(2.1) on I, that is, ifu is any solution of the BVP (2.1) on I such that u e 
[v0, w0], then 

VO = V l = " ' • = Vn = P = u = r = wn = ' ' ' = wl = w0 on I-

COROLLARY 2.1. If the solutions of the BVP (2.1) are unique, then the 
assumptions of Theorem 2.1 imply that p(t) = u(t) = r(t) on I. 

The smallness assumption Q(L + Mx + M2) < 1 is satisfied in general 
by choosing c* small which in turn restricts the size of R (the bound on 
v0, w0). This is a price one has to pay to treat the BVP in an arbitrary 
Banach space. If on the other hand, E = Rn, the assumptions (^5) and 
Q(L + Mx + M2) < 1 are superfluous. We then have the following result 
which is new in itself. 

COROLLARY 2.2. The conclusions of Theorem 2.1 are valid under the as
sumptions (Ax), (A2), (A3) and (A4) if E = R* and K = R .̂. 

We remark that the linear procedure followed here has its origin in our 
recent announcement [5] where the scalar BVP is treated. 
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