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1. Introduction. In this paper some results on the generalized con
vexity of real valued functions of a real variable are extended to the 
case where the members of the dominating family are determined by n 
conditions at k( < n) points. In addition a partial answer to an open 
question related to the definition of generalized convexity of functions is 
given. 

Throughout this paper A(«, k) will denote an ordered k-partition of n 
which is an ordered fc-tuple (Ai, A2, . . . , Àk) where n, k and each Xt- are 
positive integers and Ai + X2 + • • • 4- Xk =

 n- For fixed n the set of all 
such A(«, k)9 1 ^ k g n, is denoted by P(n). For X{n, k) e P{n\ ||A(«, k)\\ 
denotes the positive integer max{^-: 1 ^ / 5 * k}9 and/* = ||A(», k)\\ —1. 

Let F c Cr(I) where / is an open interval of real numbers. Then F is 
called a X(n, ^-parameter family on / (or for brevity a X(n9 fc)-family) in 
case for any k points (nodes) xi < x2 < • • • < xk from / and any n real 
numbers a^ there is a unique function/e Fsatisfying 

(1) /<»(*,) = aih = 7 = 0, 1, . . . , Xi - 1, 1 = 1, 2, . . . , k. 

A function g e Cr(I) is said to be a X(n, k)-convex function with respect to 
the X(n9 fc)-family F on / if for any k nodes xx < x2 < • • • < xk from / 
and any fe F satisfying 

(2) fW(Xi) = g W ( 4 j = 0, 1, . . . , ^ - 1, 1 = 1, 2, . . . , k, 

it follows that 

(3) (g(x) - / ( * ) ) ( - l)MU) è 0 whenever jcf-_i < x < xt 

for i = 2, 3, . . . , k where Af(1) = « + Ai + A2 + • • • + Ä,--i-
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In the case that k = n, so that each X{ = 1, it can easily be shown that 
if for some fixed integer q, 1 ^ q g n 4- 1, (3) always holds for any 
choice of the n nodes for / = q whenever / e F satisfies (2), then indeed 
(3) holds for all /, 1 ^ / ^ n + 1. (Throughout the paper xQ will denote 
the left end point of/and xk+i will denote its right endpoint. Also M{\) = 
n.) In fact Kemperman in [4] only requires that (3) holds for i = n + 1 
in his definition of X(n9 «)-convexity, while Hartman in [1] requires that 
(3) holds for each /, 1 ^ i ^ n + 1. The question of the equivalence of 
(3) holding for one or for all i in case k < n is shown in section 2 for 
||A(«, k)\\ ^ 3 provided the condition that F be "hereditary", which holds 
vacuously when k = n, is imposed. The validity of this implication with
out these assumptions on X(n9 k) and F remains an open question. Section 
3 contains some results concerning relationships among the X{n, A:)-convex 
function for various choices of the partition l(n, k). The obvious an
alogues for concave functions (" ^ " in place of " ^ " in (3)) are valid 
but will not be stated. 

A(«, Ä:)-families arise as natural generalizations of the dominating 
family of functions for classical convex or «-convex functions. From the 
point of view of differential equations, for an nth order differential equa
tion in which the boundary value problems of the type described in (1) 
always have unique solutions which extend throughout the interval /, 
the family of solutions will form a X(n, fc)-family on / for that particular 
choice of the partition X(n, k) of n. From this point of view Theorems 2 
and 3 can be interpreted as a restricted type of uniqueness theorems for 
solutions of certain related boundary value problems. 

Lloyd K. Jackson, to whom this paper is dedicated, and some of his 
students have explored the use of "subfunctions" (For a subfunction g 
the restriction on F is relaxed so that (3) still must hold if there is an 
/ e F satisfying (2), but the conditions described in (1) are not required to 
have a solution/e F.) to prove existence theorems for two point boundary 
value problems for second order equations. See [2] and the references 
therein. Some progress in this direction was made by Jackson and Schrader 
for n = 3 in [3], but essentially no results in this area have been obtained 
for« ^ 4 at least in part due to the complicated nature of the subfunctions. 
We hope that results in this paper may shed light on the connection be
tween generalized convexity of functions and existence theorems for 
various boundary value problems for ordinary differential equations. 

2. Hereditary families. For X(n, k)eP(n) the partition ft(n,k+l) = 
(i"i> /*2> • • • ? /4H-I) is said to be obtained from l{n, k) by a replace
ment in case there is an m, 1 ^ m ^ fe, such that lm > 1, fitr = ^t for 
i < m, fjii+i = l{ for i > m, and fim + //w+1 = lm. A replacement is 
said to be of type 1 if either /iw + 1 = 1 or fjLm = 1. If//m = 1, //(«, k + 1) 
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is denoted by X{n, k;m-), while if//m+i = 1, [*(n, k + 1) is then denoted 
by X(n, k;m+). Also p(n9j) < A(«, k) in case fx{n, h) can be obtained by 
beginning with Un, k) and applying a finite sequence of replacements. 
Ri(X(n> k)) denotes the set of all /*(«, j) < A(H, k) for which the sequence 
consists only of replacements of type 1. The Un, Â:)-family Fis said to be 
hereditary in case Fis a /z(«,y)-family for each ju(n,j) e Ri(X(n, k)). Observe 
that if \\X(n, k)\\ ^ 3, then replacements on X(n, k) must all be type 1. 
Also if F is a ji{n, 7*)-family on / for every jLt(n, j) e P(n), F is called an 
unrestricted n-parameter family. 

A X{n, fc)-convex function is said to be Un, k)-*convex with respect to 
F in case (3) holds for i = 1 and i = k + 1 as well as for 2, 3, . . . , k, 
and g is called strictly X(n, A:)-convex in case the strictly inequality holds in 
(3). 

THEOREM 1. Let g be in Cr(I) and suppose that F c Cr(I) is a hereditary 
X(n, k)-family on I where \\X(n, k)\\ = r + 1 ^ 3. Suppose also that there 
is a q, 1 g q ^ k + 1, so that whenever x± < x2 < • • • < xk are in the 
open interval I and ft F satisfies (2), then (3) holds for i = q. It follows then 
that g is X(n, k)-*convex with respect to F on I. 

The validity of this result remains an open question for \\A(n, k)\\ > 3. 
The essential part of the proof of Theorem 1 is contained in the lemma in 
[2] and the following result. 

LEMMA. Suppose that F c C2(/) is an unrestricted ^-parameter family 
on I. Suppose also that the function g e C2(7) has the property that for 
fe F, if g — fhas a zero of order at least 3 at some z el, then 

(4) g(x) < f{x) for allxel f| ( - oo , z). 

It follows then that g is strictly [i-*convex with respect to F on I for all 
fi e F(3). In particular g(x) > f(x)for all x e I f| (z, oo). 

PROOF. We first show that g is strictly (1, 2)-convex. Let xx < x2 be 
points in / and let fs F satisfy f(xi) = g(xx), f(x2) = g(x2), and f'(x2) = 
g'(x2). We must show that g(x) > f(x) for every x e xl5 x2). 

Suppose there were a point u e (xl9 x2) such that f(x) > g(x) for all 
jc e (u, x2). Pick he F satisfying h^(x2) = g{j){x^) for j = 0, 1, 2. Since 
/ — g has a double zero at x2 and is positive on («, x2), f"(x2) > g,r(x2) = 
h"(x2). Also g — h has a zero of order at least 3 at x2, so by (4) g(x) < h(x) 
for all x < x2. f and h are distinct members of F, so f(x) ^ h(x) for all 
x < x2, and h"(x2) < f"{x^ thus implies that h(x) < f(x) for all x < x2. 
Hence g(xi) < h(xi) < f(xx) = g(x{), and we have a contradiction. We 
conclude that no such point u can exist. That fact will be used at several 
places in the remainder of the proof. 

Since /(Xi) = g(xi) it follows that g"(x2) > f"(x2) and there is some 
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point w e [xl9 x2) so that g(x) > f(x) for all x e (w, x2) and g(w) = f(w). 
We shall now show that w = xl9 and that will show the(l, 2)-convexity of 
g. Suppose that w > xv Let zx = (x2 -f w)/2 and pick hx e F so that 
h\(x) = g(x) at xl5 zl5 and x2. How hi and/agree at xx and x29 so Aifo) = 
/(zx) implies that /^(x) > f(x) for all x e [w, x2). Thus A{(x2) < f'{x2) = 
g'(*2) a n <i ^i(^) > g(x) o n (*2 — S9 x2) for some small ô > 0. Next we 
claim that there are points ux and vx with w < ux < vx < x2 such that 
h\{x) < g{x) for all uY < x < vv To see this observe that hx(w) > g(w) = 
f(w)9 so there is a least point wx in (w, z j at which h^(x) and g(x) are equal. 
If hi — g had a zero of order 2 at uÌ9 then we would have hx(u{) = g(hx), 
K(ui) = #'(wi)> A(*i) = g(*i)> a n d #(*) < Ax(x) for all x e (w9 wx). That is 
exactly the situation (with/ in place of g and x2 in place of ux) that was 
ruled out at the beginning of the proof. Consequently hi — g changes sign 
at u\. Since hx(x) — g(x) < 0 for x > u\ but alose to ux and hi(x) — 
g(x) > 0 for x < x2 but close to x29 hi(x) = g(x) for some x e (wl5 x2). 
Since AiCzx) = g(zi)9 either wx = zx or Vj ^ z^ In either case, 2(vx — ux) g 
x2 — w. Next let z2 = (wi + vi)/2, and pick h2eF such that Ä2(.X) = g(x) 
at xi, z2, and JC2. Then h2(x) > hx{x) on (xÌ9 x2), and by the argument just 
concluded there are points u2 < v2 in (uÌ9 v^ with w2 =

 z2 o r v2 ^ z2> i-e-> 
2(v2 - W2) ^ vi - "i> so that h2(x) < g(x) for all x e (w2, v2), A2(X) = g(x) 
at w2

 a n d v2> a n d A2(x) > g(x) for all x e [w, u2). We may continue in this 

1 1 1 1 r-H r 
e, w u. u =z_ v z.«v, x 

Fig. 1 

fashion picking zn = (ww_x + ww-i)/2, /*„ € F with hn — g zero at *1? z„, 
and x2, Aw < g on (ww, v„), hn(x) = g(x) at wM and vH9 hn > g on [w, ww), 
and 2(vM — un) ^ vw_x — un^. The strictly increasing sequence of num
bers un has a limit w0

 e (^^ ^2) w i t n w» < wo < v» f° r e a c r i w a n ( i a l s o 

vw -> w0 as n -> 00. Now let hQeF with A0(A:) = g(x) at Xi, w0, and x2. 
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Since un < uQ < vn for each n, h0(u0) = g(u0) > hn(u0). Therefore h0> g 
on [w, UQ) and h'(u0) ^ g'(u0). Ao(w0) < g'(u0) cannot hold because h0(v

n) > 
hjjn) = g(vn)- Consequently h0 — g has a double zero at u0 and is positive 
for all w < x < UQ. That again is the situation that was ruled out at the 
beginning of the proof. This contradiction shows that w > jq cannot 
hold, and the strict (1, 2)-convexity of g is demonstrated. 

That g(x) < f(x) for all x in / H (— °°, *i) now follows from Theorem 
2 in [8]. Also since g(xx) = f(xi) and g"(x2) > f"(x2\ then g(x) > f(x) 
for all x > x2 but close to x2. Suppose that g > fon (x2, z) and g(z) = /(z). 
Let h e F satisfy h{x^) = g(xr) = f(xx\ h(z) = g(z) = /(z), and A'(z) = 
g'(z) < / ' ( z ) - / a n d A are distinct members of F, so h > fon (xl9 z).h< g 
on (*!, z) since g is strictly (1, 2)-convex. This gives the impossible situa
tion that/(x2) < h(x2) < g(x2) = f(x2), and we conclude that indeed g > f 
on / fi (x2, oo) and that g is strictly (1, 2)-*convex with respect to .Fon /. 
It is now easy to show (or appeal to Theorems 3.1 and 3.2 in [6] to con
clude) that g is strictly (1, 1, 1) and (2, l)-*convex with respect to F o n I. 
It remains to show the strict (3)-*convexity of g. Suppose that feFand 
/(/)(z) = g{^{z),j = 0 , 1, 2, at some zel. Iff(w) = g(w) for some w > z, 
then g < fon(z, w) since g is strictly (2, l)-convex. Pick u between z and 
w and let h e F satisfy h(z) = f(z) = g(z\ h\z) = f\z) = g\z\ and h(u) 
= g(u) < f(u). Then h > g on (z, w), so h'\z) ^ g"(z). A and /a re distinct, 
so it follows that h"{z) > f"(z) and consequently t h a t / — h has a zero at 
some point in (z, u). That is impossible by the (2,1) uniqueness of elements 
of F. The same contradiction would be reached if/ > g were to hold on 
/ fi (z, oo). It must be the case t h a t / < g on / fl (z> °°)- We conclude 
that g is strictly (3)-*convex, and the lemma is proved. 

REMARKS, (i) Clearly the techniques used in the preceding proof could be 
used to show the conclusion of the lemma still holds if (4) is replaced by 

(5) g(x) > f(x) for all x e I f| (z, oo). 

(ii) Indeed, only minor modifications in the preceding proof are needed 
to show that if the strict inequality in (4) (or (5)) is replaced by g (respec
tively by ^ ) , then the conclusion of the lemma is that g is //-*convex. 
Moreover if/(z) = g(z) at a point z other than the given nodes, then/and 
g are identical between min{z, A^} and max{z, xk}. 

(iii) Finally, we observe that if " < " in (4) were to be replaced by " > ", 
the conclusion of the lemma would be that g is strictly /z-*concave, but 
still/ — g would change sign at any point where it has a triple zero. 

PROOF OF THEOREM 1. Suppose that (3) always holds for / = q. Let xx < 
x2 < • • • < xk be in / and l e t / e F satisfy (2). Suppose that M(q) is odd. 
Then g(x) ^ f(x) for all xq_x < x < xq. Suppose that Xq = 3. Then the 
subfamily H of F consisting of a l l / e F satisfying (2) except for i = q is a 
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/l(3, y)-family on the interval (x^_l5 xq+i) for j = 1, 2, 3. If A(^(z) = 
g{j)(z)J = 0, 1, 2, for some z e (xg_i, x9+1) and some heH, then g(;c) ^ 
A(x) for all xq_i < x < z, i.e., (4) holds with / = O^-i, xq+i), with " < " 
replaced by " ^ ", and with F replaced by H. Then by the conclusion of the 
lemma (See remark (ii).), g{x) ^ f(x) for all xq < x < x9+1, and thus (3) 
holds for i = q + 1. If M{q) is even, the analog of the lemma for concave 
functions (See remark (iii).) can be applied to show that / ' — g changes 
sign at xq. If Xq = 2 , / — g does not change sign at xq by the lemma in [7]. 
If Ai = 1 , / — g changes sign at xq by Theorem 2 in [8]. We conclude that 
in all cases (3) holds for / = q + 1. By reapplying the above argument it 
follows that (3) holds for all q ^ / ^ k + 1. Similarly inequality (3) can 
be extended to the left for / = q — 1, q — 2, . . . , 1, using the lemma with 
(4) replaced by (5) and the corresponding results in [7] and [8] for the cases 
t h a t / — g has zero of order 2 or 1 at some node. With these observations 
the proof is complete. 

3. Convex Functions. In [8] Tornheim showed that if two members of 
a X(n, «)-family F intersect at n — 1 points, then their difference must 
change sign at those n — 1 intersection points. Lazarevic in [5] observed 
that if/, geF a n d / — g has p changes of sign and q zeros at which it does 
not change sign, then p + 2q < n. Also see [7] in this regard. In order 
to establish some of the relationships among the various types of con
vexity a generalization of this change of sign result is needed. 

If a function h, which has a continuous derivative of order m -f- 1 at a 
point z on the real line, has a zero of order m + 1 at z, then h{m+l)(x) is 
of constant sign (either always positive or always negative) for x in a 
neighborhood of z. Consequently there is a number d > 0 so that 
(x — z)m+1h(x) is of constant sign for 0 < \x — z\ < d.It is this property 
we take to extend the definition of a zero of order m -t- 1 at a point where 
the function fails to have a derivative of order m. Suppose that h has 
a continuous derivative of order m — 1 in a neighborhood of a point z, 
h{m)(z) fails to exist, but hU)(z) = 0 for / = 0, 1, . . . , m - 1. Then h is 
said to have a zero of order m + 1 at z in case there is a d > 0 so that 
(x — z)m+1h(x) is of constant sign for 0 < \x — z\ < d. 

Suppose that X(n, k) is given and that h e Cr(7), r + 1 = || X(n, k) \\. 
Let the function h have the points jq < x2 < • • • < xk as zeros of orders 
/*i> fa* • • • ? f*k respectively. (The case that some of the numbers ^ are 0 is 
not excluded.) For each i, 1 ^ i :g k, let z{ be the largest nonnegative 
integer such that z{ + ya is even, z{ ^ ph and z, ^ ^• + 1. For /i = ( ^ , 
z"2> • • • » fa) define Z(/*, /l(«, &)) = (zx, z2, . . . , zÄ). For k = n the number 
zx + z2 + • • • 4- zk is just the number p + 2q considered by Lazarevic. 
The theorem that follows is the analogue for k < n of Theorem 3 in [8]. 

THEOREM 2. Let F be a hereditary X{n, k)-family on I. Let pt = 
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(i"i» P>2-> • - - > MkX a n d let tnere be two integers p # q so that fu = X{ for 
i =£ p and i =£ q, fip = Xp — 1, and ftq = Xq 4- 1. FAe« fAe difference of 
two functions from F may not have a v distribution of zeros in I for which 
Z(v, X(n, k)) = fi. 

PROOF. The proof is by induction on the length k ^ 2 of X(n, k). We 
begin with k = 2 and /l(«, 2) = (/ , m) where / ^ 1 and w ^ L A dis
tribution of zeros of the form (/ — l, m 4- 1) for differences of functions 
from F will be shown to be impossible. Let / = 1. Suppose that for some 
members fx and/2 of F the difference / i — f2 has a zero of order m + 1 at 
some point bel. Assume that m is even. Then without loss of generality 
it follows that there are points a and c in I with a < b < c such that / i 
< f2 on [a, b) and/i > / 2 on (b, c], i.e.,/i — / 2 must have a sign change at 
b. Now pick A e F so that A(a) = /i(a), A(c) = /2(c), and h^(b) = /^(ft) 
= f2^\b) for / = 0, 1, . . . , m — 2. Since Fis a (1, m — 1, l)-family such 
an A must exist and h{m~^(b) ^ f[m~^\b). Since A(c) = /2(c) </ i(c) , the 
(1, m — 1, 1) uniqueness implies that A < fx on (6, c). Because flm~l\b) 
= /2

(m-1)(£), then A(X) — ^(x) < 0 must hold on (a, 6), for otherwise f2(xy) 
= A(xx) for some x\ e (a, b) which is impossible. But this implies that 
A — fi does not change its sign at b which is also impossible. The case that 
m is odd is similar (no condition is placed on A at b if m = 1.), and the 
result follows for / = 1. For / > 1 the hereditary property of F implies 
that F is an ( / — 1, 1, ra)-family on I. Suppose tha t / i , / 2 e F with fx — f2 

having an ( / — 1, m 4- 1) distribution of zeros at a and b where a < b 
and both a and b are in 7. Let G consist of a l l / e F which satisfy f{^(a) 
==fiJ\a)J = 0, 1, . . . , / — 2. Then G is (1, ra)-family on I f] (a, oo), and 
thus no difference of functions from G may have a zero of order m 4- 1 in 
(1, oo) fi 7. But / i , f2eG and / i — / 2 has a zero of order m + 1 at b. 
We conclude therefore no such / i and f2 may exist in F. Consequent
ly Z(v, ( / , m)) = ( / 4- 1, m — 1) is impossible, and by symmetry 
z(v, ( / , m))= ( / 4- 1, m — 1) is also impossible. In fact, by the previous 
argument using G, it follows that it is sufficient to prove the theorem 
only for the case X\ = 1. 

Suppose next that the theorem is valid for all X(n, j) with j < k. Let 
X(n, k) = (1, X2, /l3, . . . , Xk). We claim that the only distribution of zeros 
not immediately ruled out with p < q is the case where p = 1 and q = k, 
i.e., (A2, A3, . . . , >U_i> A* + !)• To see this observe that if/i — f2 has dis
tribution of zeros which is claimed impossible at jq < x2 < • • • < xk in 
/, then the functions/e F satisfying/ {j)(xt) = fij\xt), i = 1, 2, . . . , /? — 1, 
j = 0, 1, . . . , A,r — 1, when restricted to / = / fl Cfy-i> °°) form a here
ditary //-family Hon J tor fi = (A ,̂ A^+i, . . . , Xq, . . . , A*). The number of 
entries in the ordered partition juof n — (Xi + X2 + • • • 4- Xp-i) is k — p 
4- 1 < k since /? > 1. Then by the induction assumption no difference of 
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functions from / /may have a (Xp — 1, A^+i, • • •, Xq + 1, . . . , A*) distribu
tion of zeros in / . But fx and / 2 restricted to / are in H and give such a 
distribution of zeros. Consequently we may assume p = 1. Similarly it 
suffices to consider q = k. Consider first the case Xk = 1. Suppose that 
f\ — fa n a s a (̂ 2> 3̂» • • > >U-i> 2) distribution of zeros at x2 < x3 < 
< xÄ in /. Pick u, v el with u < x2 and v > xk9 and pick he F so that 
h — fx has a (1, A2, A3, . . . , AÄ_i) distribution of zeros at w < x2 < x3 < 
• • • < xk-i and A(v) = fa(v). h ~- fi cannot have a zero in (xÄ_i, v) because 
of the uniqueness on /o f A e F satisfying (1). By the induction assumption 
and the hereditary property of F,fa — f2 cannot change sign in any of the 
intervals {xh xi+i) for 2 S / ^ k — 1. To see this suppose that / i — / 2 

changed sign at w e (xt9 xt+1). The subfamily H of F consisting of a l l / G F 
for which/ — f2 has a zero of order at least A,- at *,- for each / ^ f + 1 is a 
(1, A2, . . . , A,)-family and hence a hereditary (1, A2, A3, . . . , A,_i, A, — 1,1)-
family on (—00, xt+1) f| /. Thus a (A2, A3, . . . , Â , 1) distribution of 
zeros for difference of functions from H is impossible. Hence, as claimed, 
/1 "~ fa cannot change sign except at the given nodes. Now since / x — fa 
has an even order zero at xk and h(xk) ^ fi(xk), the graph of/2 lies between 
graphs of/1 and h on (xÄ_1? v). By the induction assumption neither h — f2 

nor h — fx can have a zero at ;cf- of order greater than A, for i = 2, 3, . . . , 
/: — 1, and therefore the graph of/2 separates the graphs of A-and/x on 
(— 00, v) fi /. But this contradicts the fact that A(w) =/i(w) ^ / 2 ( M ) , and 
consequently the result is established for Xk = 1. 

For Xk > 1 the above arguments needs to be modified only slightly. 
With the same assumptions about the zeros of fx — / except that now xk 

is a zero of order Xk + 1, pick A as before and in addition require that 
A — fi and h — f2 both have a zero of order Xk — 1 at x*. Again the graph 
of/2 must separate the graphs offi and A on (— 00, v) fi /, and the same 
contradiction is reached. The result then follows for/? < q. The symmetric 
situation with q < p clearly follows in an analogous fashion. This con
cludes the proof of the theorem. 

Some technical notation is needed for the statement of the next theorem. 
The family F of functions on / satisfies U(X(n9 k)) [alternatively E(X(n, k))] 
in case for any k nodes xx < x2 < • • • < xk in / and any n real numbers 
atJ there is at most [alternatively at least] one/G F satisfying (1). The set 
A(X(n, k\m + ) consists of all pin, j) e P(n) withy = k or k + 1 that can 
be obtained from X(n, k) by inserting a 1 between A,- and A,-+i for 1 ̂  m or 
after Xk and then replacing Xm by Aw — 1 deleting a resulting entry of 0. 
A(X(n, k),m — ) is defined analogously with the 1 being placed in a position 
to the left of Xm, and A(X(n9 k), m) is just the union of A(X{ny k),m + ) and 
A(X(n9k), m-). The subset B(X(n, k), m) consists of all pt(n,j) in P(n) with 
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j = k — \oxk that can be obtained from X(n, k) by replacing-A,-, i ^ m, by 
Xt- + 1 and then replacing Xm by Xm - 1 again deleting an entry of 0. 

THEOREM 3. Let X(n, k) e P(n) and suppose that the X(n, k)-family F satis
fies U(JLL) for all ix e B(X(n, k), m) \J A(X(n, k), m) and is a X(n, k; m-h)-
family on I. Suppose that g G Cr(I) is X(n, k; m + )-convex with respect to F 
on I. Then g is also X(n, k)-convex with respect to F on [provided either (i) 
Xj ^ 3 for allj < m, or else (ii) F satisfies E{[i)for each JJL e A(X(n, k), m — ) . 
The analogous result, with X(n, k; m + ) , A(X(n — k), m — ), and j < m re-
placed by X(n, k\m — \ A(X(n, k), m + ) , andj > m respectively, also holds. 

COROLLARY 1. Let F be a hereditary X(n, k)~family on I. If g is X(n, n)-
convex with respect to Fon I, then g is X(n, k)-*convex with respect to Fon I. 

The corollary is easily established by observing that X(n, n) may be ob
tained from X(n, k) by a sequence of replacements of type 1 so that at each 
step condition (i) of Theorem 3 is satisfied. The necessary uniqueness 
conditions follow from the hereditary property and Theorem 2 as is 
pointed out in the proof that follows. An examination of the proof shows 
that Theorem 3 remains valid for *convexity in place of convexity. By 
placing the strong "hereditary" condition on the family F in Theorem 3, 
Corollary 1 follows without the even stronger assumption that Fis an unre
stricted «-parameter family which was used by Umamaheswaram in [10, 
page 764] to get the same conclusion. Also see Theorem 4.5 in [9]. 

PROOF OF THEOREM 3. There are four cases to consider depending on 
the parity of Xm and Xm+\ + • • • + Xk. We will consider only the case 
that both these quantities are odd since the arguments in the other cases 
are similar. Let jq < x2 < • • • < xk be in / and let fe F satisfy (2). 
M(m + 1) = In — (Xm+i + • • • + Xk) is odd and M(m) is even, so we 
must show that g ^ / on (xw_i, xm) and g ^ / on (xm, xw+1). Suppose 
there is a u G (xm, xm+i) so that g(u) > f(u). Pick he F so that (2) is satis
fied with h in place of/except for the one pair (ij) = (m, Xm — 1), and 
let h(u) = g(u). Since g is X(n, k; w + )-convex, we know that g ^ h on 
(xm, w). / — h cannot have a zero in (xm, u) because the fact that F is a 
hereditary X(n, Â:)-family guarantees f — h cannot have a (X\9 X2, . •. , 
Xm-i, Xm—l, 1, Xm+i9 . . . , Xk) distribution of zeros, and hence / < h g g 
on (xm, ü). But that implies t h a t / — h has a zero of order Xm at xm which 
contradicts the uniqueness of solutions of (1) for member of F. It then 
follows that g ^ / o n (xm, xm+1). If/(w) > g(u) for some xm< u < xm+1, 
then the function h defined above has the property that its graph lies 
between the graphs of g and / on each of the intervals (xh xï+i) for i = 
m + 1, m + 2, . . . , k — 1 and consequently (3) holds for i ^ m + 2. 
To see that h must be as claimed we observe h — / must have at x( for 
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i ^ m + 2 a zero of order Af- by property £/(//) for // e 2?(/l(«, k), m). 
Actually all that is required here is that the zero of h — / a t x{ must be of 
the same parity as Ai9 and that follows from Theorem 1. This observation 
is needed in the proof of Corollary 1. Also h — / cannot have a zero in 
(w, oo ) fi J except at some xh for if it did, then the property U(ju) for ft 
e A(Ä(n, k), m) would be violated. Actually we can get by with a weaker 
hypothesis here. If all Xt for / > m are 1, that the sign of/ — g is correct 
follows from Theorem 1. Otherwise the hereditary property implies that 
.Fis a hereditary //-family for ft = (Ai, . . . , A,-_i, Xt - 1, 1, A,-+i, . . . , Xk) 
where / > m and Af- > 1. Then Theorem 2 (with p = m and # = /) can 
be applied to show that v(n, k + 1) with Z(v, fi) = (Ai, . . . , Aw+i, Xm — 1, 
. . . , A,-, 1, A,-+i, . . . , Àk) cannot be a distribution of zeros f o r / — h. This 
observation is also needed for the proof of the corollary. If f(x) = g(x) 
for all x e (xm, xM+1), then by the X(n, k; m + )-convexity of g it follows 
that f — g has the correct sign on {xh xi+1) for m + 1 ^ / ^ k. It then 
remains only to show that (3) holds for all / g m. Suppose there were 
a v in (xm_l5 xm) for which/(v) > g(v). Pick/x e F so that (2) holds with 
fi in place of/for all f, y except the pair (i,j) = (m, Xm — 1), and let /x(v) = 
(/(v) + g(v))ß- Now property U(fj) for ju = X(n9 fc), X(n, k; ra + ), and 
A(«, k; m — ) implies tha t / i — /cannot change sign in (xw_1? xw+1). Also 
f\ — g cannot have a zero in (xm, xm+i) by the X(n, k; ra + ) convexity of 
g. I f /^(x w ) < gV>(*J for y = Xm - 1, then/iCx) < g(x) if 0 < |JC - xm\ 
< ö for some ö > 0. Let u = xm + 5/2, and pick A as before. Then h ^ 
g on (xw_!, w), and consequently A — / ì must change sign at some point 
in (v, u). But that would contradict the uniqueness of solutions to (1) in 
F for X(n, k), X(n, k; m + ), or X(n, k\ m — ) . T h u s / ^ g on (xm_i, xm). 
Now if Xj S 3 for ally < m, the result follows by Theorem 1. If Am_i > 3, 
we must make use of condition (ii). For definiteness suppose that Xm-i 
is odd and that f(z) < g(z) at some z e (xm_2, *w-i) . With A as before 
pick / 2 e F so that (2) holds with / replaced by / 2 except for the pair (m, 
Xm — 1), and let/2(z) be chosen so that/(z) < /2(z) < g(z) g A(z). Then 
the graph of/2 separates the graphs of/and A on (*,•_!, x,) for i = m — 1, 
m, m + 1. In addition/( '-)(xw) = g(''}(xm) * fPKxJforj = Am, s o / - g 
must have a zero in (xw, w). Then by the X(n, k; m + ) convexity of g it 
follows that/2(z) ^ g(z) which is impossible. Hence/ ^ g on(xw_2, xm_i). 
If jlm is even, the same argument shows that / ^ g on (xw_2, xw_i) and 
thus (3) holds for / = m — 1. Similar arguments work for i < m — 1, 
and the theorem is proved. 

Umamaheswaram in [10] denned a function g which is X(n, / ^ c o n 
vex with respect to Fon Ito have property P(X(n, k)) in case for any Xi < 
x2 < • • • < X* in / a n d / G F, the conditions in (2) together with g(z) = 
/(z) for some z G / with z # *,-, i = 1, 2, . . . , k, imply t h a t / a n d g are 
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identical on the closed interval [min{*i, z}, max{;cÄ, z}]. If Fis a hereditary 
Un, &)-family on / and g is X{n, «)-*convex with respect to F on /, then 
g is also X{n, y)-*convex for any X{n, j) g X{n, k). In fact the arguments 
in the proof of Theorem 3 work as well for / = k -f 1 and / = 1 if one 
knows that g is Un-> k; ra + )-*convex. Indeed if feF satisfies (2) and 
/(z) = g(z) where z e (xm, xm+i), then the X(n, k; m + )-convexity of g (or 
the A(«, k; m — ) convexity if m = 0) shows t ha t / and g are identical on 
[xm, z]. Then by using the X{n, k\ m + )-*convexity of g and picking k of 
the k + 1 nodes in [xOT, z], it follows tha t /and g are identical on [xw, xk]. 
A similar argument using X{n, k; 1 — ) gives the property P(/l(«, /:)). There
fore the conclusions of Theorem 4.5 in [9] follow for hereditary A(«, k)-
families as well as unrestricted «-parameter families. 

In Theorem 3 conditions are given under which convexity for a given 
partition implies convexity for a partition larger in the sense of the partial 
order on P(n). Theorem 4 deals with the converse problem. 

THEOREM 4. Suppose that F is a hereditary Un-> k)-family on I. Let g be 
X{n, k)-convex with respect to F on I. Then g is also X{n, k\ m + )-convex 
with respect to F on I provided A, ^ 3 for i > m, Xm ^ 4, and 1 < m < k. 
If g is A(«, k)-*convex, then the condition 1 < m < k can be deleted, and 
the conclusion is that g is Un, k; m + )-*convex. The analogous result for 
Un, k; ra —) and ^ ^ 3 for i < m is also valid. 

PROOF. Let ti = (/^, //2 , . . . , juM) = A(«, k; m + ), let xx < x2 < 

< xk+i be points in /, and l e t / e F satisfy (2) with // in place of X and k -f 1 
in place of k. Observe that /y, has lengthy = k + 1, so xy+1 = xk+2 would 
now denote the right endpoint of / using the previously introduced con
vention. Pick he F so that h — g has a A distribution of zeros at xh x2, 
. . . , xm, xm+2, • - • , **+i- F ° r definiteness assume that Xm is even and 
M(m + 1) is odd. (Since X{n, k;m + ) = A(«, k)if Xm = 1, we can assume 
that lm ^ 2.) Then h ^ g on (xm, xm+2). Suppose that h(xm+1) > g(xm+1). 
Since f(xm+i) = g(xm+1) and / - h cannot change sign in (xm, xw+1), it 
follows that /(*) < h(x) on (xm, xw+1) and f(J)(xm) < h(^(xm) for 7 = 
Aw — 1. Since Am — 1 is odd, / > Ä o n a small interval with right end-
point xm. f — h cannot change sign in (x,_i, *,-) for i = 1, 2, . . . , m by 
the hereditary property and Theorem 2, and f — h has a zero of order 
exactly A, at x,- since / and g are distinct members of F. Therefore the 
graph of h separates the graphs of/and g on / f| (—00, xm). Consequently 
g — / a n d g — h cannot have opposite signs in any interval (xf-_i, xt) for 
/ 5j m and (3) must hold for i ^ m since it holds for / < m if / is replaced 
by h. Next since ft{ ^ 3 for / g: m, it follows t h a t / — g also has the cor
rect sign on (x/_i, Xj) for / > m. Clearly if h(xm+i) = g(*w+i) then /z and 
/ a r e identical and (3) holds for / < m with // in place of A. Thus (3) holds 
also for i > m and ti in place of X since ^ g 3 for / ^ ra. Observe in this 
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case tha t / and g are identical on (xm, xm+i). Then it follows from the fact 
that g is both A(n, k\k + ) and X(n, k\ 1 — )-convex t ha t / and g must be 
identical on [xx, xk+}\. 

If g is known to be X(n, /c)-*convex, the argument above clearly extends 
to the intervals (x0, *i) and (xk, xk+1) to show that g is A(«, k\ ra+)-
*convex. 

COROLLARY, if g is X(n, k)-* convex with respect to the hereditary A(«, k)-
family F and if ||A(«, K)\ S 4, then g is also A(«, n)-convex with respect to 
F. The analogous result holds for strict convexity. 

In the case of an unrestricted «-parameter family F, Umamaheswaram 
has shown (see [10; Theorem 3.3]) that if g is //(fl,y)-*convex for all fx(nj) 
e P(n) which have at most one entry equal to 1, then g is X(n, «)-convex 
with respect to F. Observe that by the above corollary the X(n9 «)-convexity 
of g will follow if g is fi(n, y)-convex for any /u(n, j) with \\ft(n, j)\\ ^ 4. 
According to [10; page 764] in the case n = 4 if g is strictly ^-*convex 
with respect to the unrestricted 4-parameter family F for /i = (1, 3), 
(3, 1) and (2,2), then g is strictly (1 ,1 ,1 , l)-convex. By the corollary above 
the strict ^-*convexity of g for any of (1, 3), (3, 1), (2, 2) or (4) implies 
the strict (1,1,1, l)-convexity of g. 

The final result gives a sufficient condition under which a A(«, &)-*con-
vex function g has property P(X(n, k)) with respect to a hereditary X(n, k)-
family F. 

THEOREM 5. Let F be a hereditary X(n9 k)-family on I and let g be X(n, k)-
*convex with respect to F on I. Then g has property P(X(n, k)) provided 
X\ ^ 4, Xk S 4, and for each / = 3, 4, . . . , / : — 1 either X{ ^ 4 or A,-_i ^ 
4. 

PROOF. Suppose that xi < x2 < • • • < xk are in / and that (2) holds 
for some / = / 0 e F. Suppose also that/0(z) = g(z) for some z e (xq_i, xq) 
and 1 ^ q ^ k + 1. We first consider 1 < q < k + 1. Let us assume 
that A9_i S 4 since the argument in the case Xq ^ 4 involves the same 
ideas. Let H consist of a l l / e F for which (2) holds for all pairs (i,j) with 
i jz q — l. Then H is an unrestricted A^-i-parameter family on (xg_2, xq), 
and g is either (^9_1)-*convex or *concave with respect to H on (xg_2, xq) 
depending on the parity of M(q 4- 1). Also by Theorem 4 or its analogue 
for concave functions g is (A9_i — 1, l)-*concave with respect to H on 
(xq_2, xq). Consequently / 0 and g are identical on [xq_i, z]. Next pick nodes 
y i < y 2 < ' ' ' < JV-i m {Xq-i-> z) a n d let G consist of a l l / e F satisfying 
(2) for 1 g i ^ k — 1 with j , in place of x{. Then G is an unrestricted 
A*-family on / = (yk-i, b) where b is the right endpoint of /. Since Xk ^ 4 
we may apply Theorem 4 to conclude that g is (A* — 1, l)-*convex 
(or concave) on / . Next observe that if yk = z and >>*+! = xÄ or j ; f t = 
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OV-i +z)ß and yk+l = z, then/0>(j,) = g ^ ( ^ ) f o r y = 0. 1, . . . , lk - 2 
and/(j>Ä+i) = g(yk+i)- It then follows that on(z, xÄ)both/ ^ g and g ^ / 
hold, and thus/and g are identical on [*9_i, x j . That /and g must be iden
tical on [xi, xq-i] can be established similarly using Theorem 4 and the 
fact that Ài ^ 4. The cases that q = 1 or q = £ + 1 are resolved in the 
same manner noting that, for q = k + 1, Ag_i = A* ̂  4 and, for q = 1, 
^ = Ai ^ 4. It thus follows t h a t / a n d g are identical on [min{z, xx}, 
max{z, xk}], and the result is proved. 

In conclusion it should be observed that the hereditary assumption 
in Theorem 5 as well as Theorem 1 is stronger than is needed. In fact it is 
sufficient in these theorems to assume that the X(ny &)-family F is "point-
wise" hereditary, i.e., for each m, if xx < x2 < • • • < xm_i < xm+i < 
xm+2 < - - - < xk art k — \ points in / and if G consists of all / 6 F 
satisfying (1) for i ^ m, then G is a hereditary (Am)-family on (xw_i, xm+1). 
In particular by Theorem 1 if the A(«, fc)-family Fis pointwise hereditary 
for m = 1 and m = k, and both Ai ^ 3 and Xk ^ 3, then there is no 
distinction between convexity and *convexity. 
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