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Introduction. A number of results have appeared in which the method 
of lines (also known as Rothe's method) is used to construct approximate 
solutions to two dimensional parabolic free boundary problems. This 
method replaces the partial differential equation with a sequence of or
dinary differential equations by substituting a difference term for the 
time derivatives. For example, in a paper by Sackett [5], the solution to 
a problem for the heat equation is reduced to a sequence of problems 
for un(x) = w(x, nh) of the form 

u" = h-i(u- kn(x)),xe(0,sn); 

"(in) = An» "'(*„) = gn> 

Un(x) := U(X). 

where fln, /2w, and gn are given from the boundary conditions of the two 
dimensional problem and kn(x) is a suitably extended solution w„_i(x) 
of the previous problem in the sequence. In [4], Meyer considers a pro
blem which produces a similar sequence of ordinary differential equations, 
but with the boundary conditions 

«'(0) = aH9 

u{sn) = u'(sn) = 0. 

In both of these results, monotonicity properties of the boundary value 
problems with respect to the boundary conditions and the functions 
kn(x) are used to obtain bounds on the solutions and on the location of 
the free boundary. 

Received by the editors on July 10, 1981. 
Copyright © 1982 Rocky Mountain Mathematics Consortium 

735 



736 R.C. THOMPSON 

Monotonicity results which apply to free boundary value problems 
for nonlinear ordinary differential equations of the form 

u" = k{\ + u'2)9xe(0,s); 

w(0) = «*, 

u(s) = u'(s) = 0, 

have also appeared in papers by L. Collatz [1] and K. Glashoff and B. 
Werner [2]. 

In this note, the theory of differential inequalities will be used to es
tablish some monotonicity properties of the free boundary problem 

— w" + f(x, u, u') = 0, x 6 (0, s); 

(1) t/(0) = a, 

u(s) = u'(s) = 0. 

The main theorem. The main result in this note is the following theorem 
on differential inequalities for problem (1). 

THEOREM 1. Let a satisfy the inequality a > 0 and suppose that f(x, w, u') 
satisfies the following conditions: 

(i)/(*,0,0) > 0 ; 
(ii)/(x, w, u') is nondecreasing in u for fixed u\ i.e., the inequalities 

u S v and u' = v' imply f(x, u, u') ^ /(x, v, v'); and 
(iii)/(x, w, u') satisfies a Lipschitz condition in u' on bounded subsets of 

its domain in R3. 
Further, let there exist numbers s and s* and functions u e C2[0, s] and 

v e C2[0, s*] such that the following inequalities hold: 

~ w" + f(x, w, u') ^ 0, x e (0, s\ 

(2) w(0) ^ a, 
u(s) = u'(s) = 0; 

and 

- v " + / ( x , v , v ' ) ^ 0 , ^ ( 0 , 5 * ) , 
(3) v(0) ^ a, 

v(s*) = v'(s*) = 0; 

and in addition v(x) ^ 0 for x e (0, s*). Then s ^ s* and u(x) ^ v(x) on 
the interval (0, s). 

PROOF. Let the number T be chosen so that the inequality T ^ 
max{^, s*} is satisfied and extend u(x) and v(x) to the interval [0, T] by de
fining them to be zero on the intervals (s, T] and (s*, T], respectively. 
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Before proceeding with the proof, we will establish two lemmas on 
solutions to differential inequalities. 

LEMMA 1. Let (ii) and (iii) be satisfied and suppose there exist functions 
u{x) and v(x) in C2[xl5 x2] satisfying the inequalities 

-u" -b/(x, w, u') ^ - v " +f(x, v, v'), x e f o , x2), 

u{xù ^ v(xi), w(x2) ^ v(x2). 

Then u(x) ^ v(x) on the interval [xh x2]. 

PROOF. This is a well known result in the theory of ordinary differential 
inequalities (see, e.g., [3]). 

LEMMA 2. Let u(x) satisfy (2) and suppose (i) and (ii) are satisfied. Then 
u(x) > 0 on the interval (0, s). 

PROOF. Suppose to the contrary that w(x) ^ 0 for some x e (0, s). 
Since u"(s — 0) = f(s — 0, 0, 0) > 0, it follows that w(x) must have a 
positive maximum on [x, s] at some point x. However, at x we have 

u"(x) ^ /{je, w(x), «'(*)) ^ f{x, 0, 0) > 0, 

since u'{x) = 0. This contradicts the assumption that u(x) has a positive 
relative maximum at x. It follows that w(x) must be positive on (0, s). 

Returning to the proof of the theorem, we will first show that the in
equality s* < s is not possible. Suppose to the contrary that s* < s. Let 
us define a function <f>(x) ••= w(x) — v(x) on [0, t], <j>(x) has the following 
properties: <j>(x) is differentiable, <ß(0) g 0, <f>(T) = 0, and ^(s*) > 0. 
It follows that <j){x) has a positive maximum at a point x e (0, T). That 
this leads to a contradiction will be shown by considering the following 
cases. 

Case I. 0 < x < s* < s g T. Define w(x) •= v(x) + w(s*). Since 0 
has a maximum at x, it follows that 

u(x) — w(x) = w(x) — v(x) — (w(s*) — v(s*)) 

= <f>(x) - 0(s*) > 0. 

However, w(0) - w(0) = w(0) - v(0) - w(s*) < 0, and u(s*) - w(s*) = 0. 
Furthermore, 

- w" + /(x, w, w') = - v" + /(x, v 4- M(J*), v') 

à - v" + /(x, v, v') 

^ 0 

^ — w" + /(x, w, w'). 
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Thus it is seen that the conditions of Lemma 1 are satisfied by u(x) and 
w(x). Therefore u(x) ^ w(x) and this is a contradiction to (4). 

Case IL 0 < s* ^ x < s g T. At je, v(x) = 0, therefore <f>(x) = u(x) 
and (j>'(x) = w'(*) = 0- To the right of x, 

f(x + 0) = w"(* + 0) 

^ / ( * + 0, w(x + 0), u\x + 0)) 

^ / ( * + 0, 0, 0) 

> 0. 

Thus <f>(x) is strictly concave up to the right of x. It follows that there 
exists a point x to the right of x at which <f>(x) > <f>(x) this contradicts the 
maximality of <f>(x) at x. 

From the two cases just considered, it follows that s* < s. Therefore 
s ^ s*. The conclusion of the theorem now follows immediately from 
Lemma 1. Indeed, we have w(0) ^ v(0), u(s) ^ v(s\ and from (2) and (3), 

-u" + / ( * , i#, u')^0^ - v " +f(x, v, v'). 

Lemma 1 implies that u(x) ^ v(x) for x e [0, s], 

Corollaries and remarks. Two corollaries follow immediately from 
Theorem 1. 

COROLLARY 1. Under the hypotheses of Theorem 1, solutions to problem 
(1) are unique when they exist. 

COROLLARY 2. Let 0 < a\ ^ ai andfx(x, u, u') g f2(x, u, uf) for (x, «, 
u') in [0, T] x R2 and suppose conditions (i), (ii), and (iii) of Theorem 1 are 
satisfied. Let u{{x) be the solution of problem (1) with a = a,-, s = j f - , a«*/ 
f(x, w, u') = /(*> u, u'), i = 1,2. 77/e« ^! ^ 2̂ a w^ Ui(x) ^ W2W ÖW * Ae in
terval [0, s j . 

REMARK. We note that the added condition on v(x), v(x) ^ 0, in The
orem 1 imposes less of a restriction on application of this result than it 
appears to at first glance. In the first place, if v(x) is itself a solution, then 
it satisfies (2) and hence from Lemma 2 will satisfy v(x) ^ 0. In the second 
place, suppose that v(x) is function satisfying conditions (3), but that 
V(JC) < 0 for some x e (0, s*). Because v(0) ^ 0 and v(s*) = 0, there is 
an x e (0, s*) at which v(x) has a negative minimum and v(x) ^ v(x) for 
all x e (0, s*). But then v(x) — v(x) — v(x) satisfies all of the conditions 
of Theorem 1 for v(x) with s* = x. 
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