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1. Introduction. In a recent paper [3], a detailed mathematical analysis
for the implicit integro-differential equation

(1) 0, — 40 = de+ ((y — 1)/y) (1/vol Q) 5 Oy

was given. Equation (I) is the model for the induction period for the
thermal explosion process of a compressible reactive gas in a bounded
container.

In particular in [3], it was shown that the solution of (I) is always
dominated by the solution of the explicit integro-differential equation

(E) Uy — du = dev + ((y — 1)Jvol Q) 3 j' endy

on their common interval of existence, if Q = 4, a ball in R~

The purpose of this paper is to analyse initial-boundary value problems
for a class of explicit integro-differential equations (see IBVP (1)-(2))
which include (E) (see IBVP (13)-(14)) as a special case.

2. Known existence results. Consider the scalar integro-partial differential
equation

(1) u — du = fit, ) + f_g(t,
with the initial-boundary conditions

u(x’ t) = uo(X), (x’ t) € Q X {0}9

¢)]
u(x$ t) =0, (x> t) €00 x [0’ w)a
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where Q is a bounded domain in R?, f, g are continuous on [0, c0) x R7,
locally Lipschitz with respect to u, are convex functions of u, (¢, 0) > 0,
g(t,0) > 0, and g is increasing in u.

We use the following three theorems.

THEOREM 1. If uye LA(Q), sup,cqtip(x) < oo, then IBVP (1)~(2) has a
unique classical solution on Q x [0, ¢), where either g = + 0 org < +©
and

lim sup u(x, t) = + 0.

t—g~ x€Q

THEOREM 2. If uy(x) = 0 for x € Q, then the solution u(x, t) of IBVP
(1)—~(2) is nonnegative and nondecreasing as a function of t on Q x [0, o),
providedf, g are independent of t, and f', g’ are Lipschitz continuous.

THEOREM 3. If Q = # = {x: ||x]| < 1} = R* and uy(x) = O for x € &,
then the solution u(x, t) is radially symmetric in x for each t € [0, ¢).

Theorems 1 and 3 can be proven as in [3], as can Theorem 2 for Q = 4.
But Theorem 2 also holds for arbitrary Q, using known comparison
techniques [7].

3. Extending Kaplan’s theorem. In order to obtain more precise infor-
mation concerning the blow-up time ¢ for the solution of IBVP (1)-(2),
we utilize the following extensions of known comparison theorems. The
first theorem is an easy extension of the classical Nagumo-Westphal
Theorem. Let [I; = Q x (0, T)and I'y = (02 x [0, T]) U (Q x {0}).

THEOREM 4. Let u, v € C>Y([I;) satisfy
vo= vz 100 + | gty

u, — du < fie,0) + gt iy
with v(x, t) Z u(x, t) on I'y. Then v(x, t) = u(x, t) on IIr.
As a corollary, we have the following result.
CoROLLARY. If §(2) is the solution of

Y =1t y) + (vol De(, y),

3 (0) = yp = sup u(x) on [0, T),

and if u(x, t) is the solution of IBVP (1)-(2) then (t) = u(x,t) on [0, T)
ando > T.

The next theorem extends a result of Kaplan [4] to the class of integro-
partial differential equations considered here.
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THEOREM 5. Let ug(x) = 0 and let u(x, t) be the nonnegative solution of
IBVP (1)-(2) on 2 x [0, T). Let ¢(t) satisfy

¢ =ft, ) — g + (vol Dg(t, $/M),

(C)
#(0) =0
on [0, T') where A, is the first eigenvalue of
—-4dp = Ap, xeQ,
) ¢ =2
=0, xeo

and M = (vol Q)sup,y(x), ¢1(x) = O is the eigenfunction of (5) associated
with 21 normalized by (o ¢n(x)dx = 1. Then sup,gu(x, t) 2 ¢(2), t € [0, T).

PrOOF. Define v(r) = Cu(x, t), g1(x)> = [ u(x, )¢(x)dx. Multiply (1)
by ¢4(x) and integrate over Q. Then we have

v = j dugn(dx + _f Nt utx, D)dx
(6)
+ L ¢1(x)[ | st utx, t))dx}dx.

Inspecting each of the three integrals on the right hand side, we have
jg di(x) dudx = jgudg{:ﬁx)dx + faa(¢1(x)(8u/an) —u(9¢/ox)dx

™ = | ul=a g dx +0
= - AIV(I‘ )
by Stokes’ Theorem;
| gnoare, wax 2 1z, | _guoucx, 0dx)
=f(t, )

by Jensen’s inequality since fis convex in # and ¢j;(x) has mass 1; and

ID¢1(X)|:§Dg(t, u)dx:ldx = j. ag(t, u)dx

©) — volQ f 8t )(1/vol Q)dx

®

> vol Qg(t, _f G jvol Q)dx)

again by Jensen’s inequality.
Furthermore, since g is increasing in its second argument and M =
vol Qsupg ¢(x),
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ja(u(x, 1)/vol Q)dx = (sup ¢1(x)/M)jau(x, 1) dx

(10) = (1/M) I d(x)u(x, t)dx

= v(t)/ M.
From (9) and (10), we have
j‘ 0¢1(x)Uag(t, u)dx}ix > vol Qg(1, v(t)/M).

Thus, v(2) satisfies the differential inequality

1n v'(t) z f(t, v) — Av(2) + vol Q g(t, v/ M),
with initial condition
(12) v(0) = 0.

Since ¢(¢) satisfies (4) on [0, T), ¢(¢) < v(¢) on [0, T). But v(t) =
j ohi(u(x, t)dx < sup,cq u(x, t), and the conclusion

o) = sug u(x, t)yon [0, T)

then follows.

4. Conclusions for an important special case. The particular initial
boundary problem which is of special interest in our previous analyses
of the thermal behavior of a reactive gas in a bounded container (2 is the
following:

(13) u, — du = ge* + ((y — 1)/vol Q) 5I0e"dy, y/i
(14) u(x, t) =0, I

By the results of the two previous sections, we can immediately make
the following observations.

By Theorem 1 and 2, IBVP (13)—(14) has a unique classical solution
u(x, t) which is nonnegative and nondecreasing as a function of 7 on
Q x [0, g) where either ¢ = + o0 or ¢ < + o0 and lim,_,,- sup,.z u(x, t)
= +00.

By Theorem 4, since §(t) = In(1 — ydt)7!, the solution of the IVP:
v' = edv, v(0) = 0, is an upper solution relative to IBVP(13)-(14), A(¢) =
u(x,t)on Q x [0, 1/yd)and ¢ = 1/yd forany y = 1,0 > 0.

Again by Theorem 4, if ¢(x) is any solution of the steady state inequality

— 4 2 det + ((r—1)vol Q)3 L ebdx,
9 = 0,

(15)
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then ¢(x) = u(x,t) on 2 x [0, ). If @ = B = {x: |x]| < 1} = R?,
then ¢(x) = 1 — | x||2is a solution of (15) provided
0=Q@nle)df(cy + (L —cP) =0

where
¢ = (vol)! jge‘“"“z dx < 1.

These observations can be summarized as follows.

THEOREM 6. (a) For any § > 0, y = 1, the solution u(x, t) of IBVP(13)-
(14) exist on Q x [0, ¢) where ¢ > 1/y6 and 0 < u(x, t) < In(1 — dyt)1
on Q2 x [0, 1/70).

®)IfQ =% < Rrandifd < (2n/e)(1/(cy + (1 — ¢))), then the solution
u(x, t) of IBVP (13)-(14) exists on Q x [0, ©) and 0 £ u(x,t) = ¢(x) < 1
Jor (x, 1) € Q x [0, ).

We now can use Theorem 5 to determine a range of parameter values
for ¢ and y which will force ¢ < oo and hence forces the solution u(x, t) of
(13)-(14) to become unbounded in finite time. Recall that A; is the first
eigenvalue of (5), ¢y(x) = 0 is the eigenfunction of (5) associated with 4,,
fodr(x)dx = 1,and M = vol Q sup,cq ¢y (x).

THEOREM 7. (a) The solution ¢(t) of
¢ = 0et — 10 + (y — 1)ded’ ™,
$(0) =0

exists on [0, T) where

(16)

T= j‘ " ds@er — Az + (7 — Doe),

(b) T < coifandonlyifdfez + (y — 1)e*M] > Ajzforallz > 0,
© ifT < o, lim- ¢(t) = + 0.

The above theorem is easily proven since the IVP (16) is autonomous.

COROLLARY. The solution u(x, t) of IBVP(13)~(14) exists on Q x [0, o)
where 1/y0 <o = T = j: dz[(0er — X1z + (y — 1)dex’M),

In order to determine the range of values of 7,  for which T is finite,
observe that the limiting case occurs when d[ez + (y — 1)e*’M] 2 Ayz
for all z > 0 and dfe®* + (y — 1)e*™] = 1;z, for some z,. We note that
if (r— 1)/M is small, then zy = 1 — x, » > 0 small, and hence the critical
value 0 for § is approximately

a7 0 = /(e + (y — Del’M),
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Thus for § > 0, the solution u(x, t) of IBVP(13)—~(14) blows up in finite
time o < T.

For the standard container geometries, we can make the following
comparison. Let Q be an infinite slab S of half-width 1 in R3 (or equi-
valently a bounded interval in R?), an infinite right circular cylinder C of
radius 1 in R3 (or, equivalently, a bounded circle in R?), or a ball B of
radius 1 in R3. Let § be the critical value defined by (17), and let dcp/r
be the numerically computed critical value for (13)-(14). Then, fory = 1.4,
we have:

o= ?[Er—fh dcrrr 0
S .562 .65 1
C 1.175 1.53 1.73
B 1.777 2.61 3.03

5. Convergence of method of lines. In this section, we prove that the
method of lines as developed by Walter [8] can be used to comstruct
solutions to approximating systems of ordinary differential equations
which converge to the solution u(x, t) of IBVP (13)-(14). We choose to
give the proof for the special case with Q = S and » = 1. The method
of proof extends to IBVP (1)-(2) with Q = # < R~

Consider
(18) 0, = 0., + 3¢ + (7 — 1)2) 8 j l_leodx,
0(x, 0) = 0,
(19) (x, 0)

0(—1,¢t)=6(1,t)=0.

Since the initial-boundary conditions are not compatible with (18) at
the corner points (0, — 1) and (0, + 1), we replace the boundary values
by an approximating initial-boundary function which is compatible with
(18) on the parabolic boundary. Let 7(¢)denote such a boundary function.
We see that 7 must satisfy

(20) 7(0) =0 and 7(0) = o7.
For a given ¢ > 0, let 7,(¢) be a C~-smooth function satisfying
(21 7{0) =0, 7(0) =70, Ip.(1)l <&, tel0, 00).

Consider the approximating IBVP:
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0, = 0. + 66 + ((r — D]2) 551_1 ehdx
(Pe) 0(x, 0) = 0

0(—1,1) = 0(1, t) = 52).
Next we replace ¢ in (P,) by the function gy(6), where

ef, 6 <N,

w0 {4y

Then the reaction terms in the right hand side of (18) are uniformly
Lipschitz in @ for all § € R. In the following, we suppress the subscript N.
Consider

0, = 0ue + 080 + (=D 3| g
(P, 0(x,0) =0
o(=1, 1) = 001, 1) = 7(0).

We will first apply the methods of lines of (P,). Approximate (P,) by the
following system of m — 1 first order ordinary differential equations

d . v — 2+ v,

-1 m
) ar VF 7z + og(vp) + ( r 3 >5h § glvm),
0 =0,k=1,...,m—1,h=2/m

and define v§(¢), v7(t) by the boundary values

vE(®) = vi(t) = 7.0).

Denote the solution of (P,,) by v» = (v, ..., v). Let (x, t) be the solu-
tion of (P,)and let 0,(t) = 0(—1 + kh,t),k = 0,1, ..., m. Let 6 denote
the m + 1 vector 0" = (0, 64, ..., 0,,). For w € R"*1 define

flwll =, _max_ lewil-

We will first prove that if J = [0, a] is a common #-interval of existence
for the solutions of (P,) and (P,), m = 1, 2, ..., then [§™ — v=|| - O
uniformly for ¢ € [0, a] as m — oo. The superscript m will be dropped in
the next discussion.

Define

fitz.r) = vy + 3 + (T3 Jon 55 st

where z is an m + 1 vector. Then
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flt,zr) = filt,2,7) < (r; — 7)) + 6L|z; — 2| + (r — DoL||z — Z|

w(t’ |Z,« - 2{[9 "Z - 2"’ r; — fi)’

where L is the Lipschitz constant for g and w(¢, ¢, p, r) = r + 0Lp +

(r — DiLg.
Let d%0, = (041 — 20, + 0,-D/h* and 1(6) = h X7, 8(0,).
We first prove an error estimation theorem similar to Theorem III

(18], p- 278).

THEOREM 8. Assume there exist continuous functions a(t), 5(t) on [0, a]
such that

wxx(xln t) - dzak(t)l < a(t)9
_f l_lﬁ(x, tydx — I6()| < @)

Let o(t) be a continuously differentiable function on [0, a] satisfying o' >
w(t, p, B(t), a(t)), p(0) > O, where o is defined on J x {(p, q,r): ¢ Z 0,
rz 0}, J = [0, a]. Then

07(t) — vE(O)l=10(x,, t) — vP()l < p(t) for £ [0, al, k = O, ..., m.

PrOOF. Let w, = 07 + p. We will show that v}(z) < wy(z) for all
k=0, ..., mand te[0, a]. The fact that v(¢) = 07(¢t) — p(t) follows
similarly.

we = (07) + o'
> oxx(xln t) + 6g(0(xk’ t))
1
+ (G = 028 [ eO)dx + w(t, o0, B0), alt)
Z flt, 0 + o, d207) = f(t, w, d207).

Since the system of ordinary differential equations is quasimonotone, by
standard comparison results we will have the desired conclusion if we
can show fi(t, w, d207) = fi(t, w, d?w,) for k = 1, ..., m — 1. Note that
they are in fact equal for k = 2, ..., m — 2. Thus we need only check the
endsk = land k = m — 1. For k = 1, we have

d2w1 = (W2 + 775 - 2W1)/h2 = (02 + [4 + Ne — 2(141 + p)/h2
= d201 - (p/hZ) < d201.

Similarly, d26,,_; > d?w,,_;. Hence, the desired inequality holds and the
theorem is proven.

COROLLARY. If J = [0, a] is the common t-interval of existence for the
solutions 0(x, t) and v*(t) of (P.) and (P,,), respectively, then |6 — v»| — 0
uniformly for t € [0, al as m — 0.
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ProOF. By the theorem, the difference between the solution v7(t) of
(P,,) and the solution §™(t) of (P,) is bounded by the solution p(¢) of
o' = alt) + (r — DOLA(t) + 0Lp + ¢y, p(0) = ;.

Since this is true for each ¢; > 0 we have p(#) as a bound where p solves

o' = a(t) + (r — DOLA(t) + 6Lp, p(0) = 0.

But a(t), f(t) - 0 in ¢ as m — co0. Thus p(¢) — 0 as m — 0 and we have
convergence.

Let (Py) denote the following IBVP:

0, = 0uc + 080 + (G — /23 | g@)ax,

(Po) 0(x, 0) = 0,
0(—1,t) =0 = 06Q, ).

We next show that the solutions of (P,) converge to the solutions of (Pg)
as ¢ — 0.

THEOREM 9. Let 0,(x, t) be the solution of (P,) and let 0(x, t) be the
solution of (Py). Then 0, — 0 uniformly on compact subsets of Q x J, where
J is a common t-interval of existence.

PrOOF. Let K = Loy + 1. Let p(t) = eek? be the solution of p’ = Kp
0(0) = ¢, and set w = § + p. Note that w(x, t) = ¢ = 0.(x,?) for all (x, ?)
on the parabolic boundary. We wish to prove: w(x, t) = 0.(x, t) for (x,
1) e x J.Set f(t, u, u,,) = u,, + 0g) + (y — 1)/2)- 9 ", g(w)dx. Then
wix, t)=0,+ 0 = f(t,0,0,) + Lp £ f(t, w, w,,). By Theorem 4,
w(x, t) = 0.(x, t). Similarly, 0(x, t) — o(¢) < 0x, t). Since g(t) — 0 uni-
formly on compact subintervals as ¢ — 0, we have that 0.(x, t) converges
to 6(x, ) on compact subsets of Q@ x J.

Finally, we will show that the system of ordinary differential equations
which approximates the IBVP (P;) has a solution which converges uni-
formly to the solution 6(x, t) of (P) as the mesh size tends to zero. Con-
sider

dealdt = %z, + dg(z) + (G — DI ho X (20,

09 z{(0)=0,k=1,...,m—1,
ZO(I) = 0’ zm(t) = 0.

THEOREM 10. Let 0(x, t) be the solution of IBVP (Py) on Q x [0, o) and
let z(t) be the solution of (Py) on [0, o), then
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0m(t) — zm(t)|| = max|67(r) — z7()| — O
as m — oo uniformly on compact subsets of [0, g).

PROOF. Let p(t) = 2¢eXt where K = Lyd + 1 and e > 0Ois given by the
boundary function 7,(¢) for (P,). Set w, = z,(t) + p(t) fork =1, ..., m.
We will show w,(t) > v,(z) for each k and for each ¢ € [0, ¢). Similarly,
vi(t) > z(t) — p(r) where v™(z) is the solution of (P,,). Since

w = zy(t) + p'(t)

—_ 1 m
= d%, + og(z)) + (T . >h6 3} &) + 2Keer

-1 m
> d%w, + og(w,) + ( r 5 >h5 2—;1 g(w)).

since the right hand side is quasimonotone, and since w,(0) = z,0) for
k=1, ...,m— 1, we have that wy(t) > z,(¢) for t€[0,0) and k = 1,
..., m — 1. To see that this last inequality holds for kK = 1 and k =
m — 1, observe that d?w; < d?2z, since

d’wy = (23 + p — Az, + p) + 92))/h? = (22 — 2z))[h? — (o — .(2))/h?
< d221
and similarly d®w,,_; < d?z,, ;.
Hence, [|v7(t) — z™(t)|| < 2eeX?and |[v*(¢t) — z™(t)| — O uniformly for

te[0,0)ase — 0.
Let 0.(x, t) be the solution of (P,). Then

Ho(xk’ t) - zk(t)“ =< Ho(xk’ t) - Os(xk’ t)”
+ 10:0x, ) — vi(Dl + va(®) — z(D].

Each term on the right hand side tends to zero uniformly on compact
subsets of [0, o) as ¢ = 0 and m — co.

COROLLARY. The method of lines converges uniformly to the solution
u(x, t) of IBVP (18)~(19) on compact subsets of Q x [0, o).

PRrOOF. Since N in the definition of g(f) is arbitrary and the solution
0(x, t) of (Py) agrees with the solution u(x, ¢t) of IBVP (18)-(19) for
|0(x, t)] < N, the conclusion is immediate.

In [3], we proved that the solution u(x, t) of the initial boundary value
problem

U — du= e+ ((r — DvolQ) f (du + de)dy,
u(x,t) =0,rI

(22
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satisfies y(x, t) < u(x, t) < 6(x,t) for all xeQ and all £ = 0 on the
common f-interval of existence for y, u, 6 for any d > 0,7 = 1 where
0(x, t) is the solution of IBVP (13)-(14) and y(x, ¢) is the solution of
IBVP:

xe — Ay = odex, 1I,
xx, 8) =0, TI.

By the results of this section, we know that the method of lines con-
verges to the solution y for IBVP(23) and to the solution ¢ of IBVP
(13)~(14). We have not however succeeded in proving that the method of
lines converges for IBVP (22). The table below gives a comparison of
blow-up times for the three problems in the one-dimensional case where
Q=S8 =(—1,1)and y = 1.4. In each case, the numerical computation
employed the method of lines using a grid of 31 points on [—1, 1].

(23)

0 t t, t,

91 1.755 6.123 7.940
1.00 1.401 2.732 3.537
2.00 0.454 0.528 0.680
2.47 0.347 0.390 0.502

20.0 0.037 0.038 0.050
50.0 0.0147 - 0.0148 0.0200
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