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ABSTRACT. In this paper we establish conditions which insure 
the existence of self-excited oscillations (limit cycles) in nonlinear 
feedback systems whose nonlinearity can be discontinuous or can 
exhibit hysteresis. The applicability of the result is demonstrated 
by means of a specific example. 

I. Introduction. We study the existence of self excited oscillations (limit 
cycles) in a class of nonlinear feedback systems using the sinosoidal 
describing function. The nonlinear element in this feedback system may 
be discontinuous or may exhibit hysteresis. We establish reasonable and 
easily verified conditions which insure the existence of a limit cycle. We give 
an example which demonstrates how the conditions are verified and 
our theory applied. 

A good source for background material on the sinosoidal describing 
function and on equivalent linearization is Gelb and Van der Velde [5]. 
The first attempt known to the authors to provide mathematical justi
fication for the describing function is the work of Bass [1], The results in 
[1] are rather special. A quite different local analysis is used in the work 
of Holtzman [6] and of Cesari [2, 3]. The nonlinear term in these papers 
must be smoothly differentiable. Sandberg [10, 11] studied general prob
lems, which include analysis of equivalent linearization as a special case, 
using generalized contraction mapping techniques. In his work, the non
linear terms are required to be globally Lipschitz continuous and the 
systems are periodically forced. Somewhat similar results, but for large 
scale systems with several nonlinearities are proved by Miller and Michel 
[8]. Mees and Bergen [7] prove the existence of limit cycles for feedback 
systems with Lipschitz continuous nonlinearities. Their analysis is ex
tremely interesting in that they study autonomous (i.e., nonforced) systems 
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under conditions too weak to guarantee stability (a difficult case) and in 
that they prove some nonexistence theorems. Skar, Miller and Michel 
[12, 13] greatly modify the results of [7] and generalize them to large 
scale systems which contain several nonlinearities. In [9] Michel and Miller 
study existence of periodic solutions of forced feedback systems whose 
nonlinear term may be discontinuous or may exhibit hysteresis. 

The results of the present paper can be thought of as a generalization of 
the existence results for autonomous equations in [7] to include a more 
general class of nonlinearities such as those allowed in [9]. The proof of 
the result uses some analysis similar to [7] and a Schauder fixed point 
theorem argument as in [9]. However the type of solution obtained is 
different than in either of these papers. 

The remainder of this paper is organized as follows. §11 contains neces
sary background material. In §111 we prove some preliminary lemmas 
and then state and prove our main result. In §IV we discuss the meaning 
of the assumptions needed for our main result and we study in detail an 
example to see how the various assumptions can be verified. 

II. Preliminaries. Let R be the real line and R+ the nonnegative real 
numbers. The symbols L2(0, T) will denote Lebesgue measurable functions 
/defined on (0, T) such tha t / i s square integrable. We define H(w) to be 
the set of all square integrable functions <j>: [0, lizjw] -» R which satisfy 
the conditions (i) <f>(t + IK/W) = $(t) a.e. on R, and (ii) <j>{t + jc/w) = 
— <f>(t) a.e. on R. Property (i) states that <j> is Injw — periodic. Property 
(ii) is called %-symmetry [7]. 

Given <f> e H(w), <f> can be expanded in a Fourier series 

0(0 ~ ~r Z! &exp(irottf ) 
£ nodd 

with modified Fourier coefficients 

(1) * . = — I e-i««Mt)du 
7Ü J O 

Note that <f>n = 0 when n is even by (ii). Also $_w 

valued. Also note that by the Parseval equation 

ft JO £ nodd 

This expression determines a norm on H(w) which is equivalent to the 
L2-norm but modified so that if <j>{t) = acos(wf + b), then \$i\ = |̂ 5 xl = 
a = II0IL. 

Define Hc(w) = {<f> e H(w): <f> is continuous on R}. This subset of H(w) 
is a Banach space under the uniform norm, i.e., under sup{|0(OI : 0 ^ / ^ 
2TT/W}. 

= <j>n since 0 is real 
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We define a projection P on H(w) by 

(P<f>)(t) = Y$ieiwt + \$-\e~iwt 

for each § e 7J(w). P* = / — P will denote the complementary projection. 
The results of this paper are meant to apply to single valued nonlinear 

functions n(x) and also to hysteresis operators. Hysteresis is a very complex 
phenomena which involves both multivaluedness and also memory. To 
characterize hysteresis operators and their action on functions, we make 
the following definitions. 

DEFINITION 2.1. A hysteresis operator « is a triple of (single-valued) 
functions n(xJ)J = 0, ± 1 where «(• J): R -» R and n(x, 0) = (n(x, 1) + 
n(x, —1))/2. Moreover n(x, — 1) = n(x, 1) = n(x, 0) for all x sufficiently 
large. 

Let Di(n) be the closure of the set {jceR: n(x, 1) # n(x, — 1)}. This set 
is bounded. Figure 1 illustrates these definitions. The nonlinearity depicted 
in this figure is a simple idealized relay with hysteresis. The set Z>i(«) is 
an interval. 

DEFINITION 2.2. A continuously differentiable function F: R -* R is of 
class #"(£, 7J) where 0 < £ < rj if 

(i) F\t) # 0 for \F(t)\ < C> and 
(ii) \F(t)\ < rj for all t e R. 

DEFINITION 2.3. A hysteresis operator n is of class AT if 
(i) there exist constants c and d > 0 such that \n(x, j) — cx\ ^ d for 

j = 0, ± 1 and for all x e R, 
(ii) n(x,j) = — n( — x, —j) for j = 0, ± 1 and all x e R, and 

(iii) for j = ± 1 the functions n(x,j) is piecewise continuous with jump 
discontinuities at {<*/*} where — oo < a0y < ai>< • • • < cc/j < oo. 

Note that — ccjk is a point of discontinuity of «(•, —j). For any neiV 
define D(n) = D^«) U {<*/*:./ = ±1 and k = 0,1, . . . , / } . The domain 
of the hysteresis operator n will consist of all functions F e ^(£, 37) where 
K> vl*s chosen so that it does not intersect D(n). If F is in J (̂Ç, 77), then 
(«F)(0 = «(F(0, sgn ^'(0), t e R. Notice that F\t) # 0 at points of dis
continuity of the hysteresis operator (where F(t) = ccjk). Moreover F(t) 
will move monotonically across any hysteresis interval (where n(x, 1) ^ 
w(x, — 1)). Hence there is never any ambiguity in the definition of (nF)(t) 
and, indeed, (nF) will be a piecewise continuous function of t e R. 

Given ne N, the describing function of n is defined by 

1 f2* 
N(a) = — I <r-tf/i (a cos 0)d0, a > 0. x %a Jo "" 



710 R.K. MILLER AND S.J. SKAR 

Fig. 1(a) Graph for n(x, +1) Fig. 1(b) Graph for n(x, -1 ) 

4 
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t 

Fig. 1(c) Graph for n(x) 

The describing function has the property that if <j>{t) = a cos(wt + b) and 
(Jit) = Pn(<j){t)\ then fa = ^ (a )^ = aN(a)eib. The describing function 
will be real if n(x) is single valued but will generally be complex valued if 
n(x) exhibits hysteresis. 

Now consider a real valued integrodifferential operator L defined by 

(Ly)(t) = yW{t) + g (£bJkyW{t - **) + J ^ C / f - s)j^(*) <fe) 

where / ^ 2, {̂ } is an increasing sequence with r ^ O and tk 

Let C/(J) denote the Laplace transform of Cj(t) and let 
00. 
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A(s) = SJ + g ^ g ^ e x p ( - stk) + Cf (*)J 

be the transfer function for L. We shall assume the following for L and A. 

(Al) r IC/O |dt + f |6>4| < oo, j = 0, 1, 2, . . . , / - 1. 

(A2) In the half plane Re s ^ 0 the characteristic equation A(s) = 0 has 
at most finitely many roots sj with Re sj > 0 and no roots with Re s = 0. 

(These assumptions can be weakened slightly to allow purely imaginary 
roots, see [8, assumption A7, A8 and A9].) Under these assumptions we 
can define G(iv) = v4(fv)_1 for all real v. It was shown in [8, Theorem 2] 
that for any / e H(w\ Ly = / has a unique solution y e H(w) and yn = 
G(inw)fn for all integers n. In particular this means that for any fixed 
n e AT the equation 

(2) Lx 4- n(x) = 0, 

is equivalent on the set H(w) to the operator equation 

(E) x + gn(x) = 0, 

where g is the operator defined by y = gf means 

(3) yn = G{inw)fny n = ± 1, ±3 , ±5, . . . 

The describing function method, as applied to (2), may be summarized 
as follows. Replace equation (2) by its operator form (E). In (E) replace 
n(x) by Pn(x) where P is the projection defined above. There results the 
approximation 

(4) u + Pgn(u) = 0. 

This equation is solved, using the describing function N(a) for the given 
nonlinearity n(x). Solving (4) is equivalent to finding an a g: 0 and an 
w ^ 0 such that 

(1 4- G(iw)N(a))a = 0. 

Of if a > 0, 

(5) N(a) + G(fw)-1 = 0. 

Equation (5) is usually solved graphically by plotting, in the complex 
plane, the loci {N(a): a ^ 0} and { — GÇiw)"1: w ^ O } . The points of 
intersection of the two loci determine values of a and w which satisfy 
(5). (Thus we see that the describing function method is a Galerkin 
approximation technique on H(w) with the number of terms in the ap
proximation fixed at two.) 
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In the next section we shall assume that (5) can be solved for a pair 
a0 and w0. We assume that a0 is not near one of the discontinuities of n(x) 
nor is aQ in a hysteresis interval of n{x). We also require some estimates 
similar to those in [7]. If the assumptions are satisfied, we show that (E) 
has a periodic solution near the approximate solution u{t) = aQ cos wt 
obtained from (4). 

III. Main result. Consider the operator equation 

(E) x + gn(x) = 0 

where neN with constants c and d and g is a continuous linear operator 
on H{w) satisfying the following condition. 

(A3) There is a continuous complex valued function G(/v) = G( — iv) ^ 0 
for v e R such that if u e H(w) for w > 0 and y = gu, then yk = G(ikw)uk 

for k = ± 1, ± 3, . . . . Furthermore, there is a continuous bounded func
tion M(w) > 0 such that 

rM= G(ikw) 
1 + c G(ikw) 

^ M(w)/k2 

fork = ± 1 , ±3 , 

We have seen that a large class of integro-differential equations of the 
form (2) with 7 ^ 2 will satisfy (A3). Define 

6(w) = 
11/2 

S r*(w)2 

k odd 
\k\>\ 

and 

e(w) = 
1/2 

2 k*w2
Tk(wy 

k odd 
\k\>\ 

Let 02(u>) be the set of all elements v e P*H(w) such that vx = 0 and 
vk = fk{w)yk for some ; ;e / / (w) with \\y\\w ^ V~2~ d and for k = ± 3 , 
± 5, . . . . We will assume that 

(A4) there are constants wt- and a{ with 0 < Ö x < a0 < a2 and 0 < wx 

< w0 < H>2, such that 
(a)iV(uo) + G(/Wo)-1 = 0, 
(b) w2a\ > (e(w)2 + w2b{w)2)d2 and no point of the interval [ — b(w)d + 

(af — e(w)2d2/w2)1/2, a2 4- ò(w)<i] is in D(n) for Wx ̂  w ^ w2, 
(c) the map /(a, w) = JV(tf) + G(/w)_1 is one-to-one and continuous on 

the rectangle [al5 a2]
 x [wi> W2L 

(d) there is a function r(a, w) > 0 such that if (a, w) e [ah a2] x [wl5 w2] 
and v e û2(w), then 
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w 
C2-K/W 

I e-iwt (n(a c o s wt} __ n{a c o s wt + v(ty + cv(t))dt < r(a, w), 

and 
(e) \J(a, w)\ > r(a, w) for all (a9 w) on the boundary of [al9 a2] x 

[wh w2]. 

Note that (A4)(a) is the assumption that the describing function ap
proximation has a nontrivial solution. Assumption (A4)(b) ensures that 
functions of interest will be in the domain of n. If « is a function (i.e., 
singled valued), then the describing function N(a) for n is real. In that 
case J(a, w) is one-to-one if N(a) and Im G(iw)~x are one-to-one. Using 
the Definition 2.3 it is not hard to see that it is possible to define r(a, w) = 
2d/a in order to satisfy (A4)(d). However, for a given problem it may be 
possible to find a better estimate for r(a, w) so that (A4)(e) is easier to 
satisfy and the intervals [al9 a2] and [wh w2] are smaller. 

Define Q(w) = {xeH(w): xx = x__x = a e [a^ a2] and P*xeQ2(w)}. 

LEMMA 1. Ifx e Q(w), then x(t) is continuously differentiable on R. 

PROOF. If x e fl, then x has the Fourier series 

£ k odd 

where \xk\ = 7**(w)|j>Ä| for k = ±3 , ±5 , . . . and for some y e H(w) with 
\\y\\w ^ V"2~ d. The function 

has an absolutely convergent Fourier series. Indeed by the Schwartz in
equality 

j:mw)xk\ = j:\(ikw)ri!(w)yk\ 
£\w\(Z\kr,MV!)m(L\Mz)m 

= e(w) VT \\y\L ^ e(w)(2d)< co. 

Hence y(t) is a continuous, 2jr/w-periodic function whose integral is 

LEMMA 2. The set Q{w) is closed in H(w) in the weak topology. The weak 
topology and the uniform topology are equivalent on Q(w). 

PROOF. For a definition of the weak topology see [4, p. 67]. By [4, p. 
294, Theorem 5] we see that a sequence xm e H(w) converges to x in the 
weak topology if and only if the fc-th Fourier coefficient (xm)k of xm con
verges to the A>th Fourier coefficient xk of x for k = ± 1 , ±3 , ±5 , . . . . 

file:////y/L
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Let {xm} be a sequence in Q(w) which converges weakly to a limit 
x e H(w). For m = 1, 2, 3, . . . there are functions ym e H(w) with \\ym\\w 

g VTfif such that (xm)k = rM(Jm)k for * = ±3 , ±5 , . . . . 
Now the set (j>ei/(w): Ĥ Ĥ  ̂  V 2 d) is compact in the weak topology. 

Hence there is a function ye H(w) with \\y\\w ^ ^ T d such that some 
subsequence {ym/} of {j^} converges to y in the weak topology. Since 
{(xm)k} is a convergent sequence for fc = ± 3, + 5, . . . , we see that 
(*nòk -* Tk(w)yk o n t r ie whole sequence. But (xm)k -• xÄ as well. Thus, 
** = r*(w)A- Also xi is real and ^ <; ̂  = x_x = limm_^00(iw)1 <; tf2-
Thus x 6 Q{w). Since ö(w) contains all its limit points, it must be closed. 

To see that the uniform and weak topologies are equivalent on Q(w), 
let {xm} be a sequence in Q(w). Suppose that {xm} converges uniformly 
to a limit x e Hc(w). From equation (1) it is clear that (xm)k -• xk as m -> oo 
for A: = + 1 , ±3 , . . . . Thus xm converges weakly to x e ß(u>). Converse
ly, suppose that {xm} converges weakly to x e Q(w). Let 

ra(N) = [ s r,(w)2]i/2. 
\k\>N 

Then /^(iV) -> 0 as N -> oo. Then for all f 

1 (̂0 - x(t)\ :g Ì 2 l(*J* - **l + 4- L PJ* - *J 
* k odd £ k odd 

\k\^N \k\>N 

è -y E l(*J* - **l + -y S r̂ K-Pm)* - ÄI 
^ k odd £ k odd 

\k\^tf \k\>N 

1 2] " - ^ _ ^ i J_ y 2 
£ k odd I 

^ 4 - 2 P J * - ^ l + 2/T„(iV>/ 

where we have defined ym and j ; in the obvious way and used the Schwartz 
inequality and the Parse val equality. In the final estimate given above, 
the last term may be made small independently of m and, for a given N, 
the first term may be made arbitrarily small by choosing m sufficiently 
large. Thus xm -• x uniformly. 

LEMMA 3. The hysteresis operator n is a continuous map from Q(w) (in 
the weak topology) to H(w) (in the L2-norm topology). 

PROOF. Let {*m} a Q(w) and let xm converge to x in the weak topology 
(and hence, by Lemma 2, in the uniform topology). Now x can be written 
in the form x(t) = a cos wt + v(t), ve Q2(w) so that x'(t) = —wa 
sin wt + v'(t) Now if vk = yk(w)yk for \\y\\w < y/~2 dand y e H(w), then 



ON EXISTENCE OF LIMIT CYCLES 715 

|v'(OI ̂ 4 - 2 \kw9„\ ^ 4 - 2 \kwrM\ \h\ 
£ kodd £ kodd \k\>\ \k\>\ 

* \ 
2 k2w2yl(w) 

. kodd 
L i*i>i 

1/2 11/2 

2 \h\2 

, kodd 
L IÄI>1 

^j-e(w)V2 L è e(w)d 

and by a similar argument |v(f)l ^ 6(w)t/. 
We wish to show that x is in the continuous domain of n. First, we 

note that \x(t)\ g a + |v(f)| ^ «2 + *(w)<* = V- L e t C = -b(w)d + 
(af - e2(w) d2/w2)l/2. Then Ç > 0 by (A4)(b). Let \a\ < Ç. Using the odd 
symmetry in the problem, we may assume that a ^ 0. Suppose that 
x(ta) = a for some fa and that x\ta) = 0. Then a cos wfa = a — v(ta) and 

W(Û 2 (a - v(ta))
2)1/2 =\wa sin wta\ 

Thus 

Hence 

a\ ^ a2 g e2</2/w2 + (a - v(fa))
2 

^ e2d2/w2 + (a + oc/)2. 

0 ^ e2d2/w2 - a\ + b2d2 + 2 bda + a2 = pia). 

Now p(a) has zeros —bd± (a\ — e2d2jw2)l/2. Since 

0 ^ a < C = -bd + (a\- e2d2/w2)1/2, 

we see that p(oc) < 0 which is a contradiction. Thus, if |x(r)| < £, then 
x'(t) T̂  0. By definition 2.2, x is of class J^(£, 97); and by (A4)(b), x is in 
the continuous domain of n. 

We have shown the (nx)(t) is a piecewise continuous function of t e R. 
Similarly, the functions (nxm)(t) are piecewise continuous and converge 
pointwise to (nx)(t). Since the sequence {(nxm)(t)} is also uniformly 
bounded, it follows from the Lebesgue dominated covergence theorem 
that (nxm)(t) converges to (nx)(t) in the L2-norm. 

THEOREM 1. Let (E) satisfy (A3) and (A4). Then (E) has a nontrivial 
solution in Q(w)for some w e [wl5 w2]. 

PROOF. We use the projections P and P* to write (E) in the form 

(Ei) u = -Pgn(u + v) 

(E2) v = -P*gn(u + v). 
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In (E2) add cP*gv to both sides. Notice that (A3) implies that (/ + cP*g)~1 

exists on H(w) and is a bounded linear map. Since P*gu = 0, then (E2) 
is equivalent to 

(/ + cP*g)v = -P*g[n(u + v) - c(u + v)], 

or 

(6) v = - ( / + cP*g)-1P*g[n(u + v) - c(u + v)]. 

For <j>eH{\) = H(w)\w=1 and w > 0 define a map K(w, <jj) as follows. 
The symbols z* = K(w, <j>)(t) mean 

z ( 0 ~ - 4 - £ $»Giikw)-^ 
2 kodd 1 + cGQkw) 

\k\>i 

Then (6) is equivalent to 

(7) v(0 = K(w, n(u(t/w) + v(^/w))(w0. 

From (E]) and the fact that Pgv = 0 we get u + Pgn(u) = Pg(n(u) — 
n(u + v) + cv). On taking Fourier coefficients we see that this is equivalent 
to satisfying 

GiiwY^a + N(a)a = -%- I e~iwt{n{u{t)) - n(u(t) + v(t)) + cv(t))dt, 

where u(t) = a cos wf. This expression can be rearranged to 

1 C2TC 

N(a) + GOV)-1 = — I e~is[n(a cos s) 
(8) ^ J o v 

— n(a cos .s + v(s/w)) 4- cv^/vv)]^. 

Define / (a, w) = JV(a) + G(/w)_1 and define 

1 C2x 

F(a, <f>)= — I e~*s [«(« cos s) — n(a cos 5 + ^(s)) + c<f>(s)]ds. 

Then (8) can be written as 

(9) J(a, w) = F(a, v(t/w)). 

Since z = J(a, w) is one-to-one by (A4), then there are continuous inverse 
function a(z) and w(z) defined on the set Q1 = J([wh w2] x [ah a2]). 
Define £?3 = {(z, <f>): zeQx and ^ e û 2 ( l ) } . For any (z, 0) e 0 3 define 

T(z, cj>) = (F(a(z), 0), K{w{z\ n(a(z) cos f + ftt))). 

By (7) and (9) we see that if (z, (f>) is a fixed point of T in ö3, then 

u(t) = a(z) cos w(z)r, v(0 = <f>(w(z)t) 
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solves (Ei) and (E2) and x = u + v solves (E). Moreover we will have 
a\ ^ a(z) :g a2 and H^ ^ w(z) ^ w2. 

To see that Thas a fixed point we first note that ûj is the homeomorphic 
image of a compact convex subset of R2 and Q2{\) is a compact and 
convex subset of H{\). By the definition of T and by Lemma 3 we see 
that T is continuous on Qz = Qx x ß2(l). Since \F(a{z\ <ji)\ < r(a(z), 
w(z)), then F(a(z)9 (j>) e û1# The A>th Fourier coefficient of K(w, n(a cos t + 

1 + c GQkw) n 

where y = n(a cos t + 0) — c(a cos f + ^) e #(1). By definition 2.3 
property (i) we see that \\y\\w < *J~2d. Let G(ikw)/(\ 4- c G(ikw)) = 
fk(w) e x P ( ^ ) - Then the A:-th Fourier coefficient of K(w, n(a cos t + $)) 
is ^(w)[jÄ exp(i3*)]. Thus we see that 

K(w(z), n(a(z) cos t + #)) e û2(l)-

We have shown that T: û 3 -> Q3, T is a continuous function, and ß 3 

is the homeomorphic image of a compact and convex set. By the Schauder 
Fixed Point Theorem (see [4, p. 456]) T has a fixed point. As explained 
above, this fixed point determines a solution of (E). 

IV. Example. Typically G(iw) is obtained from a differential equation 
or from a delay-differential equation as explained in §11. For this case 
the only requirement posed by (A3) is that the differential equation be 
real valued and of order 2 or more. This corresponds to the physical 
requirement that sufficient filtering should be present. We further require 
that the describing function determining equation (5) should have a 
solution pair (a0, w0), a0 should not be a point of discontinuity of n(x) 
nor in a hysteresis interval of n(x), and a0 should not be "too close" to 
any such point (see (A4)). 

Finally we require that n(x) is not "too nonlinear" when x is nearly a 
sinosoidal, i.e., x ^ a cos wt (see (A4)(d) and (c)). The assumptions (A4) 
(c) and the bound on yk in (A3) are technical mathematical assumptions. 
In most examples they are easily satisfied. 

As a specific example to illustrate how the hypothesis may be checked 
consider the system 

(10) / " + If + 4/ + 6y + n(y) = 0 

where n(y) is the relay with dead zone depicted in Figure 2. Note that 
c = 0 and d = 1 for this nonlinearity. The describing function for n(y) 
(see [5]) is 
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Figure 2. Relay with Dead Zone 

N(a) = I ™ 
0 

H-ùTT***" 
ifO ^ a < 0.1 

Equation (5) is, in this case, iw(4 — w2) + (6 — 2vv2 + iV(a)) = 0. Hence 
w = 2. There are two solutions for a, namely a0 = .62851 and a0 = 
.10129. The second of these is too close to the discontinuity a\ = 0.1 
of n(y) and must be rejected. 

It is easy to compute 

b(w) = {V ([w(2k + 1)]6 - 4[w(2k + l)]4 - 8[w(2Jfc + 1)P + So)"1)1'2 

and a similar formula for e(w). These expressions can be evaluated 
numerically. Typical values are 

6(2) = .007136, e(2) = .045030 

Z>(1.98) = .007367, e(1.98) = .046233, 

0(2.02) = .006920, e(2.02) = .044312. 
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After a small amount of numerical experimentation the authors guessed 
that H>! = 1.98, w2 = 2.02, ax = .56 and a2 = .68 should work. With 
ai, a2, W\ and w2 tentatively assigned these values we start checking 
hypothesis. First (A3) is automatic since c = 0. Assumption (A4)(a) is 
true by the choice of a0. It can be verified numerically that (b) is clearly 
true. For (c) we note that 

- ^ I m [GOV)"1] = 4 - 3w2 < 0 

when M > V4/3 = 1.1547 . . . . Moreover N'(a) < 0 on a\ ^ a g a2, 
so 

(j^Im[G(iwy^N'(a) * 0 

when ax ^ a g a2 and w ^ w ^ w2. Hence (c) is true. 
Conditions (d) and (e) are a bit more complicated to verify. First note 

that |v(0l ^ db(w). So by the results in [9, §IV] we can estimate r by 
r(a, w) ^ E(a, b(w)) where 

4 / 7 2 e + e2 \2 \1 / 2 

£ ( a ' e ) = ^VV Va 2 - -o i + V a 2 - ( . i + £ ) 2 i + £) ' 
With this information (e) can be verified numerically. Typical values 
satisfy E(w, a{) g .154225 and E(w, a2) g .095004 for w ^ w ^ w2. 

Since the hypothesis are all true, Theorem 1 applies. By that result 
there is a solution y(t) = a cos wt + v(t) where we [1.98, 2.02], a e 
[.56, .68], Pv = 0 and |v(f)l ^ .007367 for all t e R. 

Our theoretical results were checked by numerical simulations of 
solutions of (10). A periodic solution, which seems to be asymptotically 
stable, was found. Figure 3 is a graph of the numerical approximation 
to the solution y(t) using initial conditions y(0) = .635, y'(0) = 0 and 
y"(0) = 2.53. As can be seen, the solution quickly settles into a nearly 
sinosoidal oscillation. From the numerical simulations it is possible to 
estimate that the periodic solution has amplitude a = .6284 and period 
T £ 3.1438 so that w s 1.9986. If yp(t) is the periodic solution simulated 
and Up(t) = .6284 cos (1.9986 r), then the numerical data indicates that 

\yPit) - up(t)\ ?i .0075, 

\y'p(t) - u'p(t)\ ^ .0278, 

and 

\y"p(t) - u"p(t)\ ^ .0899 

for all t e R. 

In this example the amplitude of the sinosoidal component of the actual 
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periodic is not predicted very well, i.e., we can say only that .56 < a < 
.68. However the other theoretical predictions are in excellent agreement 
with the numerical simulation. 
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