ON THE S-EQUIVALENCE OF SOME GENERAL SETS OF MATRICES

PATRICK W. KEEF

Abstract

To help classify the set of square matrices over a ring R under the relation of S-equivalence there is defined a module A_{V} together with a pairing on its torsion submodule, which is referred to as the Seifert system of V. It is shown that if R is a field, or R is a PID and det ($t V-V^{\prime}$) has content 1, then the Seifert system characterizes an S-equivalence class. Furthermore, over a field S-equivalence is reducible to the notion of congruence.

1. Introduction. Two square matrices over a ring R are called S-equivalent if one can be derived from the other by a sequence of the following operations (or their inverses);
(1.1) Congruences, i.e., replacing V by $P V P^{\prime}$, with P unimodular over R,
(1.2) Row and column enlargements, i.e., replacing V by,

$$
\text { (i) }\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & a & b \\
0 & c & V
\end{array}\right] \text { or (ii) }\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & a & b \\
0 & c & V
\end{array}\right]
$$

To help classify matrices under this relation, we define a module A_{V} over the ring $R\left[t, t^{-1}\right]$, together with a pairing on its torsion submodule, which will be an invariant of the S-equivalence class of V. We refer to this as the Seifert system for V.

The geometric aspects of the study of S-equivalence have principally been developed in the work of Levine [5, 6, 7]. If $K \subseteq S^{2 n+1}$ is an odd dimensional knot, then any Seifert surface for K determines an integral matrix, called a Seifert matrix. S-equivalence can in this case be interpreted as the matrix theoretic analogue of adding or subtracting handles to these surfaces. S-equivalence actually characterizes the so-called simple embeddings (see Kearton [3]). The module A_{V} then corresponds to the integral homology of the universal abelian cover of $S^{2 n+1}-K$, whose pairing is defined geometrically in Blanchfield [1].

Seifert matrices for knots can algebraically be characterized by the condition $\operatorname{det}\left(V-e V^{\prime}\right)= \pm 1$, where e is either +1 or -1 . These matrices have been classified algebraically by Trotter [10, 11]. The results of
this paper are generalizations of theorems of his. The present treatment has several advantages, though. It applies also to Seifert matrices for links in S^{3} (see Keef [4]). In addition, the methods used here are considerably more elementary, although the general outline remains much the same. Finally, in the knot case it can be shown that multiplication by $1-t$ is an automorphism of A_{V}, a fact which has a central position in previous studies. The theorems in this paper will be proven without reference to this map, which is not in general either one-to-one or onto.
2. The Seifert system. We will assume all rings are integral domains. If R is a ring, we let R^{m} denote the set of all m by 1 matrices (column vectors) over R, and let R^{\prime} be the field of fractions of R. We write $R C$ for the group ring over R of the infinite cyclic group generated by t, written multiplicitively. So $R C \cong R\left[t, t^{-1}\right]$, the ring of Laurent polynomials over R. Clearly $R C^{\prime}=R^{\prime}(t)$. Let denote the conjugation on $R C$ which interchanges t and t^{-1}.

If V is a square matrix over R, we let $D(V)=\operatorname{det}\left(t V-V^{\prime}\right)$ and $E(V)=$ $t V-V^{\prime}$. It is easy to verify that $D(V)$ is, up to multiplication by units of $R C$, an invariant of the S-equivalence class of V. The relation $E(V)=$ $-t \overline{E(V)^{\prime}}$ is also easily checked.

In order to construct some algebraic invariants of an S-equivalence class, we begin with some general considerations. Suppose S is a ring with a conjugation -, and $u \in S$ is a unit. A matrix M over S will be called u-Hermitian if $u \bar{M}^{\prime}=M$. Clearly $E(V)$ is $(-t)$-Hermitian over ${ }^{\prime} R C$. We let A_{M} denote the module $S^{m} / M S^{m}$, and $T A_{M}$ denote its submodule of S-torsion. We define a pairing on $T A_{M}$, which takes its values in S^{\prime} / S as follows: if $x, y \in S^{m}$ project into $T A_{M}$, then there exists $a, b \in S^{m}$ satisfying $M a=r x, M b=s y$. Let $[x, y]=\bar{b}^{\prime} M a / r \bar{s} u \in S^{\prime}$. To show this is independent of the choices of a, b, r and s, we note that,

$$
\begin{align*}
\bar{b}^{\prime} x / \bar{s} u & =\bar{b}^{\prime} M a / r \bar{s} u=\bar{b}^{\prime} \bar{M}^{\prime} a / r \bar{s} \\
& =\overline{M b^{\prime}} a / r \bar{s}=\bar{y}^{\prime} a / r \tag{2.1}
\end{align*}
$$

Observe further that if $x=M a$ (so $r=1$) or $y=M b$ (so $s=1$), then $[x, y] \in S$. This implies that we may view [,] as a pairing on $T A_{M}$ with values in S^{\prime} / S.

Definition 2.2. By the Seifert system of M we will mean the module A_{M} together with this pairing on $T A_{M}$. The Seifert systems of M and N are isomorphic if there is an isomorphism of A_{M} and A_{N} which restricts to an isometry of their S-torsion submodules.

We next consider the behavior of the Seifert system under a change of ground rings. Suppose S and S_{0} are rings with conjugations, and $f: S \rightarrow S_{0}$ is a homomorphism which preserves these conjugations. If M is a u-Hermi-
tian matrix over S, then $f(M)$ (the matrix obtained by mapping all M 's entries into S_{0}) is clearly $f(u)$-Hermitian over S_{0}. Furthermore, f induces a map $F: A_{M} \rightarrow A_{f(M)}$ by mapping $x \in S^{m}$ to $f(x) \in S_{0}^{m}$. If f is also injective, then it determines a map $f: S^{\prime} / S \rightarrow S_{0}^{\prime} / S_{0}$. Using this map an easy verification shows that the pairing [,] is preserved by F.

One particularly nice situation occurs when M is non-singular. In this case $T A_{M}=A_{M}$, and the following gives us a useful expression for [,].

Lemma 2.3 If M is a non-singular u-Hermitian matrix, then $[x, y]=$ $\bar{y}^{\prime} M^{-1} x$.

Proof. Suppose $M a=r x$. Therefore $a / r=M^{-1} x \in S^{\prime m}$, and so by (2.1), $[x, y]=\bar{y}^{\prime} a / r=\bar{y}^{\prime} M^{-1} x$.

If V is a square matrix over a ring R, we denote $A_{E(V)}$ by the simpler A_{V}, which we refer to as the Seifert system determined by V.

Proposition 2.4. If V and W are S-equivalent matrices over R, then the Seifert systems determined by V and W are isomorphic.

Proof. Since the argument varies only in minor detail from that in Trotter [11, p. 177-179], we will be content with an outline. It is easily verified that if Q is a unimodular matrix over $R C$, then $E(V)$ and $Q E(V) \bar{Q}^{\prime}$ give isomorphic Seifert systems. So if P is a unimodular matrix over R, and $W=P V P^{\prime}$ then $E(W)=P E(V) \bar{P}^{\prime}$, so their Seifert systems are isomorphic. If W is the row enlargement of 1.2 i , and,

$$
Q=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
t c-b^{\prime} & 0 & I
\end{array}\right]
$$

then it is easy to verify that $E(V)$ and $Q E(W) \bar{Q}^{\prime}$, and hence $E(V)$ and $E(W)$, determine isomorphic Seifert systems. A similar argument applies to column enlargements.

The remainder of the paper will be an investigation of the converse of (2.4). Specifically, it will be shown that if R is a field, or if R is a PID and the content of $D(V)$ (i.e., the gcd of its coefficients) is a unit in R, then the Seifert system completely characterizes the S-equivalence class of V.
3. S-equivalence with field coefficients. Throughout this section we let F be a field. S-equivalence over F will be shown to be equivalent to the notion of congruence.

Proposition 3.1. Any square matrix over F is S-equivalent to a matrix of the form,

$$
\left[\begin{array}{ll}
W & 0 \\
0 & 0
\end{array}\right] \text { with } W \text { non-singular. }
$$

Matrices in this form will be called reduced.
Proof. The following can actually be viewed as an algorithm for putting a matrix into reduced form. Let V be a square matrix over F. If V is nonsingular we are done. If not, there exists a non-singular matrix P such that the top row of $P V$ is identically zero. So $P V P^{\prime}$ has the form,

$$
\left[\begin{array}{ll}
0 & 0 \\
a & V_{0}
\end{array}\right]
$$

Note if $a=0$, then V is also congruent to,

$$
\left[\begin{array}{ll}
V_{0} & 0 \\
0 & 0
\end{array}\right]
$$

and we can start our process over with $V=V_{0}$. If $a \neq 0$, then V is congruent to a matrix of the form,

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & d & b \\
0 & c & V_{1}
\end{array}\right]
$$

and once again we can start our process over with $V=V_{1}$. Continuing as long as possible yields the result.

The reduced form can be used to analyse the algebraic structure of A_{V}, Clearly if V is the reduced matrix in (3.1), then $A_{V} \cong A_{W} \oplus F C^{k}$ (where k is the number of rows and columns of zeros). To help determine the structure of A_{W}, we let $R_{c}^{m} \cong R C^{m}$ denote the R submodule consisting of vectors whose entries are elements of R.

Lemma 3.2. If M and N are unimodular matrices over R of the same size, then $R C^{m} /(t M-N) R C^{m}$ is isomorphic as an R module to R^{m}, where the t automorphism is given by multiplication by $N M^{-1}$.

Proof. Clearly, mapping the standard basis for $R C^{m}$ to the standard basis for R^{m} produces a map $f: R C^{m} \rightarrow R^{m}$, which is clearly an R-linear isomorphism when restricted to R_{c}^{m}. Furthermore, if $s \in R_{c}^{m}$, then $f((t M-N) s)=N M^{-1} M s-N s=0$, and so since R_{c}^{m} generates $R C^{m}$ as an $R C$ module, we can define, $\bar{f}: R C^{m} /(t M-N) R C^{m} \rightarrow R^{m}$. Clearly \bar{f} is an isomorphism if we can show that $R C^{m}$ splits as. an R module into $(t M-N) R C^{m} \oplus R_{c}^{m}$. Since f is identically zero on the first summand and is an isomorphism on the second, their intersection is zero. An easy compu-
tation shows that $(t M-N) R C^{m}+R_{c}^{m}$ is an $R C$ submodule of $R C^{m}$, and since it contains R_{c}^{m}, which generates $R C^{m}$, the proof is complete.

We call attention specifically to the fact contained in the proof of (3.2) that $R_{c}^{m} \subseteq R C^{m}$ is mapped isomorphically onto $R C^{m} /(t M-N) R C^{m}$ under the natural map. The standard basis for R_{c}^{m} therefore gives a basis for this module which we will often use (without specifically mentioning it) to determine matrix representations of bilinear forms or linear functions.

Corollary 3.3. If V is a non-singular matrix over F, then A_{V} is isomorphic as an F vector space to F^{m}, where the t-automorphism corresponds to multiplication by $V^{\prime} V^{-1}$.

Corollay 3.4. If V is a square matrix over F, then $D(V) \neq 0$ if and only if $\operatorname{dim}_{F} A_{V}$ is finite if and only if V is S-equivalent to a non-singular matrix. In this case, $\operatorname{deg}(D(V))=\operatorname{dim}_{F} A_{V}$, which equals the size of any non-singular matrix S-equivalent to V.

Theorem 3.5. Let

$$
V_{0}=\left[\begin{array}{ll}
W_{0} & 0 \\
0 & 0
\end{array}\right] \text { and } V_{1}=\left[\begin{array}{ll}
W_{1} & 0 \\
0 & 0
\end{array}\right]
$$

be matrices in reduced form. The following are then equivalent.
(1) V_{0} is S-equivalent to V_{1}.
(2) V_{0} is congruent to V_{1}.

Further, if these two matrices have the same size, then (1) and (2) are equivalent to
(3) W_{0} is S-equivalent to W_{1}, and
(4) W_{0} is congruent to W_{1}.

Proof. Clearly (4) implies (1), (2) and (3). Furthermore (2) and (3) imply (1). We now show (1) implies (4), which will conclude the proof. Note if

$$
V=\left[\begin{array}{ll}
W & 0 \\
0 & 0
\end{array}\right]
$$

is in reduced form, then clearly A_{W} is isometric to $T A_{V}$. By (2.4) there is an isometry of $T A_{V_{0}}$ and $T A_{V_{1}}$, so the proof will be complete once it is shown that an isometry of $A_{W_{0}}$ and $A_{W_{1}}$ implies that W_{0} and W_{1} are congruent.

Using the assumed isometry identify $A_{W_{0}}$ and $A_{W_{1}}$, and call the resulting module A. Note the two interpretations of A give two representations of A as a set of column vectors using (3.2). Observe further that if $i=0$ or 1 , $D\left(W_{i}\right)=\operatorname{det}\left(W_{i}\right) \operatorname{det}\left(t I-W_{i}^{\prime} W_{i}^{-1}\right)$. This implies that up to a constant $D\left(W_{i}\right)$ is the characteristic polynomial of the automorphism of A given by
multiplication by t, which is independent of the basis used to compute it. We call this common polynomial $D(A)$.

Let $a \in F$. By the theory of partial fractions $F(t)$ is isomorphic as an F vector space to $F\left[t, t^{-1},(t-a)^{-1}\right] \oplus L_{a}$, where L_{a} can be described as the set of all rational polynomial expressions h / g such that $\operatorname{deg}(h)<$ $\operatorname{deg}(g), g(0) \neq 0, g(a) \neq 0$. Define an F linear map $f_{a}: F(t) / F C \rightarrow F$ by setting it equal to zero on $F\left[t, t^{-1},(t-a)^{-1}\right]$, and letting it equal $h(a) / g(a)$ for $h / g \in L_{a}$.

Let A^{*} be the dual space of F linear functionals on A. Note maps h : $A \rightarrow A^{*}$ correspond to bilinear forms on A, and maps $h: A^{*} \rightarrow A$ correspond to bilinear forms on A^{*} (since $A^{* *}$ can be identified with A).

Suppose $a \in F$ satisfies $D(A)(a) \neq 0$. We define a bilinear form on A with values in F by combining the pairing [,] into $F(t) / F C$ with the map f_{a} into F, i.e., $(x, y)_{a}=f_{a}([x, y])$. If $W=W_{0}$ or W_{1}, and we consider the vector representation of A given by (3.2), we claim (, $)_{a}$ has matrix $\left(a W-W^{\prime}\right)^{-1}$. To see this observe that if $b, c \in F_{c}^{m}$ represent $x, y \in A$, then by (2. 3), $[x, y]=\bar{b}^{\prime} E(W)^{-1} c \in F(t) / F C$.

Note $E(W)^{-1}=\operatorname{adj}(E(W)) / D(W)$. This implies that all the entries of $E(W)^{-1}$ are in L_{a}, since $D(W)(a)=D(A)(a) \neq 0$ by supposition, $D(W)$ $(0)=\operatorname{det}\left(-W^{\prime}\right) \neq 0$ since W^{\prime} is non-singular, and $D(W)$ has a larger degree than any entry of $\operatorname{adj}(E(W))$. Since f_{a} when restricted to L_{a} is merely substitution by a, we have, $f_{a}([x, y])=b^{\prime}\left(a W-W^{\prime}\right)^{-1} c$ which establishes the claim.

Suppose there actually exists a pair of distinct non-roots of $D(A), r, s$ $\in F$. We then have a pair of bilinear forms on A, and hence a pair of adjoint maps $h_{r}, h_{s}: A \rightarrow A^{*}$. Let $g: A^{*} \rightarrow A$ be given by $(r-s)^{-1}\left(h_{r}^{-1}-h_{s}^{-1}\right)$. So g has matrix representation $(r-s)^{-1}\left(\left(r W-W^{\prime}\right)-\left(s W-W^{\prime}\right)\right)$ $=W . g$, in turn defines a bilinear form on A^{*} which also has matrix W.

We summarize this construction by noting that there is a bilinear form on A^{*} completely determined by the pairing [,], and with respect to one basis it has matrix W_{0} and with respect to another basis it has matrix W_{1}, and so W_{0} and W_{1} are congruent.

Assume now that $D(A)$ does not have two non-roots. Embed F in a field F^{\prime} where $D(A)$ does have two non-roots (say by adjoining an indeterminant). Consider the diagram:

By the naturality of the Seifert system under an extention of the ground ring, g^{\prime} exists as above. In fact, since g^{\prime} has matrix W, all of whose entries are in F, g^{\prime} can easily be seen to restrict to g as shown. g once again de-
termines a congruence class of matrices to which W_{0} and W_{1} must both belong, which therefore completes the proof.

Note that we only used S-equivalence in the above proof to establish an isometry between $A_{W_{0}}$ and $A_{W_{1}}$. Since the number of zero rows and columns in a reduced matrix V equals the rank of $A_{V} / T A_{V}$ as an $F C$ module, we have actually shown the following result.

Theorem 3.6. If V_{0} and V_{1} are square matrices over a field, then they are S-equivalent if and only if their Seifert systems are isomorphic.

We single out one fact established in the proof of (3.5).
Corollary 3.7. If V is a non-singular matrix over a field F, then there exists an F linear map $g: A_{V}^{*} \rightarrow A_{V}$, whose matrix with respect to the basis for A_{V} given by the isomorphism $F_{c}^{m} \cong F C^{m} \rightarrow A_{V}$ and its dual basis in A_{V}^{*} is V. Furthermore, g does not depend on the way A_{V} is presented as the Seifert system of some matrix.
4. S-equivalence of knot-like matrices. Throughout this section we assume R is a PID. If V is a square matrix over R, then if we view it as a matrix over R^{\prime}, its Seifert system is given by the R^{\prime} vector space $R^{\prime} A_{V}$, for which all the results of the previous section apply.

Definition 4.1. A matrix V over R is called knot-like if the content of $D(V)$ (i.e., the gcd of its coefficients) is a unit in R.

Any Seifert matrix for a knot is knot-like over the integers. This can be seen by the relation $D(V)(e)= \pm 1$ where e is +1 or -1 , which is true for these matrices (see Trotter [11]).

Proposition 4.2. V is knot-like if and only if A_{V} is a torsion free R module of finite rank.

Proof. $\operatorname{By}(3.4), \operatorname{rank}\left(A_{V}\right)=\operatorname{dim}_{R^{\prime}}\left(R^{\prime} A_{V}\right)$ is finite if and only if $D(V) \neq$ 0 . So if $D(V) \neq 0$ we have an exact sequence,

$$
0 \longrightarrow R C^{m} \xrightarrow{E(V)} R C^{m} \longrightarrow A_{V} \longrightarrow 0 .
$$

If we tensor this with $R_{p}(=R / p R$, where $p \in R$ is a prime $)$ we get

$$
0 \longrightarrow \operatorname{Tor}_{R}\left(R_{p}, A_{V}\right) \longrightarrow R_{p} C^{m} \xrightarrow{E(V)} R_{p} C^{m} \longrightarrow R_{p} \otimes A_{V} \longrightarrow 0 .
$$

So A_{V} has no p-torsion if and only if $E(V)$ is non-singular over $R_{p} C$ if and only if $p \nmid D(V)$. Letting p vary over all primes in R gives the result.

Proposition 4.3. If V is a square matrix over R, and the content of $D(V)$ is square-free (e.g., if V is knot-like), then V is S-equivalent to a nonsingular matrix.

Proof. Assume V is singular. Then V is congruent to a matrix V_{0} whose top row is zero. If $p \in R$ divides the first column of V_{0}, then clearly $p^{2} \mid D(V)$, which cannot happen. So V_{0} is in turn congruent to a matrix V_{1} which can be row reduced. Continuing as long as possible yields the result.

Corollary 4.4. V is S-equivalent to a unmodular matrix if and only if A is a finitely generated free R module.

Proof. If V is S-equivalent to a unimodular matrix, then by (3.2), A_{V} has the stated form. Conversely suppose $A_{V} \cong R^{m}$. By (4.2) V is knot-like, so by (4.3) we may assume it is non-singular. If $p \in R$ is a prime, then $R_{p} \otimes A_{V} \cong R_{p}^{m}$, so by (2.4) (with $F=R_{p}$), V is non-singular $\bmod p$, i.e. $p \nless \operatorname{det}(V)$. Letting p vary over all primes gives the result.

We are heading towards the following result on knot-like matrices.
Theorem 4.5. Two knot-like matrices over a PID are S-equivalent if and only if their Seifert systems are isomorphic.

Before we can enter into its proof we will need some auxiliary concepts and Lemmas.

Assume M is a finite dimensional R^{\prime} vector space. A free R module $N \cong$ M is called a lattice if $R^{\prime} N=M$. Let $N^{*} \subseteq M^{*}$ be the set of all $f \in M^{*}$ satisfying $f(N) \cong R . N^{*}$ is called the dual lattice of N. If $\left\{a_{i}\right\}$ is a basis for N over R (which clearly also must be a basis for M over R^{\prime}), then the dual basis $\left\{a_{i}^{*}\right\}$ for M^{*} must clearly also be a basis for N^{*} over R.

Suppose $g: M^{*} \rightarrow M$ is some fixed homomorphism. We call a lattice $N \cong M$ integral if $g\left(N^{*}\right) \subseteq N$. An integral lattice N determines a congruence class of matrices over R as follows: if $\left\{a_{i}\right\}$ and $\left\{a_{i}^{*}\right\}$ are dual basis for N and N^{*} respectively, then the matrix for g with respect to these basis has all of its entries in R, since $g\left(N^{*}\right) \subseteq N$, and is clearly well defined up to a congruence over R. We call a representative of this congruence class "the" matrix generated by N and denote it by V_{N}. The ambiguity in this terminology will be offset by the fact that a basis for N will usually be implied.

Assume V is a non-singular knot-like matrix over R. By (3.7) there is a homomorphism $g:\left(R^{\prime} A_{V}\right)^{*} \rightarrow R^{\prime} A_{V}$. Furthermore, if we consider the lattice $N_{V} \subseteq R^{\prime} A_{V}$ given by the image of the maps $R_{c}^{m} \cong R_{c}^{\prime m} \cong R^{\prime} A_{V}$, we note that N_{V} is integral and generates the matrix V. The above discussion now makes the following obvious.

Proposition. 4.6. Suppose V and W are non-singular knot-like matrices whose Seifert systems are isomorphic. We identify A_{V} and A_{W} using this isomorphism and call the resulting module A. If $N_{V}=N_{W}$, then V and W are congruent.
4.4 and 4.6. now imply the following result.

Corollary 4.7. If V and W are unimodular matrices over R, then they are S-equivalent if and only if they are congruent.

The strategy of the proof of (4.5) will be to identify A_{V} and A_{W} as above, then to augment N_{V} and N_{W} in some reasonable fashion until they agree and then invoke (4.6). So we assume we have an $R C$ module $A \subseteq R^{\prime} A$ and a homomorphism $g: R^{\prime} A^{*} \rightarrow R^{\prime} A$. We call an integral lattice $N \subseteq A$ admissible if and only if it generates A as an $R C$ module, and V_{N} in knotlike.

Suppose $N, N^{\prime} \subseteq R^{\prime} A$ are lattices. We choose bases $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ for N and N^{\prime}, and let $d\left(N, N^{\prime}\right)$ equal the determinant of a change of basis matrix from $\left\{b_{i}\right\}$ to $\left\{a_{i}\right\}$. Note $d\left(N, N^{\prime}\right)$ is only determined up to multiplication by units of R. If $p \in R$ is a prime, and $R_{(p)}$ is the local ring at p, then $R_{(p)} N$ and $R_{(p)} N^{\prime}$ can be viewed as lattices over $R_{(p)}$. If $o()$ is the valuation determined by p, then $o\left(d\left(R_{(p)} N, R_{(p)} N^{\prime}\right)\right)=o\left(d\left(N, N^{\prime}\right)\right)$.

Lemma 4.8. Let N be an admissible lattice. An integral lattice N^{\prime} which generates A as an R C module is admissible if and only if $d\left(N, N^{\prime}\right)$ is a unit of R.

Proof. Let P be a change of basis matrix from a basis for N^{\prime} to one for N. Clearly $D\left(V_{N^{\prime}}\right)=\operatorname{det}(P)^{2} D\left(V_{N}\right)$, so the content of $D\left(V_{N^{\prime}}\right)$ is 1 if and only if $\operatorname{det}(P)$ is a unit.

The augmentation of our admissible lattices is based on the following operation called transferral of factors.

Lemma 4.9. If a and k are relatively prime in R, then the matrices,

$$
V_{0}=\left[\begin{array}{lcc}
x & a & q^{\prime} \\
k w & k^{2} y & k s^{\prime} \\
p & k r & V
\end{array}\right] \text { and } V_{1}=\left[\begin{array}{ccc}
k^{2} x & a & k q^{\prime} \\
k w & y & s^{\prime} \\
k p & r & V
\end{array}\right]
$$

are S-equivalent.
This is proven in Trotter [11]. In going from V_{0} to V_{1} we say we are transferring a factor from the second row to the first column. We would like to relate this to our admissible lattices. Suppose $N \subseteq R^{\prime} A$ is an integral lattice which has as a basis $\left\{c_{i}\right\}$, which generates the matrix V_{0} above. If we let N^{\prime} be the lattice generated by $k^{-1} c_{1}, k c_{2}, c_{3}, \ldots, c_{m}$, then clearly $V_{1}=V_{N^{\prime}}$.

Lemma 4.10. N is admissible if and only if N^{\prime} is,
Proof. By (4.8) V_{0} is knot-like if and only if V_{1} is. The lemma therefore reduces to showing that $A_{V_{0}}=A$ if and only if $A_{V_{1}}=A$. We show
$N^{\prime} \cong A_{V_{0}}, N \cong A_{V_{1}}$ being handled similarly. $A_{V_{0}}$ is presented by $E\left(V_{0}\right)$, and examining its second column (and using (a, k) $=1$), we see that $t c_{1} \in k A_{V_{0}}$, and so $k^{-1} c_{1} \in A_{V_{0}}$, which implies the result.

Proof of 4.5. We assume V and W are non-singular knot-like matrices, and $N_{V}, N_{W} \subseteq A$. Let $d=d\left(N_{V}, N_{V} \cap N_{W}\right)$. Since $N_{V} \cap N_{W} \subseteq N_{V}, d$ is an element of R. Note $d\left(N_{W}, N_{W} \cap N_{V}\right)=d\left(N_{W}, N_{V}\right) \cdot d\left(N_{V}, N_{V} \cap N_{W}\right)$ $=d$ by (4.8). We induct on the sum of the exponents in a prime factorization of d. Clearly if d is a unit $N_{V}=N_{W}$, and so by (4.6) V and W are congruent. So assume p is a prime which divides d.

By the invariant factor theorem, we can select bases b_{1}, \ldots, b_{m} and c_{1}, \ldots, c_{m} for N_{V} and N_{W} respectively satisfying $c_{i}=r_{i} b_{i}$ for some $r_{i} \in R^{\prime}$. Assume these are ordered so that $o\left(r_{i}\right)>0$ for $i \leqq s$, $o\left(r_{i}\right)=0$ for $s<i \leqq q$, and $o\left(r_{i}\right)<0$ for $i>q$. We let S_{V} and S_{W} be the free $R_{(p)}$ modules generated by the b_{i} and c_{i} respectively for $i \leqq s, U$ be the $R_{(p)}$ module generated by the b_{i} and c_{i} for $s<i \leqq q$, and T_{V} and T_{W} be the $\boldsymbol{R}_{(p)}$ modules generated by the remaining b 's and c 's. So $S_{W} \subseteq p S_{V}$ and $T_{V} \subseteq p T_{W}$. Let $S_{W}^{*}, S_{V}^{*}, U^{*}, T_{W}^{*}$ and T_{V}^{*} be the $R_{(p)}$ modules generated by the corresponding elements of the dual bases $\left\{b_{i}^{*}\right\}$ and $\left\{c_{i}^{*}\right\}$ for $R^{\prime} A^{*}$ (e.g., S_{V}^{*} is generated by $b_{i}^{*}, i<s$). So $S_{V}^{*} \cong p S_{V}^{*}$ and $T_{W}^{*} \cong p T_{V}^{*}$.

Assume now that $s \geqq m-q$. If $m-q>s$, the same proof applies, reversing the roles of V and W.

Since $g\left(N_{V}^{*}\right) \subseteq N_{V}$ and $g\left(N_{W}^{*}\right) \subseteq N_{W}, V \bmod p$ must have the form,

$$
\left[\begin{array}{ccc}
0 & 0 & C \\
0 & B & Z \\
D & X & Y
\end{array}\right]
$$

where the three blocks of rows (respectively columns) correspond to S_{V}, U and T_{V} (respectively S_{V}^{*}, U^{*} and T_{V}^{*}). Observe the upper left corner must actually be divisible by p^{2}.

We claim that C and D are not both square and non-singular. Assume they are. $R_{p} \otimes A$ is then presented by the matrix

$$
\left[\begin{array}{ccc}
0 & 0 & t C-D^{\prime} \\
0 & t B-B^{\prime} & t Z-X^{\prime} \\
t D-C^{\prime} & t X-Z^{\prime} & t Y-Y
\end{array}\right]
$$

The image of T_{V} under the natural map $R_{(p)} A \rightarrow R_{p} \otimes A$ is evidently isomorphic to the $R_{p} C$ module presented by $t D-C^{\prime}$ which is non zero by (3.2). However $T_{V} \subseteq p T_{W}$ implies that it must in fact be zero.

We now assume D is not a square non-singular matrix. If C is the one which is not non-singular we apply a similar proof, switching rows and columns.

Since D is non-singular and $s \geqq m-q$, we may perform column operations on the first s columns of V so that the resulting matrix has a first column divisible by p. If we apply the corresponding row operations to V the result is a matrix V_{1} congruent over R to V. The first row of V_{1} cannot be divisible by p, since $p \nmid D(V)$, so clearly we can apply row and column operations to the last $m-q$ rows and columns of V_{1} to produce a matrix V_{2}, congruent to V, whose first column is divisible by p, whose first diagonal entry is divisible by p^{2} and whose first row has only one entry not divisible by p. Therefore we see that it is possible to transfor a factor out of a column of V corresponding to some element of S_{V}^{*} and into a row corresponding to some element of T_{V}.

Consider the lattice N^{\prime} determined as in (4.10), where $V_{N^{\prime}}$ is the result of transferring the fector. N^{\prime} is evidently admissible, and it is easy to see that $o\left(d\left(N^{\prime}, N^{\prime} \cap N_{W}\right)\right)<o(d)$, while all the other primes in $d\left(N^{\prime}\right.$, $N^{\prime} \cap N_{W}$) and d occur to equal powers.

This completes the proof of (4.5).
The parallel between Seifert matrices for knots and knot-like matrices can be extended (see Keef [4]). For instance it can be shown that any pair of S-equivalent knot-like matrices whose determinants are a prime are in fact congruent. Further extensions are limited by the fact that $1-t$ is not an automorphism of A_{V} for a general knot-like matrix.

References

1. R.C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. Math. 65 (1957), 340-356.
2. R.H. Crowell, and R.H. Fox, Introduction to Knot Theory, New York: Blaidsdell 1963.
3. C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 202 (1975), 141-160.
4. P.W. Keef, On the S-equivalence of Seifert matrices for links, Ph.D. thesis, Princeton University (1980).
5. J. Levine, An algebraic classification of some knots of codimension two, Comm. Math. Helv. 45 (1970), 185-198.
6. -_, Knot modules I, Trans. Amer. Math. Soc. 229 (1977), 1-50.
7. -, Polyonomial invariants of knots of codimension two, Ann. Math. 84 (1966), 537-554.
8. H. Seifert, Über das Geschlecat von Knoten, Math Ann. 110 (1934), 571-592.
9. -, Die Verschlingungsinvarianten der zyklischen Knotenüberlagerungen, Abh. Math. Sem. Hamburg Univ. 11 (1936), 84-101.
10. H.F. Trotter, Homology of group systems with application to knot theory, Ann. Math. 76 (1962), 464-498.
11. -, On S-equivalence of Seifert matrices, Inv. Math. 20 (1973), 173-207.
