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ON THE STRUCTURE OF TORCH RINGS 

ALBERTO FACCHINI 

Torch rings appeared for the first time in the literature, under the 
name of ?-rings, when it was tried to characterize the commutative rings 
whose finitely generated modules are direct sums of cyclic modules ([8] ; 
see [4] for an exposition of the history of the problem and the techniques 
with which it has been solved). Later torch rings have also appeared in 
[10] in the study of the commutative rings R with the property that the 
total ring of fractions of R/I is self-injective for all ideals / of R. In this 
paper we study the structure of torch rings and give an example of a 
torch ring which is not a trivial extension. This answers a question posed 
by T. Shores and R. Wiegand in [8]. 

A commutative ring R with identity is a torch ring if 1) R is not local, 
2) the nilradical N(R) of R is a prime ideal and is a non-zero uniserial 
i?-module, 3) R/N(R) is an //-local domain, and 4) R is a locally almost 
maximal Bézout domain (see [4] for the terminology.) Shores and Wiegand 
constructed a torch ring which was a trivial extension. Recall that an 
extension of the ring S by the 5-module N is an exact sequence of abelian 
groups 

0 —> TV — -R-^S —> 0, 

where R is a ring and p is a ring homomorphism such that r-i(x) = 
i(p(r)-x) for all r e R, x e N. An extension 

0 —> N-1-* R ^ S —>0 

of the ring S by the 5-module N is trivial if there exists a ring homomor
phism g: S -* R with p og = \s [1, Ch. 16]. 

Shores and Wiegand [8] have asked whether every torch ring R was a 
trivial extension of the ring R/N(R) by its nilradical N(R). In the first 
part of this paper we construct a torch ring R of characteristic/?2, where 
p is a prime; if R has characteristic p2, the domain R/N(R) must have 
characteristic /?, so that there do not exist homomorphisms R/N(R) -> R. 
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Thus R is not a trivial extension of R/N(R) and this example settles 
Shores and Wiegand's question in the negative. 

In the second part of this paper we study the torch rings of prime 
characteristic p. If R is a torch ring, then R/N(R) is an almost maximal 
Bézout domain with a maximal ideal M such that (R/N(R))M is a maximal 
valuation domain. Let us therefore fix a domain S of characteristic p 
and let us suppose that S is an almost maximal Bézout domain with a 
maximal ideal M such that SM is maximal. We prove that every torch 
ring R of characteristic p such that R/N(R) ^ S is a trivial extension of 
R/N(R) by N(R) if and only if every element of S has a p-th root in 5, 
that is if and only if the field of fractions of S is perfect. This is proved 
by making use of the cohomology theory for commutative algebras 
developed by André ([1]), Barr, Harrison and Quillen. The problem of 
the existence of torch rings of characteristic p which are not trivial ex
tensions is therefore equivalent to the problem of the existence of a non-
perfect field F with two independent valuations vi and v2, where vx is 
maximal and v2 is almost maximal. We do not know whether such a 
field can exist. Note that the completion of F with respect to v2 must be 
an algebraically closed field [2, Chap. 6, §8, Ex. 15]. In particular every 
field with two independent maximal valuations must be algebraically 
closed [9]. 

1. Example of a torch ring of characteristic p2. First of all let us prove 
a lemma that will often be useful in the sequel. 

LEMMA. Let S be a domain with field of fractions F and let N be an 
S-module. Let 

0—> N~^ R—> S—>0 

be an extension of S by N. Then R is a torch ring if and only if 
(i) S is a non-local almost maximal Bézout domain, and 

(ii) there is a maximal ideal M of S such that SM is maximal and N is 
a non-zero homomorphic image of FjSM. 

PROOF. Since R is an extension of S by TV, if TV is viewed as an ideal of 
R via /, TV2 = 0, so that TV £ N(R), where N(R) denotes the nilradical 
of R. Conversely, since S is a domain, N(R) g ker p = TV. Thus TV = 
N(R) and S ^ R/N(R). 

Now suppose R is a torch ring. Then (i) is trivial and by [4, Lemma 5.3], 
S has a maximal ideal M such that TV ^ NM. In particular SM is maximal 
and TV is a uniserial SM-module. Thus ESM(N), the 5M-injective envelope 
of N9 is an indecomposable SM-module. By [7, Prop. 1 and Th. 4] ESM(N) 

is a SM-homomorphic image of F. Hence N is an S^-submodule of a 
homomorphic image of F. Since TV is a torsion divisible S-module [4, 
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Lemma 5.3], TV is a homomorphic image of FjSM. This proves (ii). 
Let us show the converse. Since TV = N(R) and S ^ R/N(R), R is not 

local and N(R) is a prime ideal. The ring S is an almost maximal Bézout 
domain, and therefore it is //-local [3, Theorem 2.9], so that the S- and 
the SM-submodules of F/SM coincide [3, Lemma 2.7]. In particular TV 
is a uniserial ^-module. By localizing the exact sequence 0 -» TV -> R -> 
S -» 0 at the maximal ideals of R, it is easy to see that RM, £ SM, for 
every maximal ideal M' =£ M of R. Moreover, by localizing at M, we 
obtain the exact sequence 0 -> TVM -» RM -» SM -> 0. Since SM is maximal 
and TV is a homomorphic image of F/SM, it follows that SM and TV ^ TVM 

are linearly compact RM-moduÌQs, so that RM is a maximal valuation 
ring. Thus R is a locally almost maximal ring. Finally, since TV is a homo
morphic image of F/SM, TV is a divisible S-module, i.e., sN = N for all 
s e S, s j=- 0, so that TV = rN E rR for all r e i ? , r <£ TV. From this, the 
uniseriality of TV and the fact that S is Bézout, it follows that every finitely 
generated ideal of R is principal, i.e., R is a Bézout ring. Thus R is a 
torch ring. 

We are now ready to construct our example. Let p be a prime number 
and let J be a cardinal such that f*° = £. Let F be the algebraically closed 
field of characteristic p and cardinality £. Then [9, Theorem A] F is 
multiply maximally complete, i.e., F has two subrings V\ and F2 which 
are maximal valuation domains with field of fractions Fand no common 
non-zero prime ideal. Let M\ and M2 be the maximal ideals of V\ and 
V2 respectively and set S = V1 f] V2. Then [5, Theorem 22.8] S is a 
Prüfer domain with field of fractions F and maximal ideals Mx f| S and 
M2 n S. Furthermore S is Bézout [4, Prop. 3.8] and A-local [5, Ex. 22.6]. 
The localizations of S at Mx f| S and M2 f] S are Vx and F2 respectively. 
Therefore S is a /z-local locally almost maximal domain, i.e., an almost 
maximal Bézout domain [3, Theorem 2.9]. 

Let W2{F) be the ring of Witt vectors of length two over F [6, Ch. 
3.4], and let T be the subring of W2(F) consisting of all Witt vectors with 
first component in S. Thus F is the cartesian product S x F with the 
following sum and product: 

(*i, Ji) + (x* yà = (*i + x2, yi + J2 - g ( f )* i* ! - / ) 

(*1> .Fl)(*2> 72) = (*1*2> ^ 2 + *4>>l) 

for all *!, x2 e 5, 7i, >'2 e F. Then Fis a commutative ring of characteristic 
p2 and / = {(0, y) \y e A/j} is an ideal of F. Set i? = T/L Since /? = (0, 1) 
in T, R is a commutative ring of characteristic p2. The nilradical TV(F) 
of F is TV(F) = {(0, y) \y e F}, so that N(R) = N(T)/I and R/N(R) ^ 
T/N(T) ^ S. Thus R is an extension of S by N(R) = TV(F)/F As an 
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S-module, F is isomorphic to N(T) via the isomorphism that maps y e F 
into (0, yP) G N{T) (note that every element of F has a /?-th root because 
F is algebraically closed.) This isomorphism induces an isomorphism 
F/M1 ^ N(T)/I. Thus N(R) ^ F/M1 is a homomorphic image of F\VX. 
By the Lemma, R is a torch ring. Thus R is a torch ring of characteristic 
p2; in particular R is not a trivial extension. 

2. Torch rings of prime characteristic p. In the previous section we 
have shown that there exist torch rings R or characteristic /?2, where p 
is a prime, and those rings cannot be trivial extensions of S = RIN(R). 
In that case the sequence 0 -> TV(̂ ) -> i? -> 5 -+ 0 is never a split sequence 
of abelian groups. When the characteristic of R is p, the situation is 
different, because R contains the field with p elements, and therefore 
the exact sequence 0 -> N(R) ->/£-> RjN(R) -> 0 is always a split exten
sion of abelian groups. 

If R is a torch ring of characteristic p, by our Lemma S = R/N(R) is 
a non-local almost maximal Bézout domain and has a maximal ideal 
M such that SM is a maximal valuation domain. Conversely let us fix 
a Bézout domain S with these properties. By the Lemma if E is any 
proper *SM-homomorphic image of the field of fractions of 5, the trivial 
extension of S by E is a torch ring of characteristic p. We want to know 
if there exist torch rings R of characteristic p with R/N(R) ^ S which 
are not trivial extensions. The following theorem shows that this happens 
if and only if the field of fractions of S is not perfect. 

THEOREM. Let S be a non-local almost maximal Bézout domain and let 
F be the field of fractions of S. Suppose S has a maximal ideal M such 
that SM is maximal. Then the following are equivalent: 

(i) every torch ring R of characteristic p with R/N(R) ^ S is a trivial 
extension of S, and 

(ii) F is a perfect field. 

PROOF, (i) => (ii). We shall make use of the cohomology theory for the 
commutative algebras. Suppose that every torch ring of characteristic p 
with R/N(R) ^ S is a trivial extension. Let E be the 5M-module FjMSM. 
Then by the Lemma of §1 every extension of S by Eis a torch ring, because 
E i s a homomorphic image of FjSM. By [1, Prop. 16. 12] H\SP, S, E) = 
0, where SP denotes the subring of S consisting of the /?-th powers of all 
elements of S. Since E ^ ESM(SM/MSM) is an SM-module [7, Th. 4], 
H^SP, S, E) s H\(SMY, SM, E) [1, Cor. 5.27], and since E is SM-
injective, m((SM)P, SM, E) s UomSM(H1((SM)P, SM, SM), E) [1, Lemma 
3.21]. But in our case E is a cogenerator in the category of all *SM-modules, 
and therefore Hi((SM)P9 SM, SM) = 0. In particular 

®SM F s H1((SM)P, SM,F)^ H^FP, F, F) 
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[1, Lemma 3.20 and Th. 5.27]. But then F is a separable extension of its 
subfield FP [1, Prop. 7.13], i.e., F = FP is perfect. 

(Ü) => (i). if F is a perfect field, every element of S has a /7-th root in 
S. Let i? be a torch ring of characteristic p with R/N(R) ^ 5. Let ^ be 
the subset of R consisting of the p-th powers of all elements of R. Then 
RP is a subring of R and RP f| N(X) = 0 because N(R) is prime and 
N(R)2 = 0. Hence RP © N(7?) is a subring of R. Now if r e R, there 
exists an element i\ e R such that r = rp

x mod N(R) because in R/N(R) ^ 
S every element has a /7-th root. In particular r e RP ® N(R). We have 
thus proved that R = Rp © JV(/?), i.e., i? is a trivial extension of RP by 
7V(7?). Note that the surjective ring morphism R -> S with kernel N(R) 
induces a ring isomorphism RP ^ S. 

Let us conclude with some comments. If R is a torch ring of non-zero 
characteristic, then R/N(R) must be a domain of characteristic /?, i.e., 
/7 G 7V(/?), so that /?2 = 0. Therefore every torch ring has characteristic 
either 0 or p or /?2, where p denotes a prime, and we have studied the 
cases of characteristic p and p2. Let us briefly consider the case of the 
torch rings of characteristic zero. If we could prove that Hi(Z, V, V) = 0 
for all maximal valuation domains V of characteristic 0 (here Z is the 
ring of integers), then it would follow, as in the proof of the Theorem, 
that every torch ring of characteristic zero is a trivial extension. We are 
only able to prove that H^Z, V, V) is a torsion F-module (#i(Z, V, V) ® 
F ^ //i(Q, F, F) where F is the field of fractions of V and Q is the field 
of rationals, and the last group is zero because F has characteristic zero 
[1, Prop. 7.13]). In the special case in which V is a discrete valuation 
ring (i.e., with divisibility group isomorphic to Z) then i /^Z, V, V) = 0. 
This can be seen from the exact sequence H2(Z, V, FjV) -> Z/i(Z, V, V) -> 
H\(Z, V, F) [1, Lemma 3.22]. Here the first group is zero by [1, Prop. 
32, page 332], the second group is a torsion K-module and the third one 
is torsion-free. Hence //i(Z, V, V) = 0 in this case. 
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