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MARKOV OPERATORS AND INVARIANT BAIRE FUNCTIONS 

ROBERT E. ATALLA 

ABSTRACT. Let X be a compact r2-space and Ta Markov operator 
on C(X), i.e., T ^ 0 and T\ = 1. We deal with Baire functions 
which are almost everywhere T-invariant, and focus on conditions 
under which such Baire functions belong to the smallest system of 
Baire functions containing the continuous invariant functions, and 
closed under almost everywhere convergence. Our main result is 
that this occurs precisely when both T and T* are strongly ergodic. 
We also show that almost everywhere invariant Baire functions 
separate the invariant probabilities, although everywhere invariant 
Baire functions need not. 

1. Introduction. We define F(T) = {/in C(X): Tf = / } , F(T*) = {m in 
C(X)*: T*m = m}, and P(T*) = F(T*) f] probabilities. T is called 
strongly ergodic if for each / in C(X), Tnf converges in the Banach space 
C(X), where Tn = ( 1//?)(/+ ••• + T"-1). Recall that T is s.e. if and 
only if F{T) separates F(T*) if and only if F(T) separates P(T*) [7, The­
orems 2.2 and 2.7]. 

Let B be the set of Baire functions, so B = [}{Ba: a < CÜI}, where o)\ 
is the first uncountable ordinal and Ba the #-th Baire class. We define 
B(F(T)) to be the smallest set of bounded functions containing F(T), and 
closed under bounded pointwise sequential convergence. If / and g are 
in B, we say f = g i?(T*)-ae if / = g m-ae for all m in P(T*). Let 
B{F{T))a be the smallest set of bounded Baire functions containing F(T), 
and closed under P(r*)-ae convergence. 

It will be convenient to extend the operator T to an operator (again 
called T) on the Baire functions by letting Tf(x) = $fd(T*dx), where 
dx is the Dirac measure at x. An easy transfinite induction over the Baire 
classes shows that i f / i s in B, then so is Tf. The same argument shows 
that i f / i s in B and m in F(T*), then \fdm = J Tfdm. 

We shall need the following known result. 

THEOREM. [1, Proposition 2.1]. The following are equivalent. 
(i) Both T and T* are strongly ergodic. 

(ii) F(r**) = <r(C(X)**, C(X)*)-closure ofF(T). 
(iii) Norm-closure (I - T)*(C(X)*) = weak-*closure (I - T)*(C(X)*). 
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Theorem 1 of §2 gives a criterion for joint strong ergodicity of T and 
r * in terms of P(F*)-ae invariant Baire functions. It has one advantage 
over the criteria (ii) and (iii) given above, namely it refers directly to the 
space X, rather than to the dual and second dual spaces. In Theorem 2 we 
show that P(T*) is always separated by theF(F*)-ae invariant Baire func­
tions. This may be contrasted to Sine's theorem that F(T) separates 
P(T*) if and only if T is strongly ergodic. We then give an example to 
show that everywhere invariant Baire functions need not separate P{T*). 

The material of this paper is influenced by an exchange of letters with 
Robert Sine which took place a few years ago. In particular he suggested 
that one should expect only ae-results in working with invariant Baire 
functions. 

2. Main results. 

THEOREM 1. The following are equivalent. 
(a) Both T and F* are strongly ergodic. 
(b) Iff is in B and Tf = /P(F*)-ae, then there exists g in B(F(T)) such 

thatf= #F(F*)-ae. 
(c) Iff is in BandTf = /F(F*)-ae, then fis in B{F{T))a. 

PROOF, (C) implies (a). If (a) fails, then by the theorem cited in the 
introduction there exists F in F(r**)\*-closure(F(F)), and then by 
Hahn-Banach there exists in C(X)* an m such that F(m) = 1 and 0 = \fdm 
for all / in F(T). Let p = L^2-»(r*)» | /w| . By the representation of 
C{X)** ([6, page 481] or [4]), for each q in C(X)*9 there exists a Baire 
function Fq such that F(q) = J" Fqdq. Further, r < q implies Fr = Fq 

r-ae, and hence F(r) = J* Fqdr. In our case we have Fm = Fp m-ae, so 
1 = j Fpdm. The advantage of p over m is that we can prove TFp = Fp 

p-siQ (and hence m-ae). For this it suffices to show that J" TFpdq = J Fpdq 
for all q such that q < p. Now p has the property that if q < p, then 
T*q < p. Also, by an easy transfinite induction, if g is a Baire function 
and q & measure, then J Tgdq = J gdT*q. Hence if q <: p, then J" TFpdq 
= $FpdT*q = F(T*q) = T**F(q) = F(q) = j F'pdq. 

L e t / b e the sub-invariant majorant of Fp, which is defined as follows: 
/o = FP> fn+i = max(Fj, Tfn), and f(x) = lim /„(*), an increasing limit 
[3, page 19]. Then Tf ^ f and hence / = Tf F(F*)-ae. By an easy in­
duction, fn = Fp m-ae for all n. (Note that for n ^ 1, 

§\Fp - T»Fp\dm £ §\Fp- T»-iFp\dm + ^\T»-*FP - T»Fp\dm 

g J \Fp - T»~iFp\dm + J r»-i |F, - FF^I^m 

= J V > - T"-iFp\dm + J |F, - FF,|^m.) 
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Hence/ = Fp ra-ae, whence \fdm = j Fpdm = 1, so / is not in B(F(T))a. 
(a) implies (b). Since T is strongly ergodic, there exists a projection P 

such that THf-+ Pf uniformly for all / in C(X), and range(P) = F(T). 
Hence for a l l / i n C(X), TPf = Pf. An easy transfinite induction over the 
Baire classes shows that this holds for a l l / i n B. Le t / i n B satisfy Tf=f 
P(r*)-ae. For (b) it suffices to prove ( 1 ) / = Pf P(T*)-Sie and (2) Pf is in 
B(F(T)). 

For (1), since T* is strongly ergodic, T** is weak-*ergodic, i.e., for all 
Fin C(X)** and m in C(X)*, (T**)nF(m) -> P**F(m). Let F = Ff9 i.e., 
F(m) = \fdm for all m in C(X)*, and let m = ôx. Then we have Tnf(x) -• 
/ / (x) for all x. But for all m in P(T*)9 Tf = fm-SLQ, and an easy inducton 
as in "(c) implies (a)" gives Tnf = fm-aç for all « ^ 1. Hence/(x) = P/(x) 
ra-ae for all m in P(T*). 

(2) follows from an easy transfinite induction. (Suppose for all x, 
gn(x) -• g(x). Then Pgn(x) -• Pg(x). By inductive assumption, /£„ is in 
B(F(T)), and hence Pg is in B(F(T)).) 

(b) implies (c) obviously. 

REMARKS, (a) Under stronger hypotheses, stronger results on the 
relation between invariant Baire functions and invariant continuous 
functions can be obtained. For instance it follows from [5, Lemma 3] 
that if T is irreducible and weakly almost periodic, then a P(r*)-ae in­
variant Baire function is equal P(r*)-ae to a continuous invariant func­
tion. 

(b) Let Fx be the Baire functions with Tf = f P(r*)-ae, let F2 be the 
Baire functions satisfying the conclusion of (c) in Theorem 1, and let 
F3 be the Baire functions satisying the conclusion (b). Then F3 c F2 a Fh 

and if T and J* are both strongly ergodic, we have equality. It is an open 
question whether it is true in general that F2 = F3. 

(c) If C(X) is a Grothendieck space (i.e., weak-*sequential conver­
gence in C(X)* is equivalent with weak sequential convergence), then 
strong ergodicity of T implies that of T* (see, e.g., [2, page 79]). In this 
case Theorem 1 is a criterion for strong ergodicity of T itself. (Another 
criterion for G-spaces is given in [2, Theorem 2.2].) 

THEOREM 2. The />(77*)-ae invariant Baire functions separate P(T*). 

PROOF. Let m and p be in P(T*) with m =£ /?, and let g in C(X) satisfy 
\gdm ^ \gdp. Now T defines a contraction in L\q), where q = 
2~\m + /?), since (Tff ^ T(/ 2) , and hence ||r/||2 = \{Tffdq ^ 
j T(f2)dq = \f2dq = ||/||2. By the L2-ergodic theorem, there exists a 
Baire function h with Th = h q-ae and J \Tng — h\2dq -> 0. By standard 
measure theory there exists a subsequence {Tn(k)g} which converges to h 
#-ae, and we may assume h is bounded. Also, \hdm = lim J Tn(k)gdm = 
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Jgdm, and likewise \hdp = \gdp. Hence \hdm ^ \hdp. Finally, let 
/ be the sub-invariant majorant of h. Then Tf = /P(T*)-ae, and by the 
arguments used in the proof of Theorem \,f=h g-ae, so \fdm ^ \fdp. 

EXAMPLE. This example will show that Baire functions which are 
everywhere invariant instead of just P(r*)-ae invariant may fail to 
separate P(T*). Let Y be the set of ordinals less than or equal to the first 
uncountable ordinal wi, and let X = Y x {1, 2}. (For convenience the 
smallest ordinal is taken to be 1 rather than 0.) Every ordinal x can be 
written x = I + n, where / is a limit ordinal and n a non-negative integer. 
We define Markov Ton C(X) as follows: if x is a limit ordinal, Tf(x, e) = 
f(x, e) for e = 1 or 2 ; and otherwise if x = I -f- n, 

Tf(x, 1) = (1 - n-i)f(l + n, 1) + /!-!/(/ + /!, 2), 

Tf(x, 2) = /!-!/(/ + ,7, 1) + (1 - fl-W + /I, 2). 

If / is any function on X with Tf = f then / ( / + «, 1) = / ( / + w, 2) 
whenever x = / + « ,« ^ 1. If, in addition,/is a Baire function, then it 
is constant in some neighborhood of (a)b 1), and also in some neighbor­
hood of (cob 2). But then / cannot separate the invariant probabilities 
which represent the Dirac measures at these two points. 

Note that extreme elements of P(J*) are just the Dirac measures at 
O, e), where x is a limit ordinal and e = 1 or 2. Hence every Baire function 
satisfies Tf = fP(T*)-œ. On the other hand if g is in F(T), then g(x, 1) = 
g(x, 2) for every limit ordinal x. Clearly, ae-invariant Baire functions are 
pretty far from F(T). 
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