THE Q-ANALOGUE OF STIRLING'S FORMULA

DANIEL S. MOAK

ABSTRACT. F.H. Jackson defined a q-analogue of the factorial $n! = 1 \cdot 2 \cdot 3 \cdots n$ as $(n!)_q = 1 \cdot (1 + q) \cdot (1 + q + q^2) \cdots (1 + q + q^2 + \cdots + q^{n-1})$, which becomes the ordinary factorial as $q \to 1$. He also defined the q-gamma function as

$$\Gamma_q(x) = \frac{(q; q)_{\infty}}{(q^x; q)_{\infty}} (1 - q)^{1-x}, 0 < q < 1,$$

and

$$\Gamma_q(x) = \frac{(q^{-1}; q^{-1})_{\infty}}{(q^{-x}; q^{-1})_{\infty}} (q - 1)^{1-x} q^{\binom{x}{2}}, q > 1,$$

where

$$(a; q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n).$$

It is known that if $q \to 1$, $\Gamma_q(x) \to \Gamma(x)$, where $\Gamma(x)$ is the ordinary gamma function. Clearly $\Gamma_q(n + 1) = (n!)_q$, so that the q-gamma function does extend the q factorial to non integer values of n. We will obtain an asymptotic expansion of $\Gamma_q(z)$ as $|z| \to \infty$ in the right halfplane, which is uniform as $q \to 1$, and when $q \to 1$, the asymptotic expansion becomes Stirling's formula.

1. Introduction. In recent years many of the classical facts about the ordinary gamma function have been extended to the q-gamma function. See Askey [2], and [5], [6]. Using an identity of Euler,

(1.1)
$$\frac{1}{(x;q)_{\infty}} = \sum_{n=0}^{\infty} \frac{x^n}{(q;q)_n},$$

 $\Gamma_q(x)$ can be written as,

(1.2)
$$\Gamma_q(x) = (q; q)_{\infty}(1-q)^{1-x}\sum_{n=0}^{\infty} \frac{q^{nx}}{(q; q)_n}, 0 < q < 1,$$

and

(1.3)
$$\Gamma_q(x) = (q^{-1}; q^{-1})_{\infty} q^{\binom{x}{2}} (q-1)^{1-x} \sum_{n=0}^{\infty} \frac{q^{-nx}}{(q^{-1}; q^{-1})_n}, q > 1.$$

Received by the editors on May 18, 1982, and in revised form on February 7, 1983. Copyright © 1984 Rocky Mountain Mathematics Consortium (1.1) is a consequence of the *q*-binomial theorem

(1.4)
$$\frac{(ax; q)_{\infty}}{(x; q)_{\infty}} = \sum_{n=0}^{\infty} \frac{(a; q)_n}{(q; q)_n} x^n, 0 < q < 1,$$

where a = 0. As easy proof of (1.4) can be found in [1, p. 66].

Unfortunately, (1.2) or (1.3) does not become Stirling's formula when $q \rightarrow 1$. Neither the infinite series nor the infinite product converge uniformly as $q \rightarrow 1$, although they are asymptotic series for large x. There is, however, another asymptotic expansion which becomes Stirling's formula when $q \rightarrow 1$ and is uniform for q near 1.

2. The main result. The basic tool we will use is the following Lemma.

LEMMA A. If $f \in C^{2m}[a, b]$, a and b integers, then

(2.1)
$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(t)dt + \frac{1}{2}f(a) + \frac{1}{2}f(b) + \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} \{f^{(2k-1)}(b) - f^{(2k-1)}(a)\} - \int_{a}^{b} \frac{B_{2m}(x-[x])}{(2m)!} f^{(2m)}(x)dx$$

where $B_n(x)$ is the nth Bernouilli polynomial, $B_n = B_n(0)$, and m is any positive integer.

If $\{(-1)^m f^{(m)}(x)\}_{m=2}^{\infty}$ all have one sign on [a, b], the error in terminating the series on the right at k = m is less in absolute value than that of the first term neglected and has the same sign.

For a proof see [9, p. 128]. To simplify the following discussion, we will use the following definition.

DEFINITION. An asymptotic series $f(z) \sim \sum_{k=1}^{\infty} a_k \beta_k(z)$ is proper if the a_i are all real and there exists a sequence of positive integers $n_1 < n_2 < \cdots$ such that

(i) f(z) and $\beta_k(z)$ are analytic for $-\pi/2 < \arg z < \pi/2$.

- (ii) $\beta_k(z) = O(z^{-n_k})$ as $z \to \infty$ uniformly in every sector $-\pi/2 + \varepsilon < \arg(z) < \pi/2 \varepsilon$, $0 < \varepsilon < \pi/2$.
- (iii) For every m, $(f(z) \sum_{k=1}^{m} a_k \beta_k(z)) \cdot z^{n_m} \to 0$ as $z \to \infty$ uniformly in each sector $-\pi/2 + \varepsilon < \arg(z) < \pi/2 - \varepsilon$, $0 < \varepsilon < \pi/2$.
- (iv) If z is real and positive, the $\beta_i(z)$ are real and the error in truncating the series is less in absolute value than that of the first term neglected and has the same sign.

Stirling's formula

(2.2)
$$\Gamma(z) \sim (z - 1/2) \ln z - z + (1/2) \ln(2\pi) + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)(2k-1)} z^{-2k-1}$$

is one example of a proper asymptotic expansion. Many other classical

functions of mathematical physics have proper asymptotic expansions, and as we shall see, $\Gamma_{a}(z)$ has one too.

THEOREM 1. Let $\Psi_q(z) = (d/dz)\Gamma_q(z)/\Gamma_q(z)$, then

(2.3)
$$\begin{aligned}
\Psi_{q}(z) \sim \ln\left(\frac{1-q^{z}}{1-q}\right) + \frac{\ln q}{2(q^{-z}-1)} - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left\{ \left(\frac{d}{dt}\right)^{2k-1} \left(\frac{q^{z+t} \ln q}{1-q^{z+t}}\right) \right\} \Big|_{t=0} \\
= \ln\left(\frac{1-q^{z}}{1-q}\right) + \frac{\ln q}{2(q^{-z}-1)} - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln q}{(1-q)^{z}}\right)^{2k} q^{z} P_{2k-2}(q^{z})
\end{aligned}$$

where $P_n(z)$ is a polynomial of degree n satisfying

(2.4)
$$P_n(z) = (z - z^2)P'_{n-1}(z) + (nz + 1)P_{n-1}(z), P_0 = 1, n \ge 1.$$

Here it is assumed that the principal branch of the logarithm is taken. Moreover (2.3) is a proper asymptotic expansion with $n_k = 2k$.

PROOF. We first show by induction that

(2.5)
$$\left(\frac{d}{dt}\right)^n \left(\frac{q^t \ln q}{1-q^t}\right) = \left(\frac{\ln q}{1-q^t}\right)^{n+1} q^t P_{n-1}(q^t), n = 1, 2, 3, \dots$$

It is easy to verify that (2.5) holds for n = 1. Assuming that (2.5) holds for n = k, we have

$$\begin{split} \left(\frac{d}{dt}\right)^{k+1} & \left(\frac{q^{t} \ln q}{1-q^{t}}\right) = \frac{d}{dt} \left(\left(\frac{\ln q}{1-q^{t}}\right)^{k+1} q^{t} P_{k-1}\left(q^{t}\right) \right) \\ &= (k+1)(\ln q)^{k+2}(1-q^{t})^{-k-2} q^{2t} P_{k-1}(q^{t}) \\ &+ (\ln q)^{k+2}(1-q^{t})^{-k-1} q^{t} P_{k-1}(q^{t}) \\ &+ (\ln q)^{k+2} (1-q^{t})^{-k-1} q^{2t} P_{k-1}'(q^{t}) \\ &= \left(\frac{\ln q}{1-q^{t}}\right)^{k+2} q^{t} [(k+1)q^{t} P_{k-1}(q^{t}) \\ &+ (1-q^{t}) P_{k-1}(q^{t}) + q^{t}(1-q^{t}) P_{k-1}'(q^{t})] \\ &= \left(\frac{\ln q}{1-q^{t}}\right)^{k+2} q^{t} P_{k}(q^{t}), \end{split}$$

by (2.4). This proves (2.5).

There are some properties of $P_n(x)$ which will be needed and they are summarized in the following Lemma.

LEMMA 1.

- (i) The coefficients of $P_n(z)$ are all positive.
- (ii) $P_n(1) = (n + 1)!$

PROOF OF (i). We will prove (i) by induction on *n*. For n = 0, (i) is clear. Assuming that (i) holds for n = k, we have by (2.4), $P_{k+1}(z) = (z - z^2) \cdot P'_k(z) + ((k+1)z+1)P_k(z) = (zP'_k(z) + P_k(z)) + ((k+1)zP_k(z) - z^2P'_k(z)).$ It clearly suffices to show that $(k + 1)zP_k(z) - z^2P_k(z)$ has positive coefficients. This will be true if $(k + 1)z^{j+1} - z^2(d/dz)z^j$ has positive coefficients for $0 \le j \le k$. It clearly does,

PROOF OF (ii). Let $\sigma_n = P_n(1)$, then by (2.5),

(2.6)
$$\lim_{q \to 1} \left(\frac{d}{dt} \right)^{n+1} \left(\frac{q^t \ln q}{1-q^t} \right) = \lim_{q \to 1} \left(\frac{\ln q}{1-q^t} \right)^{n+2} q^t P_n(q^t) = \sigma_n(-t)^{-n-2}.$$

Now $q^t \ln q/(1-q^t)$ is an analytic function of t on any punctured disk of the form $\{z: 0 < |z| < R\}$ when q is close enough to one. On any compact subset of such a punctured disk, $q^t \ln q/(1-q^t)$, coverges uniformly to -1/t as $q \to 1$. We can therefore justify interchanging $\lim_{q\to 1} \operatorname{and} (d/dt)^{n+1}$ in (2.6), yielding $(n + 1)! (-t)^{-n-2} = \sigma_n(-t)^{-n-2}$, or $\sigma_n = (n + 1)!$ proving (ii).

Now let $n_k = 2k$, $k = 1, 2, ..., \text{ and } \beta_k(z) = (\ln q/(1-q^z))^{2k}q^z P_{2k-2}(q^z)$. $z^n q^z \to 0$ as $z \to \infty$ uniformly in any closed subsector of $\{z: -\pi/2 < \arg(z) < \pi/2\}$. So (i) and (ii) hold. By a direct calculation; $\Psi_q(z) = -\ln(1-q) + (\ln q) \sum_{n=0}^{\infty} 1/(q^{-n-z}-1)$. Now let $f(x) = \ln q/(q^{-x-z}-1)$, a = 0, and $b \to \infty$ in (2.1). Then

(2.7)
$$\begin{aligned}
\Psi_{q}(z) &= -\ln(1-q) + (\ln q) \int_{0}^{\infty} \frac{dt}{q^{-t-z}-1} + \frac{\ln q}{2(q^{-z}-1)} \\
&- \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} \left(\frac{d}{dt}\right)^{2k-1} \left(\frac{\ln q}{q^{1-z-t}-1}\right)\Big|_{t=0} + R_{2m}(z;q).
\end{aligned}$$

where

$$R_{2m}(z; q) = -\int_0^\infty \frac{B_{2m}(x - [x])}{(2m)!} \left(\frac{d}{dt}\right)^{2m} \left(\frac{\ln q}{q^{-z-t} - 1}\right) dt.$$

Using (2.5) and lemma 1, one can easily justify letting $b \to \infty$ in (2.1). The first integral in (2.7) can be evaluated explicitly:

$$(\ln q) \int_0^\infty \frac{dt}{q^{-t-2}-1} = \int_0^\infty \frac{q^{t+2} \ln q}{1-q^{t+2}} dt = -\ln(1-q^{t+2}) \Big|_{t=0}^{t=\infty} = \ln(1-q^2).$$

Substituting this into (2.7) we obtain (2.3). It remains to show that the remainder term has the needed properties to make the asymptotic expansion proper with $n_k = 2k$. To do that we need another lemma.

LEMMA 2. If $0 < q \leq 1$ and $\operatorname{Re}(z) > 0$, then

(2.8)
$$\left| \left(\frac{d}{dt} \right)^n \left(\frac{\ln q}{q^{-z-t} - 1} \right) \right| \leq \left(\frac{d}{dt} \right)^n \left(\frac{-\ln q}{q^{-\operatorname{Re}(z)-t} - 1} \right), t > 0.$$

PROOF. If 0 < q < 1, $\ln q/(q^{-z-t} - 1) = (\ln q) \sum_{k=1}^{\infty} q^{kz+kt}$, so that

$$\left(\frac{d}{dt}\right)^n \left(\frac{\ln q}{q^{-z-t}-1}\right) = (\ln q)^{n+1} \sum_{k=1}^\infty k^n q^{kz+kt}.$$

Hence

$$\begin{aligned} \left(\frac{d}{dt}\right)^{n} \left(\frac{\ln q}{q^{-z-t}-1}\right) &| < |\ln q|^{n+1} \sum_{k=1}^{\infty} k^{n} |q^{kz+kt}| \\ &= (-\ln q)^{n+1} \sum_{k=1}^{\infty} k^{n} q^{k\operatorname{Re}(z)+kt} = \left(\frac{d}{dt}\right)^{n} \left(\frac{-\ln q}{q^{-\operatorname{Re}(z)-t}-1}\right). \end{aligned}$$

At q = 1, $\ln q/(q^{-z-t} - 1)$ has a removable singularity, in fact $\lim_{q \to 1} (\ln q/(q^{-z-t} - 1)) = -1/(z + t)$. Then $|(d/dt)^n(-1/(z + t))| = |n!/(z+t)^{n+1}| = n!/|z+t|^{n+1} \le n!/(\operatorname{Re}(z) + t)^{n+1}$ So the lemma also holds when q = 1 also.

We now use the lemma to obtain an estimate of the magnitude of $R_{2m}(z)$. We can write $R_{2m}(z)$ as

(2.9)
$$R_{2m}(z) = - \frac{B_{2m+2}}{(2m+2)!} \left(\frac{d}{dt}\right)^{2m+1} \left(\frac{\ln q}{q^{-z-t}-1}\right)\Big|_{t=0} - \int_0^\infty \frac{B_{2m+2}(t-[t])}{(2m+2)!} \left(\frac{d}{dt}\right)^{2m+2} \left(\frac{\ln q}{q^{-z-t}-1}\right) dt$$

Then using (2.5), lemma 1, and lemma 2

ς.

$$\begin{aligned} |R_{2m}(z)| &\leq \frac{|B_{2m+2}|}{(2m+2)!} \Big(\frac{(\ln q) q^{\operatorname{Re}(z)}}{1-q^{\operatorname{Re}(z)}} \Big)^{2m+2} q^{\operatorname{Re}(z)} P_{2m}(q^{\operatorname{Re}(z)}) \\ &+ \int_0^\infty \frac{|B_{2m+2}(t-[t])|}{(2m+2)!} \left(\frac{d}{dt} \right)^{2m+2} \Big(\frac{-\ln q}{q^{-\operatorname{Re}(z)-t}-1} \Big) dt. \end{aligned}$$

It is known, [7, p. 533–538] that $|B_{2m}(t)| \le |B_{2m}|, t \in [0, 1], m = 1, 2, 3, ...$ Then

$$(2.10) |R_{2m}(z)| \leq \frac{2|B_{2m+2}|}{(2m+2)!} \left(\frac{(\ln q)q^{\operatorname{Re}(z)}}{1-q^{\operatorname{Re}(z)}}\right)^{2m+2} q^{\operatorname{Re}(z)} P_{2m}(q^{\operatorname{Re}(z)}).$$

For $|\arg(z)| < \pi/2 - \varepsilon$, we have $\operatorname{Re}(z) > |z| \sin \varepsilon$, hence

$$(2.11) |z^{2m+2}R_{2m}(z)| \le \frac{2|B_{2m+2}|}{(\sin\varepsilon)^{2m+2}(2m+2)!} \left(\frac{(\ln q)\operatorname{Re}(z)q^{\operatorname{Re}(z)}}{1-q^{\operatorname{Re}(z)}}\right)^{2m+2} q^{\operatorname{Re}(z)} P_{2m}(q^{\operatorname{Re}(z)}).$$

It suffices to show that the expression on the right is uniformly bounded for $q \leq 1$ and $|\arg(z)| < \pi/2 - \varepsilon$. Let $u = \operatorname{Re}(z) \ln q$. Then $u \leq 0$, and $(\ln q) \operatorname{Re}(z)q^{\operatorname{Re}(z)}/(1 - q^{\operatorname{Re}(z)}) = ue^{u}/(1 - e^{u})$, which is bounded for $u \leq 0$. It follows that the right side of (2.11) is bounded for $\operatorname{Re}(z) \geq 0$ and $q \leq 1$. Consequently $\lim_{z \to \infty} |z^{2m}R_{2m}(z)| = 0$ uniformly for $0 < q \leq 1$ and $|\arg(z)| < \pi/2 - \varepsilon$. So property (iii) holds. To prove (iv), note that lemma 1 and (2.5) imply that $(-1)^{n-1}(d/dt)^n(q^t \ln q/(1-q^t)) > 0$. By lemma A, (iv) follows.

COROLLARY. Let $q \leq 1$, then

(2.12)
$$\ln \Gamma_q(z) \sim (z - 1/2) \ln\left(\frac{q^z - 1}{q - 1}\right) + \frac{1}{\ln q} \int_{-\ln q}^{-z \ln q} \frac{u du}{e^u - 1} + C_q \\ - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{d}{dz}\right)^{2k-2} \left(\frac{q^z \ln q}{1 - q^z}\right),$$

or by (2.5)

(2.13)
$$\ln \Gamma_q(z) \sim (z - 1/2) \ln \left(\frac{q^z - 1}{q - 1}\right) + \frac{1}{\ln q} \int_{-\ln q}^{-z \ln^2 q} \frac{u \, du}{e^u - 1} + C_q + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln q}{q^z - 1}\right)^{2k-1} q^z P_{2k-3}(q^z),$$

where C_q is a constant depending on q. Moreover, these asymptotic expansions are proper with $n_k = 2k - 1$, and uniform for $0 < q \le 1$ and $|\arg(z)| < \pi/2 - \varepsilon$, $\varepsilon > 0$.

PROOF. We integrate each term of (2.3) from 1 to z inside the sector $|\arg(z)| < \pi/2$. The resulting asymptotic expansion is still proper with $n_k = 2k - 1$ and $\beta_k(z) = (\ln q/(1 - q^z))^{2k-1}q^z P_{2k-3}(q^z)$. We still need to show that when (2.3) is integrated term by term from 1 to z we obtain (2.12) and (2.13). This is clearly true for the terms of the series. For the terms preceding the series we have

$$\begin{split} &\int_{1}^{z} \ln\left(\frac{1-q^{t}}{1-q}\right) + \frac{\ln q}{2(q^{-t}-1)} \, dt \\ &= \int_{1}^{z} \ln(1-q^{t}) \, dt - (z-1) \ln(1-q) + \frac{1}{2} \int_{1}^{z} \frac{\ln q}{q^{-t}-1} \, dt \\ &= t \ln(1-q^{t}) \Big|_{1}^{z} + \ln q \int_{1}^{z} \frac{tq^{t}dt}{1-q^{t}} - (z-1) \ln(1-q) + \frac{1}{2} \int_{1}^{z} \frac{\ln q \, dt}{q^{-t}-1} \\ &= z \ln\left(\frac{1-q^{z}}{1-q}\right) + \frac{1}{2} \int_{1}^{z} \frac{(\ln q)q^{t}dt}{1-q^{t}} + \ln q \int_{1}^{z} \frac{t \, dt}{q^{-t}-1} \\ &= z \ln\left(\frac{1-q^{z}}{1-q}\right) - \frac{1}{2} \ln(1-q^{t}) \Big|_{1}^{z} + \frac{1}{\ln q} \int_{-\ln q}^{-z \ln q} \frac{u \, du}{e^{u}-1} \, . \end{split}$$

Substituting this back into the integrated asymptotic series for $\ln(\Gamma_q(x))$ we obtain (2.12) and (2.13).

It remains to obtain an asymptotic expansion for $\Gamma_q(x)$ for q > 1, and to find the constant term C_q . We then obtain the main result.

THEOREM 2.

(2.14)
$$\ln \Gamma_q(z) \sim (z - 1/2) \ln \left(\frac{1 - q^z}{1 - q}\right) + \frac{1}{\ln q} \int_{-\ln q}^{-z \ln q} \frac{u \, du}{e^u - 1} + C_{\hat{q}} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln \hat{q}}{\hat{q}^z - 1}\right)^{2k - 1} \hat{q}^z P_{2k - 3}(\hat{q}^z)$$

where

$$\hat{q} = \begin{cases} q, \, 0 < q \leq 1 \\ q^{-1}, \, q \geq 1, \end{cases}$$

and $P_{n+1}(z) = (z - z^2)P'_n(z) + ((n + 1)z + 1)P_n(z), n \ge 0, P_0(z) = 1,$ and

(2.15)
$$C_{q} = \frac{1}{2}\ln(1-q) + \ln(q;q)_{\infty} - \frac{\pi^{2}}{6\ln q} + \frac{1}{\ln q} \int_{0}^{-\ln q} \frac{u \, du}{e^{u} - 1}.$$

$$C_{q} = \frac{1}{2}\ln(2\pi) + \frac{1}{2}\ln\left(\frac{q-1}{\ln q}\right) - \frac{1}{24}\ln q + \frac{1}{\ln q} \int_{0}^{-\ln q} \frac{u \, du}{e^{u} - 1}$$

$$+ \ln \sum_{m=-\infty}^{\infty} r^{m(6m+1)} - r^{(3m+1)(2m+1)}.$$

where $r = \exp(4\pi^2/\ln q)$.

Moreover this asymptotic expansion is proper with $n_k = 2k - 1$ and uniform for $\delta < q < 1/\delta$ and $|\arg(z)| < \pi/2 - \varepsilon$, $\varepsilon > 0$, $\delta > 0$.

PROOF. First we obtain the constant term for 0 < q < 1. Comparing (1.2) with (2.12), we have

$$\ln(q; q)_{\infty} + (1 - z) \ln(1 - q) + \ln\left(\sum_{n=0}^{\infty} \frac{q^{nz}}{(q; q)_n}\right)$$
$$= (z - 1/2) \ln\left(\frac{q^z - 1}{q - 1}\right) + \frac{1}{\ln q} \int_{-\ln q}^{-z \ln q} \frac{u \, du}{e^u - 1} + C_q + O(1/z)$$

as $z \to \infty$, $|\arg z| < \pi/2 - \varepsilon$, q fixed, $0 < \varepsilon < \pi/2$. Letting $z \to \infty$ on the real axis, we obtain

$$C_q = -\frac{1}{\ln q} \int_{-\ln q}^{\infty} \frac{u \, du}{e^u - 1} + \ln(q;q)_{\infty} + \frac{1}{2} \ln(1 - q) - \lim_{z \to +\infty} (z - 1/2) \ln(1 - q^z).$$

Thus

$$C_q = -\frac{1}{\ln q} \int_{-\ln q}^{\infty} \frac{u \, du}{e^u - 1} + \ln(q; q)_{\infty} + \frac{1}{2} \ln(1 - q).$$

It is known [8, p. 265–169] that $\int_0^\infty u \, du/(e^u - 1) = \zeta(2) = \pi^2/6$. We now have

$$C_q = \frac{1}{\ln q} \int_0^{-\ln q} \frac{u \, du}{e^u - 1} + \ln(q; q)_\infty - \frac{\pi^2}{6 \ln q} + \frac{1}{2} \ln(1 - q).$$

This proves (2.15). The difficulty with (2.15) is that it is hard to evaluate $(q; q)_{\infty}$ for q close to one. We need to have an alternate way of computing $(q; q)_{\infty}$. We start with Ramanujan's sum [3, (3.15)]

$$(2.17) = \frac{\left(ax;q\right)_{n}x^{n}}{\left(x;q\right)_{\infty}\left(\frac{q}{ax};q\right)_{\infty}\left(\frac{b}{a};q\right)_{\infty}\left(q;q\right)_{\infty}}, |b/a| < |x| < 1, |q| < 1.$$

Now let b = 0 and replace x by x/a and let $a \to \infty$. We then obtain Jacobi's triple product

(2.18)
$$\sum_{n=-\infty}^{\infty} (-1)^n q^{\binom{n}{2}} x^n = (x; q)_{\infty} \left(\frac{q}{x}; q\right)_{\infty} (q; q)_{\infty}.$$

Now replace q by q^3 and let $x = q^2$. Then we have Euler's series

$$\sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2/2+n/2} = (q; q^3)_{\infty} (q^2; q^3)_{\infty} (q^3; q^3)_{\infty}$$
$$= \prod_{n=0}^{\infty} (1 - q^{1+3n})(1 - q^{2+3n})(1 - q^{3+3n})$$
$$= \prod_{n=0}^{\infty} (1 - q^n).$$

Thus

(2.19)
$$\sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2/2+n/2} = (q; q)_{\infty}.$$

We still have problems computing $(q; q)_{\infty}$ when q is close to one, but at least we have quadratic rather than linear convergence. There is, however, an important formula of Poisson which completely solves all these convergence problems.

(2.20)
$$\sum_{n=-\infty}^{\infty} e^{-\pi t (n+z)^2} = \frac{1}{\sqrt{t}} \sum_{n=-\infty}^{\infty} e^{-\pi n^2 / t + 2\pi n z t}, \operatorname{Re}(t) > 0.$$

See [4, p. 40]. Let $q^{3/2} = e^{-\pi t}$, $z = 1/6 + \pi/(3i \ln q)$ in (2.20). We obtain

(2.21)
$$(q; q)_{\infty} = \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2/2+n/2} \\ = (r/q)^{1/24} \sqrt{2\pi/(-\ln q)} \sum_{n=-\infty}^{\infty} r^{n(6n+1)} - r^{(3n+1)(2n+1)},$$

where $r = \exp(4\pi^2/\ln q)$. The series on the right converges extraordinarily

rapidly for q near one. For example, if we let q = .8, then $r \doteq 1.46 \times 10^{-77}$! In fact it is always true that either q or r is less than 2×10^{-3} .

(2.21) can be substituted into (2.15) to obtain (2.16), This proves the theorem for 0 < q < 1. When (2.16) is used for the constant term in (2.14) and when $q \rightarrow 1$, the ordinary Stirling's formula for the gamma function emerges.

To extend these results for q > 1, we use the definition of $\Gamma_q(x)$ to obtain

(2.22)
$$\Gamma_q(z) = q^{z^2/2 - 3z/2 + 1} \Gamma_{q^{-1}}(z).$$

For $q \ge 1$, we can use the asymptotic expansion on $\Gamma_{q^{-1}}(z)$. The result is

(2.23)
$$\ln \Gamma_q(z) \sim \left(\frac{z^2}{2} - \frac{3z}{2} + 1\right) \ln q + (z - 1/2) \ln \left(\frac{1 - q^{-z}}{1 - q^{-1}}\right) \\ - \frac{1}{\ln q} \int_{\ln q}^{z \ln q} \frac{u \, du}{e^u - 1} + C_{q^{-1}} \\ + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln q^{-1}}{q^{-z} - 1}\right)^{2k-1} q^{-z} P_{2k-3}(q^{-z}).$$

Now looking at the terms preceding the constant term, we see that

$$\begin{aligned} &\left(\frac{z^2}{2} - \frac{3}{2}z + 1\right)\ln q + (z - 1/2)\ln\left(\frac{1 - q^{-z}}{1 - q^{-1}}\right) - \frac{1}{\ln q}\int_{\ln q}^{z\ln q}\frac{u\,du}{e^u - 1} \\ &= \left(\frac{z^2}{2} - \frac{3z}{2} + 1\right)\ln q + (z - 1/2)\ln(q^{1-z}) \\ &+ (z - 1/2)\ln\left(\frac{1 - q^z}{1 - q}\right) - \frac{1}{\ln q}\int_{\ln q}^{z\ln q}\frac{u\,du}{e^u - 1} \\ &= \left(-\frac{z^2}{2} + \frac{1}{2}\right)\ln q + \frac{1}{\ln q}\int_{-\ln q}^{-z\ln q}\frac{1 - e^{-u} + e^{-u}}{1 - e^{-u}}u\,du + (z - 1/2)\ln\left(\frac{1 - q^z}{1 - q}\right) \\ &= \left(-\frac{z^2}{2} + \frac{1}{2}\right)\ln q + \frac{1}{2(\ln q)}u^2\Big|_{-\ln q}^{-z\ln q} \\ &+ \frac{1}{\ln q}\int_{-\ln q}^{-z\ln q}\frac{e^{-u}u\,du}{1 - e^{-u}} + (z - 1/2)\ln\left(\frac{1 - q^z}{1 - q}\right) \\ &= (z - 1/2)\ln\left(\frac{1 - q^z}{1 - q}\right) + \frac{1}{\ln q}\int_{-\ln q}^{-z\ln q}\frac{u\,du}{e^u - 1}. \end{aligned}$$

These are the same two terms in the asymptotic expansion for $\Gamma_q(z)$ for $0 < q \leq 1$. Theorem 2 now follows for all q > 0.

3. Some remarks on the asymptotic expansion. Despite the apparent complexity of (2.14) it does provide a practical way of computing $\Gamma_q(z)$ for q arbitrarily close to one. One must use Taylor expansions for expressions like $u/(e^u - 1)$ for u near zero, otherwise numerical cancellation

problems will occur. Once these precautions are taken, (2.14) will yield good results; for $x \ge 30$, five terms in the sum will yield at least 14 decimal place accuracy and often more, regardless of the value of q. To evaluate the constant term $C_{\hat{q}}$, (2.16) is used if \hat{q} is close to one, and (2.15) is used for small values of \hat{q} , where the Euler series

$$(q; q)_{\infty} = \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2/2 - n/2}$$

is used to compute $(q; q)_{\infty}$.

The integral $\int_0^x u \, du/(e^u - 1)$ is easily computed using quadrature methods, but a better way is to let $t = e^{-u}$ and obtain

(3.1)
$$\int_{1}^{e^{-x}} \frac{\ln t \, dt}{1-t} = \mathrm{Di}(e^{-x}),$$

where Di(x) is the dilogarithm function. This function has been studied by a number of people including Kummer and Abel, see [8]. Some functional equations and series expansions have been found for it, among them being

(3.2)
$$\operatorname{Di}(x) = \sum_{k=1}^{\infty} (-1)^k (x-1)^k / k^2, 2 \ge x \ge 0.$$

(3.3)
$$\operatorname{Di}(x) + \operatorname{Di}(1 - x) = -\ln x \ln(1 - x) + \frac{\pi^2}{6}, 1 \ge x \ge 0.$$

Expanding Di $(1 - e^{-x})$ by (3.2) and also expanding the logarithm term in (3.3) we have Di $(e^{-x}) = \pi^2/6 - \sum_{n=1}^{\infty} (nx + 1)e^{-nx}/n^2$, or

(3.4)
$$\int_0^x u \, du/(e^u - 1) = \pi^2/6 - \sum_{n=1}^\infty (nx + 1)e^{-nx}/n^2,$$

which works well for large x.

4. Calculating $(a; q)_{\infty}$ when q is close to one. By the definition of the q-gamma function,

(4.1)
$$(q^{z};q)_{\infty} = \frac{(q;q)_{\infty}}{\Gamma_{q}(z)} (1-q)^{1-z}, 0 < q < 1.$$

Here we can let $a = q^z$ and use the asymptotic expansion (2.14) to compute $\Gamma_q(z)$ and (2.21) to compute $(q; q)_{\infty}$. This provides a way to compute $(a; q)_{\infty}$ for q close to one. One result along these lines is this next theorem.

THEOREM 3. Let 0 < a < 1 and 0 < q < 1. Then as $q \to 1^-$, $\ln(a; q)_{\infty} \sim 1/2 \ln(1-a) - B(a)/\ln q - \sum_{k=1}^{\infty} C_k(a) (\ln q)^{2k-1}$, where

(4.2)
$$B(a) = \int_{-\ln a}^{\infty} \frac{u \, du}{e^u - 1} + \ln a \ln (1 - a),$$
$$C_k(a) = \frac{B_{2k}}{(2k)!} \frac{a P_{2k-3}(a)}{(a - 1)^{2k-1}}, k = 1, 2, 3,$$

412

The $P_k(a)$ are defined in (2.4). Moreover the error in terminating the series is less in absolute value than that of the first term neglected and has the same sign.

PROOF. Take logs in (4.1) and use (2.14) and (2.15) for $\Gamma_q(z)$. After some simplifying we obtain,

$$\ln(q^{z}; q)_{\infty} \sim (1/2 - z) \ln(1 - q^{z}) - \frac{1}{\ln q} \int_{0}^{-z \ln q} \frac{u \, du}{e^{u} - 1} + \frac{\pi^{2}}{6 \ln q} - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln q}{q^{z} - 1}\right)^{2k-1} q^{z} P_{2k-3}(q^{z}).$$

It is known [9, p. 265–269] that $\int_0^\infty u \, du/(e^u - 1) = \zeta(2) = \pi^2/6$. We obtain

(4.3)
$$\ln(q^{z}; q)_{\infty} \sim (1/2 - z) \ln(1 - q^{z}) - \frac{1}{\ln q} \int_{-z \ln q}^{\infty} \frac{u \, du}{e^{u} - 1} - \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\ln q}{q^{z} - 1}\right)^{2k-1} q^{z} P_{2k-3}(q^{z}).$$

The asymptotic expansion (4.3) is still uniform for $0 < q \le 1$, and proper with $n_k = 2k - 1$. We can therefore set $q^z = a$, hold a fixed and let $q \to 1^-$ in (4.3) to obtain (4.2). Since the asymptotic expansion (4.3) is proper, the truncation error in (4.2) is less than that of the first term neglected and has the same sign.

References

1. W. Bailey, *Generalized Hypergeometric Series*, Cambridge Univ. Press, 1935, reprinted, Hafner Pulb. Co., New York, 1972.

2. R. Askey, The q-gamma and q-beta functions, Applicable Analysis 8 (1978), 125-141.

3. ——, Ramanujan's extension of the gamma and beta functions, American Math. Monthly, 87 (1980), 346-359.

4. M.L. Knopp, Modular Functions in Analytic Number Theory, Markham, Chicago, 1970.

5. D.S. Moak, The q-gamma function for q > 1. Acquations Mathematicae 20 (1980) 278–285.

6. ——, The q-gamma function for x < 0. Acquationes Mathematicae 21 (1981) 179–191.

7. D. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly, 47 (1940), 533-538.

8. L. Lewin, *Dilogarithms and Associated Functions*. McDonald, London, England, 1958.

9. E. Whittaker and G. Watson, *A Course in Modern Analysis*, Cambridge Univ. Press 1950.

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES, MICHIGAN TECHNOLOGICAL UNIVERSITY, HOUGHTON, MI 49931