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THE Q-ANALOGUE OF STIRLING'S FORMULA 

DANIEL S. MOAK 

ABSTRACT. F.H. Jackson defined a ^-analogue of the factorial 
ni = 1-2-3 •• n3LS(n\)q = 1.(1 + q) • (1 + q + q2) • • • (1 + q + 
q2 + • • • + qn~l)y which becomes the ordinary factorial as q —> 1. 
He also defined the #-gamma function as 

rg(x) = ffi.^ (1 - q)1-*, 0<q<U 

and 

where 

r*x) = S-^:'i;(9 " 1)l~*g&'q>h 

(a; q)„ = fj (1 - aq"). 
rt=0 

It is known that if q -+ 1, /V*) -» TX*), where r(x) is the ordinary 
gamma function. Clearly rq(n + 1) = («!)9, so that the #-gamma 
function does extend the q factorial to non integer values of n. We 
will obtain an asymptotic expansion of rq(z) as \z\ -» oo in the 
right halfplane, which is uniform as q -* 1, and when q -* 1, the 
asymptotic expansion becomes Stirling's formula. 

1. Introduction. In recent years many of the classical facts about the 
ordinary gamma function have been extended to the gr-gamma function. 
See Askey [2], and [5], [6]. Using an identity of Euler, 

1 °° xn 

rq(x) can be written as, 

(1.2) rjx) = (q; q)JLl - tfi-'g ^ _ , 0 < q < 1, 

and 

(1.3) rq(x) = ( f i ; q-^q(2)(q - 1)1-« f (S.Z-u > ? > »• 
»=o w 5 fir 7« 
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(1.1) is a consequence of the {/-binomial theorem 

(1.4) ^ ' 4 - = £ - ^ 4 x*9 0< q < 1, 

where a = 0. As easy proof of (1.4) can be found in [1, p. 66]. 
Unfortunately, (1.2) or (1.3) does not become Stirling's formula when 

q -• 1. Neither the infinite series nor the infinite product converge uni
formly as q -> 1, although they are asymptotic series for large x. There is, 
however, another asymptotic expansion which becomes Stirling's formula 
when q -> 1 and is uniform for q near 1. 

2. The main result. The basic tool we will use is the following Lemma. 

LEMMA A. Iff e C2m[a, b], a andb integers, then 

(2.1) 
n=a * a A * 

+ t "(Sfl {/<2*_1> {b) -f(2k~V ( a » - £ *2m(2m)!W)'-fi2m)Wdx 

where Bn(x) is the nth Bernoulli polynomial, Bn = Bn (0), and m is any 
positive integer. 

If {(— l)mfim)(x)}m=2 au* n a v e o n e Slên o n [û,é],the error in terminating 
the series on the right at k = m is less in absolute value than that of the 
first term neglected and has the same sign. 

For a proof see [9, p. 128]. To simplify the following discussion, we will 
use the following definition. 

DEFINITION. An asymptotic series f(z) ~ 2£=i akßk(z) is proper if the a{ 

are all real and there exists a sequence of positive integers nx< n2 < 
such that 

(i)/(z) and ßk{z) are analytic for — %\2 < arg z < TC/2. 
(ii) ßk(z) = 0(z~nk) as z -> oo uniformly in every sector — %\2 + e < 

arg(z) < %\2 — e9 0 < e < %\2. 
(iii) For every m, (/(z) — 2]£=i #* /3Ä(^)) • Z ^ -> 0 as z -> oo uniformly 

in each sector - %\2 + e < arg(z) < #/2 - s, 0 < e < nß. 
(iv) If z is real and positive, the ß;(z) are real and the error in truncating 

the series is less in absolute value than that of the first term neg
lected and has the same sign. 

Stirling's formula 
0 0 J2 

(2.2) r(z) ~ (z - l/2)lnz - z + (l/2)ln(2*) + g ( 2 f c ) g * _ ^ r ^ 

is one example of a proper asymptotic expansion. Many other classical 
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functions of mathematical physics have proper asymptotic expansions, 
and as we shall see, rq(z) has one too. 

THEOREM 1. Let Wq(z) = (d/dz)rg(z)/rq(z), then 

w (z) ~ iJl=r)+-J*JL- - v J^lfA^fr^V 
yqKz) ^x__q)^2{q^__i) Li(2k)i\\dt) \l-q*t)j\ t=o 

(2'3) - \Jl - 4 2 U lnq - T B2k ( ln q Y W o o(a*i 

where Pn(z) is a polynomial of degree n satisfying 

(2.4) Pn{z) = (z - z*)PU(z) + (nz + 1)/Vi00, P 0 = 1, /i £ 1. 

//ere it is assumed that the principal branch of the logarithm is taken. More
over (2.3) is a proper asymptotic expansion with nk = 2k. 

PROOF. We first show by induction that 

It is easy to verify that (2.5) holds for n = 1. Assuming that (2.5) holds 
for n = k, we have 

ar^)-émr^'-^) •q< ) at \ \1 - q', 

= (k + lXln?)*+2O-*0-*-2**JV-ifa0 
+ (ln<7)*+2(l -q^-WPk-iW) 

+ (In <?)*+* (1 - q'Y*-1 q2t Pk-M') 
In « \*+2 

- ( 
+ (1 - q>) P^iqt) + q'(l - q>) PUsW 

by (2.4). This proves (2.5). 
There are some properties of Pn(x) which will be needed and they are 

summarized in the following Lemma. 

LEMMA 1. 

(i) The coefficients of P„(z) are all positive. 
(ii) Pn{\) = (n+ 1)! 

PROOF OF (i). We will prove (i) by induction on n. For n = 0, (i) is clear. 
Assuming that (i) holds for n = k, we have by (2.4), Pk+i(z) = (z - z2) 
• P'k{z) + ((* + l)z + \)Pk{z) = {zP'k{z) + Pk{z)) + ((* + l)z/>,(z) - zVÄz)). 
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It clearly suffices to show that (k + \)zPk(z) - z2Pk(z) has positive 
coefficients. This will be true if (k + l)zJ+1 — z2(d/dz)zJ has positive 
coefficients for 0 g j ^ k. It clearly does, 

PROOF OF (ii). Let an = P„(l), then by (2.5), 

Now #' In q/(\ — #0 is an analytic function of / on any punctured disk of 
the form {z: 0 < \z\ < R) when q is close enough to one. On any compact 
subset of such a punctured disk, qt In q/(l — q*), coverges uniformly to 
— l/t as q -> 1. We can therefore justify interchanging limg_1 and {djdt)n+l 

in (2.6), yielding (/i + 1)! ( -0~ w ~ 2 = *»(- r)-»~2, or <jw = (« + 1)! 
proving (ii). 

Now let nk = 2k, k = 1, 2, . . ., and ßk(z) = (In #/(l - q*))2*q*P2k_2 

(qz). znqz -> 0 as z -* oo uniformly in any closed subsector of {z: — #/2 < 
arg (z) < tf/2}. So (i) and (ii) hold. By a direct calculation; Wq{z) — 
- In (1 - q) + (In <?) £ £ o 1/fo-»-* - 1). Now let/(x) = In ? / ( ? - « - 1 ) , 
ö = 0, and Z> -> oo in (2.1). Then 

U*> = - ind - ,) + On ,) J "^L_ + A£ 
(2.7) 

fei "(21) !" VÄ / V tf1"^ - T 
where 

«=o 
+ R2m{z\q\ 

R (z- fl) - - r
 ß2'«(x -M ) f d T( ln * u 

Using (2.5) and lemma 1, one can easily justify letting b -> oo in (2.1). 
The first integral in (2.7) can be evaluated explicitly: 

\t=oo 

o-dJT^i-ITO?*--«'-•"*> l n ( l - f ) . 

Substituting this into (2.7) we obtain (2.3). It remains to show that the 
remainder term has the needed properties to make the asymptotic expan
sion proper with nk = 2k. To do that we need another lemma. 

LEMMA 2. If 0 < q ^ 1 andRe(z) > 0, then 

(2.8, |$T( j^)|s(#( i=^).,>a 

PROOF. If 0 < q < 1, ln ?/(?-*-' - 1) = On?) E£x <7*z+*', so that 

ßyy^rH-'-'s*' 
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Hence 

(AYL l n M 
\dt) \q-^r-\) 

< \\x\q\«+ll^k« to*«+«| 
*=i 

( - In <7ÌW+1 V knakRe(z)+kt = (AY( ~!n_S \ 

At q = I, ln qKq"*'* — 1) has a removable singularity, in fact 
l i m ^ f l n ql(q-*-t - 1)) = - l/(z + t). Then | (<//*)"( - l/(* + 0)1 = 
\n\/(z + t)n+l\ = n\/\z + t\n+l g w!/(Re(z) + 0W+1 So the lemma also 
holds when q = 1 also. 

We now use the lemma to obtain an estimate of the magnitude of 
^2m(z)- We can write /?2m(z)as 

R,(Z)-- B ^ (dY^( Inq \ | 

( 2 '9 ) - Ç°°**+*t-[t])(d\»«*( In g \dt 

J o " (2m + 2) ! " U / / VV*-' - 1 / 

Then using (2.5), lemma 1, and lemma 2 

+ f°° \B2n,+2(t - [t]){ fdVm+2( - I n g \dt + Jo (2m+2)! " U / / W " R e W " ' - l / 

It is known, [7, p. 533-538] that \B2m{t)\ g \B2m\, t e [0,1], m = 1, 2, 3, . . . 
Then 

(2.10) IR2M)1 Z $ & $ ( Ç ^ C T * ^ ^ R e ( Z ) ) -

For |arg(z)| < œ/2 — e, we have Re(z) > |z| sin 5, hence 

(2.11) |z2*+2/?2m(z)| 

2[2î2m+2| /(In g)Re(z)g^>\*** 
= (sin e)2^+2(2m + 2) ! V 1 - ? R e ^ / * 2w w ;* 

It suffices to show that the expression on the right is uniformly bounded 
for q <; 1 and |arg(z)| < %\2 — e. Let u = Re(z) ln q. Then u ^ 0, and 
(ln q) Re(z)?Re(2)/(l - qRe(z)) = ue»/(l - e«), which is bounded for u ^ 0. 
It follows that the right side of (2.11) is bounded for Re(z) ̂  0 and 
q ^ 1. Consequently iimz^00\z

2mR2m(z)\ = 0 uniformly for 0 < q ^ 1 
and |arg(z)| < %\2 — e. So property (iii) holds. To prove (iv), note that 
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lemma 1 and(2.5)imply that(-l)»-1(dldt)n(q'ln q/(l - q*)) > 0. By lemma 
A, (iv) follows. 

COROLLARY. Letq ^ 1, then 

( 2 ' 1 2 ) _ V B^ (d\2k-z(q*\*q\ 

or by (2.5) 

(2 13) 

+ Cf + g ̂  ( ̂ T j *'/W*0, 

where Cq is a constant depending on q. Moreover, these asymptotic expan
sions are proper with nk = 2k — 1, and uniform for 0 < q ^ 1 and\arg(z)\ 
< 7ü/2 - e, e > 0. 

PROOF. We integrate each term of (2.3) from 1 to z inside the sector 
|arg(z)| < 7CJ2. The resulting asymptotic expansion is still proper with 
nk = 2k - 1 and ßk(z) = (In q/(l - qz))2k-lqzP2k-z(qz). We still need 
to show that when (2.3) is integrated term by term from 1 to z we obtain 
(2.12) and (2.13). This is clearly true for the terms of the series. For the 
terms preceding the series we have 

= £ln(l - q')dt - (z - 1) ln(l - q) + y £ 7 ^ q
 xdt 

t\n(\-q<) 

Substituting this back into the integrated asymptotic series for \n(rq(x)) 
we obtain (2.12) and (2.13). 

It remains to obtain an asymptotic expansion for rq{x) for q > 1, and to 
find the constant term Cq. We then obtain the main result. 
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THEOREM 2. 

In 

(2.14) 

where 

\q,Q<qS\ 
q
 IT 1 , q ^ i, 

and Pn+l(z) = (z - z*)P&) + ((« + 1)2 + l)/»„(z), « ^ 0, />0(z) = 1, 

(2.15) c, = | m ( i - ,) + Hr, </)- - ^ + ^ r ' ^ T -

C, = | .n(2,) + |l„(^)-i.„, + 1 J j ; - ^ 
(2.16) 

+ In Y1 rm ( 6 m + 1 > — r ( 3 w + 1 ) ( 2 m + 1 ) . 
m=—oo 

w>Aer<? r = exp(47T2/ln #). 
Moreover this asymptotic expansion is proper with nk = 2k — Ì and 

uniform for ö < q < i/o and |arg(z)| < %\2 - e, e > 0, ö > 0. 

PRCX)F. First we obtain the constant term for 0 < q < 1. Comparing 
(1.2) with (2.12), we have 

*,;,).+ <•-.)!.« - , , + 1.(1^-) 

-<*-.m<r,K>n ,; ,>*+^+oo"> 
as z -» oo, |arg z\ < %\2 - e, q fixed, 0 < e < %\2. Letting z -» oo 
on the real axis, we obtain 

C »= -\h, f°° !0A + WW)- +4-ln( l - 9 ) - um ( 2 - l/2)ln(l - « ' ) • in q j -in g eu — l z z->+°° 

Thus 

c«=- wL,^ + , n ( * ; *>- + -W 1 - *>• 
It is known [8, p. 265-169] that jg° w du/(e" - 1) = £(2) = ?zr2/6. We now 
have 

C< - TnVJo l nV~T + , n < * ; ' > - - 6-fn^ + T ^ 1 " *>' 
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This proves (2.15). The difficulty with (2.15) is that it is hard to evaluate 
(yi tf)oo for q close to one. We need to have an alternate way of computing 
(tf ; #)oo- We start with Ramanujan's sum [3, (3.15)] 

(a;g)n 

) (±ig) to;«). 
, 16/4 < \x\ < 1, \q\ < 1. 

nà±oo(b\q), 

<2'17,_ c ^ # ) « 

Now let b = 0 and replace x by x/a and let a -> oo. We then obtain Jaco-
bi's triple product 

(2.18) f; (-l)»*(2)*» = (*;*) .o(-f ;?) (? ;? )„ . 
n=—oo \ •*• /oo 

Now replace # by #3 and let x = #2. Then we have Euler's series 

oo 

E ( - 0" i3n2/2+n/2 = (r, <73U<72;<73U<73:<?3L 
»=—oo 

oo 

= n (1 - q1+3«)(l - <72+3»)(i - (73+3w) 

oo 

= n d - r\ 
n=0 

Thus 
oo 

(2.19) £ ( - i ) " ? * * ' * * 2 = (?;?). . . 
»=—oo 

We still have problems computing (q; q)^ when q is close to one, but at 
least we have quadratic rather than linear convergence. There is, however, 
an important formula of Poisson which completely solves alt these con
vergence problems. 

OO 1 OO 

(2.20) £ e-*«"+* = * 2 e-**1***™*, Re(f ) > 0. 
n——oo V * «=—oo 

See [4, p. 40]. Let q3/2 = er", z = 1/6 + 71/(3/ In q) in (2.20). 
We obtain 

(q; ?)oo= £ ( - l ) » ? 3 » 2 ^ 2 

(2.21) 

M = — 0 0 

where r = exp (4^2/ln q). The series on the right converges extraordinarily 
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rapidly for q near one. For example, if we let q = .8, then r = 1.46 x 
10~77! In fact it is al way s true that either g or ris less than 2 x 10~3. 

(2.21) can be substituted into (2.15) to obtain (2.16), This proves the 
theorem for 0 < q < 1. When (2.16) is used for the constant term in 
(2.14) and when q -• 1, the ordinary Stirling's formula for the gamma 
function emerges. 

To extend these results for q > 1, we use the definition of rq(x) to 
obtain 

(2.22) rq(z) = g**-***" rq-i (z). 

For q ^ 1, we can use the asymptotic expansion on rq-\(z). The result is 

In rq(z) ~ ( y - ÌL + l)ln q + ( z - 1/2) ln( j ^ r ) 

Now looking at the terms preceding the constant term, we see that 

= ( y - y + l ) In q + (z - 1/2) Infoi-«) 

^-"2>'"({^)-i»j;:;^ 
- ( - M ) - ^ C 'T^f "»*»+<- '«KO-') 

/ 72 1 \ 1 1-2 In 9 

\ 2 2) 2(ln<7) |-in« 

v ' \1 - <?/ ln<? J_ing e " - 1 

These are the same two terms in the asymptotic expansion for rq(z) for 
0 < q ^ 1. Theorem 2 now follows for all q > 0. 

3. Some remarks on the asymptotic expansion. Despite the apparent 
complexity of (2.14) it does provide a practical way of computing rq(z) 
for q arbitrarily close to one. One must use Taylor expansions for expres
sions like u/(eu — 1) for u near zero, otherwise numerical cancellation 
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problems will occur. Once these precautions are taken, (2.14) will yield 
good results ; for x ^ 30, five terms in the sum will yield at least 14 decimal 
place accuracy and often more, regardless of the value of q. To evaluate 
the constant term C$, (2.16) is used if q is close to one, and (2.15) is used 
for small values of q, where the Euler series 

CO 

(*;*)»= E (-i)V2/2-»/2 

is used to compute (q; q)^. 
The integral |§ u du/(eu — 1) is easily computed using quadrature 

methods, but a better way is to let t = e~u and obtain 

O.I) j ;" '* i£ = Di(<~), 

where Di(jc) is the dilogarithm function. This function has been studied 
by a number of people including Kummer and Abel, see [8]. Some func
tional equations and series expansions have been found for it, among them 
being 

oo 

(3.2) Di(*) = 2 ( - 1)*(* - 0*/*2> 2 ^ x ^ 0. 
k=i 

(3.3) Di(jt) + Di(l - x) = - l n* ln ( l - x) + x2/6, 1 ^ x ^ 0. 

Expanding Di(l — e~x) by (3.2) and also expanding the logarithm term 
in (3.3) we have Di(<r*) = TU2/6 - £ £ * (nx + l)e-»x/n2, or 

(3.4) I M du/(e» - 1) = ^2/6 - V («x + l)<r"*ln2
9 

Jo t^i 
which works well for large x. 

4. Calculating (a; q)^ when q is close to one. By the definition of the q-
gamma function, 

(4.1) fa«; <7L = - ^ - ^ (1 - qy-\ 0 < q < 1. 

Here we can let a = qz and use the asymptotic expansion (2.14) to com
pute rq{z) and (2.21) to compute^; q)^. This provides a way to compute 
(aiq)^ for q close to one. One result along these lines is this next theorem. 

THEOREM 3. LetO < a < 1 andO < q < 1. Then as q -+ l - , In (a; q)^* 
1/2 In (1 - a) - £(a)/ln ? - ££=i Q (a) (In tf)2*"1, wAere 

*(*) = r -W^T + In « to (1 - A), 
(4.2) 

C * W ~ "(21JT (a - l)2*-i ' * ~ ' ' Z ' J ' 
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The Pk(a) are defined in (2.4). Moreover the error in terminating the 
series is less in absolute value than that of the first term neglected and has 
the same sign. 

PROOF. Take logs in (4.1) and use (2.14) and (2.15) for /\(z). After some 
simplifying we obtain, 

Info-; «L ~ (1/2 - 2) ln(l - r) - ^ £ " " ^ + ^ 

It is known [9, p. 265-269] that föudu/(e« - 1) = Ç(2) = jr2/6. We obtain 

in(<r; *)„- a/2 -r) mo - r) - ^ J l . ^ r 
UWvXq^^) q F2k^q)' 

The asymptotic expansion (4.3) is still uniform for 0 < q g 1, and 
proper with nk = 2k — 1. We can therefore set #z = a, hold a fixed and 
let q -• 1~ in (4.3) to obtain (4.2). Since the asymptotic expansion (4.3) is 
proper, the truncation error in (4.2) is less than that of the first term 
neglected and has the same sign. 
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