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NEW USER-TRANSPARENT EDGE CONDITIONS 
FOR BICUBIC SPLINE SURFACE FITTING 

L. H. SEITELMAN 

0. Introduction. Surface fitting is an important element in many prob­
lems in applied mathematics. In particular, in aircraft engine design 
and development, the accurate representation of geometric part data for 
use in engineering analysis programs or for determination of appropriate 
processing operations is a key requirement in computer-aided design and 
computer-aided manufacturing (CAD/CAM) applications. This paper is 
concerned with the development of practical techniques for surface 
representation. 

1. The problem. We consider the problem of producing a bicubic spline 
surface fit which interpolates to given function data on a rectangular 
grid. This problem, the two-dimensional analog of univariate cubic spline 
curve fitting, arises in a very broad spectrum of engineering applications, 
such as the mathematical modeling of airfoils in aircraft engine design. 

2. Background: the one-dimensional case. Because our solution to the 
problem is a natural generalization of the one-dimensional case, we begin 
with a brief review of our work on the univariate problem. A more 
rigorous and complete discussion can be found in Ahlberg, Nilson, and 
Walsh [1] or deBoor [2]; our focus here is primarily on practical proce­
dures. 

In [1], the cubic spline fit is presented as the mathematical analog of 
the draftsman's spline, and the need to prescribe additional boundary 
conditions (i.e., other than interpolation) in order to determine this fit 
is introduced as a natural consequence of the underlying physical model. 
In [4], using a natural or "cardinal" set of basis functions for the case of 
equally spaced data on an infinite grid, Nilson showed constructively 
that, for a set of n equally spaced data points, the restrictions of n + 2 
of these basis functions to the data interval could be used to develop a 
two-parameter family of cubic spline interpolants to the given data; 
additional constraints, the so-called "end" conditions, are necessary to 
determine a unique interpolating spline. Specification of end slopes, or 
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second derivatives, or other quantities, are among the possible choices to 
resolve the nonuniqueness. 

In a large number of curve fitting applications, the user has no a priori 
information about the curve fit behavior other than the function values 
at the data points. As a result, it is in practice convenient to use an adap­
tive procedure to prescribe suitable end conditions in order to determine 
the appropriate spline fit to the data. In [5], Seitelman developed a proce­
dure for this purpose, and showed its superiority to several other methods 
for a reasonable spectrum of curve fitting problems. The same procedure 
was demonstrated in [6] to produce more accurate curve fits for the 
always difficult problem of extrapolation. 

3. User-transparent end conditions for spline fitting. The automatic pro­
cedure for specifying spline end conditions is derived in [5] as follows: 
Given data points (*,., y{\ i = 1, . . . , « , and assuming that the interpolât-

y ( x ) l 

y * ( x ) i 

e x t r a p o l a t e d 
va lue of f ' ( x ) 2 "3 

Figure 1 : User-transparent end condition procedure. 



EDGE CONDITIONS FOR BICUBIC SPLINE SURFACE FITTING 353 

ing function y(x) to the data is smooth, the mean value theorem tells us 
that there exist points x*9 i — 1, . . . , « — 1, with x{ < xf < JC,-+1, such 
that 

xi+i — xt-

i = 1, . . . , « - 1. If we assume that xf = (l/2)(xf- -f xi+i), i = 1, 2, 3, 
i.e., if we assume that the mean value theorem points for the first three 
intervals lie at the center of each of those intervals, then we can use a 
parabolic extrapolation of the (assumed) values of the slope y'(x) at these 
points to estimate the end slope y\x{). The situation is depicted in Figure 
1. 

To be precise, we have 

y(Xl) = Z2JT-Ü1. (2*i - X2- * 3 ) (2*1 - *3 - *4> 
*2 ~~ *1 (*1 "" *3) (*1 "+" *2 ~" *3 "~ *4/ 

+ ^3 - ^2 (*1 - * 2 ) (2*1 - *3 ~ *4> 
*3 "~ *2 (*3 "" * l ) (*2 "" *4) 

+ ^4 - J3 (*i - * 2 ) (2*1 - *2 - *3> 
*4 — *3 (*3 + *4 — * i — * 2 ) (*4 "" *2) 

A similar procedure is used to estimate y'(xn). 

4. Visualization and computation. Although cardinal splines are ex­
tremely useful in visualizing curve fitting problems, the set of cardinal 
spline functions derived in [4] is of little computational interest, since 
all of the basis functions are nonzero except at the data points. However, 
the great value of this formulation is the explicit representation of the 
effect of the data points of the interpolating fit, and the clear representa­
tion of the need for supplementary end conditions to adjust the potentially 
"wiggly" behavior of the fit at the ends of the data set. This explicitness 
meshes naturally with the physical model underlying the mathematical 
representation of the spline fit. 

5. B-splines and end conditions. A computationally efficient approach 
to the interpolation problem is provided by the use of splines with compact 
support. This alternate to the cardinal spline basis set for representing 
spline functions is provided by the 2?-spline family described extensively 
in [2]. For the cubic case, this family consists of cubic spline functions 
each of which is nonzero over only four data intervals. The great utility 
of this family is the fact that the compact support feature guarantees 
that the evaluation of a linear combination of 5-splines involves the 
evaluation of at most four non-zero terms. 

Let xi, *2, . . . , * „ be the data points, with x{ < Xj if i < j . We define 
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Bj(x), the 2?-spline centered at a data point xi9 i = 1, . . . , « , to be that 
l?-spline with support in the interval Cxv_2, xi+2). 

(We set 

•*o = xi "" Ai, xn+i = xn 4- hn 

x-i = xo — Ai, xn+2 = xn+i + A„ 

where 

Ai = Xi — x0, hn = xn — x„-i 

to define the i?-splines at the edges of the data sets.) 
It is easily shown that we can find a unique linear combination of the 

n functions Bt(x) which interpolates to the given function data /(*,•) at 
the xi9 i.e., that there exists a unique linear combination Ttk=i (xkBk(x) 
of B^x), B2(x), . . . , Bn(x) which satisifies 

n 

(1) f(xj) = 2] akBk(xj)J = 1, . . . , « . 

This is an interesting development, in view of the siutation discussed 
in §2, i.e., the fact that there is a two-parameter family of cubic splines 
that interpolates to given data. Where did those two degrees of freedom 
"go"? 

The answer, of course, is: "Nowhere!" For if we define x_2 = X-i — hh 

xn+3 = xn+2 + A„, then it can easily be shown that there is a two-parameter 
family of solutions to the system of equations, 

(2) /(*/) = £ W 4 i = 1,...,». 

In this case, if the end conditions are varied, then in general all the ßk 

will be affected. This is in sharp contrast to the cardinal spline formula­
tion, in which the point data interpolation requirement fixes all but two 
of the basis function coefficients. 

The abbreviated form (1) of the interpolating ^-spline is equivalent to 
specifying two particular end conditions on the cubic spline function. 
These conditions will now be determined. 

If we differentiate (1), we obtain /'(•*) = £jf=1 akB'k(x). By construction, 
the ^-splines satisfy B'k(xj) = 0, if j ^ k — 1, k, k -f 1, and therefore 
f'{x{) = aiB[(xù + a2B2{x^). If x3 - x2 = x2 - xly then ^i'(*i) = 0, and 
so, for the case of equally spaced data, we have / ' (*i) = cc2B2(xi). A 
similar development at the right-hand end of the data set yields, for the 
equally spaced data case, /'(*») = <*»-i^«-i(*»)- Therefore, it is clear, 
that for the case of equally spaced data, the use of the interpolating 
^-spline (1) is equivalent to specifying end slopes which depend only on 
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the ^-spline coefficient at the second and next-to-last data points. The 
contrast between these constraints and the user-transparent adaptive 
conditions developed in [5] is striking. 

The analysis required to determine the #-spline coefficients for the 
case (2), where the user-transparent end conditions are prescribed as in 
[5], is presented in the Appendix (§13). We are primarily interested here 
in the extension of this work to data fitting in two dimensions. 

6. Extensions to surface fitting. With the above as background, we 
proceed now to the problems of two-dimensional surface fitting. Specifical­
ly, we consider the case of data defined on a rectangular grid, a not 
uncommon practical case. A typical example of such an application is 
the parametric fitting of data defined on a network of curves in space, 
where the same number of points is identified on each curve, thereby 
defining a "rectangular" grid in the parametric variables u and v, with 
equal spacings in the point numbers in each of the two curve 'directions". 
An example of this parametrization is given in the figure below. Fitting 
each variable of the point coordinate data as a function of these parame­
ters, i.e., representing points on the surface as the set of points of the 
form (x(u, v), y(u, v), z(w, v)), produces a parametric surface. 

Figure 2: Identifying the same number of points on each member of a family of 
curves parametrizes that network of points. 
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We develop the ideas for surface fitting on a rectangular grid. For 
simplicity of presentation, we consider the case of equal spacing in each 
coordinate direction, although our remarks and results clearly generalize 
to the non-equally spaced case. 

As in the one-dimensional case, the concepts are most easily presented 
by using cardinal splines (in this case, cardinal bicubic spline functions) 
as basic building blocks. Although computationally inefficient, these 
functions provide a very convenient tool for visualizing the solution to 
the surface interpolation problem. 

Let Xi = *i + (i - 1)4,, i = 1, . . . , m, yj = yx + 0* - l)z/y, j = 
1, . . . , « , with Jx, Ay > 0 define the (equally spaced) grid of given data 
points. A bicubic spline on the rectangle <% = [xÌ9 xn] x [yl9 yn] is a 
function which is doubly cubic (in both x and y) on each subrectangle 
[xh xi+i] x [yj9 jy+i], and which is twice continuously differentiable over 
^ , i.e., which is in the class C\(0), where Cn

r{0) is the family of functions 
f{x, t) whose n-\h order partial derivatives, involving no more than 
r-th order differentiation with respect to a single variable, exist and are 
continuous. 

DeBoor [3] showed that there exists a unique bicubic spline which inter­
polates to the given function data^y = f(xh yj), i = 1, .. ., m9 j = 1, . . ., 
«, and which also satisfies the slope constraints 

w\ =ajJ= ''2> •••'"' x—xi, x=yj 

I d =biJ=\,2,...,n, 

—£-\ = c i = 1 2 m 
Of \x—Xii y—y\ 

and 

-J-\ = di9i = 1, 2, . . . , m , 
Oy \x=xi, y=y„ 

where the a,, b;, ch and d{ are given, and the twist constraints at the 
corners, 

32 / 
\x=xh y=y\ dxdy 

fady\x=xhy=yH 

9 2 / l 
dxdy\^Xm9y=JX 

and 
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d2f 
dxdy = *4 -

\x=xmi y=yn 

These edge (and corner) conditions determine a so-called Type / bicubic 
spline. 

As in the one-dimensional case, in a large number of curve fitting ap­
plications, the user has no a priori information about the surface fit be­
havior other than the function values at the data points. As a result, 
we shall develop an adaptive procedure to derive suitable edge and corner 
conditions in order to determine the appropriate bicubic spline fit to the 
data. 

7. Specifying user-transparent conditions for surface representation. To 
determine the bicubic spline fit, we shall derive values for dfldx at x = X\ 
and x = xm, for each yj, for dfldy at y = yx and y = ym for each x,-, and 
for d2fldxdy at the corners of the rectangular grid. 

Let A(x) be the univariate cardinal cubic spline [3] centered at x = 0; 
if X = - 2 + V T , then 

<\ - 30* + \)x2 + (3A + 2)x3, 

A(x) = 3fr(x - n - (X + 2)(x - «)2 4- (X + l)(x - w)3), 

U- *), 
Straightforward calculation gives 

r - 6W + 1)JC + 3(3A + 2)x2, 

;*'(*) = 3A"(1 - 20* + 2)(JC - n) + 3(A + IX* - ")2)> 

I - >*'(-*)> 
and 

0 g x ^ 1 
« <; x ^ n +1 and 
n > 0 an integer, 

x < 0 

0 ^ x g 1 

n g x S n 4- 1 and 
n > 0 an integer, 

x < 0 

- 6tf + 1) + 6(3A + 2)x, 

A"(x) = l6X»(-(X + 2) + 601 H- l)(x - *)), 

U"(- x), 
and so, in particular, 

( 0 , if x = 0, 

A'(x) = < 3Xn , if x = w > 0, n an integer, 

1 — 3AW, if x = — « < 0, n an integer, 

and 

0 g x ^ 1 

« ^ x ^ n + 1 and 
« > 0 an integer, 

x < 0 
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r-6U +1) , ifx = o, 
A"{x) = I - 6̂ "(A + 2), if x = n > 0, n an integer, 

I -6A*(A + 2), if x = — « < 0, n an integer. 

We define the interpolating bivariate cubic spline as a linear combination 
of products of one-dimensional cardinal splines, 

It follows from the relations for the cardinal spline that 

• Sïi«*-o*-/) 
* J 

= L 2] '*• AA 
« .7 

and so the interpolation conditions require that trs = / r s , r = 1, . . . , w; 
j = 1, . . . , « . To determine the remaining coefficients, we can use the 
previously developed extrapolation techniques to determine slope-like 
end conditions at the boundary of the rectangular region [xx, xm] x [yl9 yn]. 
Indeed, if y = ys is fixed, then we have 

Therefore, 

Similarly, 

It follows that 

dt(x„ y) _ 1 yi . A>(y - }'i\ 
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dt(xr,y,) _ 1 y , A>(xr - x,\ 
~~dx " ~ Ax Y " \ ~ÀX ) 

= 4 - E U, A'(r - i) 
UX i 

1 r~l 
1 m-f-1 

Ax t=r+l 

and the quantity on the left-hand side of the above can be estimated at 
x = Xi from the data at (xl9 ys), (x2, ys), (*3> y s \ a n d (xr, ys) by the techni­
ques described in [5]. Similarly, at x = xm, the data points at (xw_3, j s ) , 
(JCW_2, j s ) , (xm_x, >>s), and (xm, ys) can be used to estimate the left-hand side. 

In like fashion, we have the result 

Mxnys) _ 1 "+1 .A'(y'-yA 

Ir = l,...,m, 

1 s - l 1 »+1 

- - j -£'r/ -3*-' - -3- £ »r/-3^, 

and the values of dt/dy can be extrapolated from the function values near 
the y = y\ and y = ys edges of the data rectangle. 

Specifically, we have 

9t(xi,y.) _ I n ) , ^ y 1 / . 3.-11 1 

dt(xm, ys) LryM/. J»-»'—33/ , 1 

3^r,Ji) _ i - m , , y \ ;/-n 3^ jyPx/ro - 3 2, trji> 'j 

while the extrapolated estimates are given by 

dJ^^- S -Jj- ( - 15/u + 25/2>s - 13/3>s + 3/U 

^ w ^ = 82;(15/""s " 25/m-1-s + 13 /'»-2' s " 3/m-3-s) 

dtiXf/ù = " 8 3 - ( - 15/r.i + 25/r>2 - 13/r>3 + 3/f,4) 

dt{x^ S g i - (15/,. , - 25/-r,„_1 + 13/r>B_2 - 3/r,„_3). 

These relationships permit the simultaneous solution for pairs of unknown 
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coefficients; to be precise, the relations for dt(xi, ys)/dx and dt(xm, ys)/dx 
determine t0tS and /m+i,s as the solution of the equations 

m 

3Xt0.s - 3X»tm+hs = 3 2 U ' - i + ( l / 8 ) ( - 15/i,, + 25/2,s - 13/3iS + 3/4|f) 

and 

m - l 

= - 3 2 t,j!-< + (1/8X154,, - 25/„_1>f + 13/m_2jS - 3/m_3,s) 

In like fashion, the relations for dt(xn y\)jdy and dt(x„ yn)/dy determine 
tfy0 and fr>w+i as the solution of the equations 

3* r , 0 - 3A»/r,w+1 = 3 ± trjX^ + ( l /8)( - 15/r>1 + 2 5 / r . 2 - 13/r.s + 3/M) 

and 

'3Anfr,0 - 3A/r>M+i 

= - 3 L ^ - > + (1/8X15/,., - 25/r,M_1 + 13/r,w_2 - 3/rw_3). 

Finally, we determine the four remaining spline coefficients /0,o> 'o,»+i> 
/m+10, and fm+1>w+1 by developing equations to estimate the twist at the 
corners of the grid. 

To do this, we need only recognize that we have already developed 

* 4 t f 

"2 t 

3y 3y 3y 3y 

(a) Extrapolate in y to determine 

3 j 
at edge 

(b) Extrapolate in x to determine 
3 -(£)« corner. 3x \ 9>>, 

Figure 3 : Extrapolation Procedures to Determine Twist. 
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estimates for g = df/dy at each of the data points (xl9 Ji), (x2, yd, (x3, yt) 
and (x4, yi). If we now consider the function g, we can develop an estimate 
of dg/dx = (d/dx)(dfldy). These extrapolations are indicated schemati­
cally in Figure 3. 

For our grid, the equation for the twist is given as (g\r>s represents the 
quantity g(x„ ys)) 

f f f W ^ ' (-15^ +24fj -,3-jq +3f! ) dx\dy) L SJX \ dy |i,i dy |2,i dy !3,i dy k,i/ 

- àr(-l5hk M5/u + 25/l-2 -13/w + 3/M]) 
+ 2 5 ( - g i - [ - 1 5 / 2 > 1 + 25/2,2 - 13/2i8 + 3/2,4]) 

- 13(~gi - [ -15/34 + 25/3;2 - n/3,3 + 3/3,4]) 

+ 3( ^ - [ - 1 5 / 4 i l + 25/4,2 - 13/i.s + 3/4,4])) 

= -4 (-KTÌT1-1*-1 + 25/" - 13/3.i + Vu]) 

+ 2 5 ( ^ ~ - [ - 1 5 / 1 , 2 + 25/2,2 - 13/3,2 + 3/4,2]) 

- 1 3 ( T ^ [-15/1,3 + 25/2,3 - 13/3,3 + ¥4,3]) 

+ 3(-gL~ t - 15/1,4 + 25/2,4 - 13/3,4 + 3/4,4])) 

• (_15J/j +25f| -13-f + 3f i ) 
8zJy \ 3% '1,1 3x |i,2 3x 1,3 3* 11,4/ 

= i(f)at(Xl'Xl)-
The above development shows that, regardless of the order in which the 
first partial derivatives are extrapolated, the twist which is determined is 
the same. It is also clear from this development that, even for unequal 
spacing of the data in the rectangular grid, the linearity of the extrapola­
tion operator ensures that the twist which is obtained at the grid corners 
is independent of the order of extrapolation. 

A similar development can be used to determine the twist at the other 
corners of the grid. We shall denote the computed values of the twist at 
(*!, yi) as m , at (xl9 y„) as n*, etc. 

From the form of the spline (*), it follows that 
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d2t _ i f$1
t..A,(x-xAi,(y-yj\ 

dxdy J J, k H ' V~%~) \ ~~ày) 

and therefore 

&t(x„y,) _ 1 _"Ö »f1 . A,( xr^ x, \ ., I ys - yj \ 

1 W+l »+1 

= -T-Â- L 2 Ui A'(r - i) A'(s - j) 

Q / r - 1 s—1 w-rl 5-1 

J * ^ y V=0 y^O *'=H-1 y=0 

r - 1 w-rl w+1 «+1 \ 

- 2 2 /,vA
r+/-'-s + 2 2 'tf#+*-H. 

*=0 y=s-rl *=r+l J=s-r 1 ' 

In the equation above, all but f0,o> h,n+i> 'm+i,o> a n d ^m-f-i,»4-i are known; 
these are determined as the solution of the corner twist equations : 

Q / m+1 w-f 1 m+1 »+1 \ 

*u = jVU.o*2 - 2 ',o*' - 2 W + 2 2 M'+/-2) 
4*Zly \ *=2 y=2 i=2 /=2 / 

Q / «—1 w-rl »—1 w-f-1 \ 

7i» = -A-A 2 ̂ 1 + "- y - 2 2 tti)f+~-i-i - t0,n+1p + 2' .>+ i*) 
üxüy \ j=o i=2 y=o »=2 / 

Q / m - 1 w-lw+1 w-i-1 \ 

7ml = 2 V ( S ^0^-'+1 - +̂1.0A2 - 2 1 ] M - ' - ' - 1 + L fm+1>/A'j 
and 

Q /m—1 n—1 «—1 m—1 \ 

=20- 2 2 *«**-'-> - 2 tm+lJx^"-' - 2 ti.n+r^ + im+i.n+in 
uxay \ i=o y=o /=o f=o / 
8. B-Splines in two dimensions. The user-transparent end conditions 

developed for curve fitting provided a reference point for developing the 
user-transparent edge conditions for surface fitting described above. 
With the use of an augmented 2?-spline function set analogous to the one-
dimensional case, we now develop a ^-spline package which produces 
a computationally efficient fitting technique for surface representation. 

As before, we assume data/j-y to be given at points (*,-, yj) on a uniform 
rectangular mesh (i = 1, . . . , m;j = 1, . . . , n). 

If we write 

(3) s(X,y)= | %auB(^)B(y^-\ 

where B(x) is the 5-spline on a uniform mesh defined in the Appendix, 
then 
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m+1 n+l 

= £La,jB(r-i)B(t-J) 

= ( l / l % r - U - i + (1/4K_!,, + (1/16K_U + 1 

+ (1/4K./-1 + Orwi + ( l / 4 K , m 

4- (1/lQflH-i./-! + (1/4K+1, + ( l / 16K + 1 , m 

or the interpolation requirement (s(xri yt) = f(xri y J) can be written as 
the constraint 

tfr-u-i + 4tfr_u 4- ar-u+i + 4(ßr>,_1 + 4tfr>, + ar>m) 
(4) 

+ tfr+U-l + 4ö r+ l f , + Är+U+1 = 1 6 /(*r, >>*)• 

From (3), it follows that 

3 ^ 2 ) _ i *&&„ R>(X- xi\R(y- y*\ 

so 

1 W+l M+1 

= - A - L Èa,jB'(r-i)B(t-j) 

= J - [ a r - u - i 5'(1)5(1) + a r_u5'( l)5(0) 

(5) 4- ar.u+l B\\)B{- 1) + ar++1>,_1 2T(- 1)^(1) 

-f a r + u * ' ( - 1)*(0) + ar+1,,+1 * ' ( - l)B(- 1)] 

1 3 3 3 

3 3 3 1 
"*" T6a,"fl'<~1 + "4"ar+1' ' + Î6 a r + 1 ' '+ 1 

= J g j ~ ["" ar-l, t-l ~~ 4flr-l, * ~ tfr-l, H-l 

+ ûr+l, t-\ + 4flr+if , + flr+lf ,+J» 

for 1 ^ r g w, 1 ^ / ^ « . Similarly, 

(6) ^ % ^ - T 6 ^ ; [ - * - • < - - 4 f l — - « - • -

+ û r - l , H-l + 4ûr> ,+1 + ûr+1, t+ll 

for 1 ^ r ^ wi, 1 ^ t ^ n. Finally, 



364 L. H. SEITELMAN 

d2s(x,y) _ 1 »&"& ,2^^ì= Lf^1. #(x-x<\B'(y-y*\ 

so 

1 m+1 M+l 
= - j - j - S E a« * ' ( ' - i) B'(t - j) 

9 r , , 
— JßJ~J~ Lar-l, t-l — ar-l, t+l — ar+l, t-1 + ûr+l, H-ll> 

for 1 ^ r ^ m, 1 ^ ^ ^ «. 

9. Formulation of the two-dimensional equation system. We now examine 
the system of equations which determines the coefficients a{j in (3) when 
user-transparent edge conditions are assumed for the rectangular fit. 

In this case, we extrapolate the given function data to estimate ds/dx 
at x = xx and x = xm, dsjdy at y = yh and y = yni and d2s/dxdy at each 
of the four corners of the data grid. To be precise, we set 

(8) 5 , ( 1 , 0 = 1 ^ : = Ò 4 ( - 1 5 / M + 2 5 / 2 ) / - 134, + 34,) 

(9) sJLm, /) = J j = XiW^t - Kfm-ut + Wm-it - 3 / U , ) 
OX (xm,yt) ÖZJ* 

(10) sJLr, 1) = | J , = o 4 ( - 15/ril + 25/r>2 - 13/r>3 + 3/r,4) 

(11) *,(/-,«) = | J - ' =^ (15 / r , „ -25 / r ; „_ 1 + 13 / r ! M _ 2 -3 / r ( S _3) 
Oy (xr,y„) OAy 

(12) ,„(1,1) 

= 9 2 1 - = I 
3x3j 

32J_! 

= ^ ( - 1 5 ^ 1 , l ) + 25jy(2,1) - 13jy(3,1) + 3 J , ( 4 , 1)) 

(13) j„(/w, /i) = 

= £^r-(\5Sy{m,n) — 25s y(m — 1,«)+ 13^(m — 2, «) — 3sy(m — 3,«)) 

32s 

1_ 
8J V 

(14) ^y(m, 1) = 

= ^ip(15j,(/ii, 1) - 25sy(m - 1 , 1 ) + 13*„(/n - 2,1) - 3sy(m - 3.1)) 

(15) sxy{hn) = 

y 

d2s 

l 
= g j - ( - 15jy(l,«) + 25sy(2, «) - 13^(3, «) + 3sy(r, «)). 
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The matrix formulation for his problem is as follows: Let 

bi = (a0,i au a2fi • • • am>i am+hi)
T

9 i = 0, 1, . . . , « + 1, 

and let the (m + 2) x (m + 2) matrix Cm+2 = (cjf+2)) be defined by 

-1 if (/,y) = (1, 1) or (m + 2, m), 

1 if (i y) = (1, 3) or (m + 2, m + 2), 

4 if 1 < i = y < m + 2, 

1 if |/ - y | = 1 and 1 < i < m + 2, 

0 otherwise. 

Then the spline equations at >> = yl9 for d2s/dxdy at A: = x1? for 3^/3j at 
x = xh x2, . . . , xw, and for d2s/dxdy at x = xm are given by 

(16) -C m + 2 Ä 0 + ^m+2^2 = P& 

where /?0 is the (appropriately scaled) vector of (corresponding) extra­
polated first and second partial derivative values given by (10), (12), and 
(14), 

Po = ( ~ ( ^ , y ( l , »Xfstf,1)^-^(2,1),.. . , l ^ j , ( m , \)^sxy(m9 l)J. 

The spline equations for ds/dx at x = xl9 .y = ^y, for satx = xh y = >>y, 
/ = 1,2, . . . , w, and for ds/dx at x = xw, y = yj are given by 

(17) Cm+2bj-i + 4Cm+26/ + Cm+2bj+i = qh 

where 

^• = ^-y-J,( l ,y), 16/i(y, 16/2,y..., 16/w,y, - y ^ ( m , y ) j 

as given by (4), (8), and (9). 
Finally, the spline equations at y = yn for d2s/dxdy at x = x1? for &y/9>> 

at x = *!, x2, . . . , xm, and for d2s/dxdy at x = xm are given by 

(18) — Cw+26n_i + Cw+2èw+1 = Pn+i, 

where /?w+1 is the (appropriately scaled) vector of (corresponding) ex­
trapolated first and second partial derivative values given by (11), (13), 
and (15), 

^»+i 

/I6hk n , 16k n v 16k „ , 16k , , \6hk , A r 

= ^-ç-5 j r y(l,/i),-y-jy(l,/i),-j-jy(2,/i), . . .,~ySy(m,n),-ç-sxy(m,n)J . 

10. Solution of the equation system. The system of equations Sb = r 
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derived above (in (16), (17), and (18) can be rewritten in banded parti­
tioned matrix form as (C=Cm+2) 

(-C 0 C 
C AC C 

C AC C 

Sb = 

AC C 
C AC 

-C 0 

The system matrix can be rewritten as 

\ 

/ 

f*0 ^ 

b2 

\b„+i) 

(Po N 

? i 
42 

4 n-1, 
<ln 

\<ln+V 

S = [Nm+A x 
diag([CM+2]) = 

[-1] [0] [1] 
[ 1] [4] [1] 

[1] M [1] 

[1] [ 4] [1] 
[ 1] [0] [1] 
[-1] [0] [l]i 

[C] 
[C] 

[C] 
[CI 

[C] 

where each of the bracketed numbers in the left-hand band matrix [Nm+2] 
above represents that multiple of an (m + 2) x (m + 2) identity matrix. 

Let Nm+2 be the scalar matrix corresponding to [N], i.e., let Nn+2 be the 
(n + 2) x (n + 2) matrix 

1 
1 

0 1 
4 1 
1 4 1 

1 

\ 

A 1 
1 4 1 

- 1 0 l) 

Nn+2 = 

If we factor Nn+2 into lower and upper triangular factors, say Nn+2 = 
Ln+2Un+2 with 

1 

A*+2 = 

/ io 1 
/21 1 

3̂2 1 

'«- l , n-2 * 
Sn, n-1 1 
Sn+1, n-1 Sn+l, n 1 / 
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and 

m i"i2 
/*22 /*23 

Un+2 — 

f*n-l,n-l Mn-l,n 
f^n,n f-lnt »+1 

/*n+l, n+1 

and define matrices [Ln+2] and [Un+2] by their partitioned matrix repre­
sentations, 

[Ln+2 = 

and 

'[1] 
[/y tu 

i/d in 
[/32] [i] 

l/n-l, 

[/"Où] [0] [j"02] 
[fill] [ftl2Ì 

[ft®] [(«23] 

\ 

n-2] [1] 

Un+1, n-l] [4+1, »] [ l ] ' 

U/n-f2] = j ' . " . 

\j*ntnL ÌMn,n+l] 

where each bracketed number represents the appropriate multiple of the 
(m+ 2) x (w 4- 2) identity matrix, i.e., [/10] = /io/m+2, etc, then the 
system of equations can be written [Ln+2][Un+2] diag([Cn+2]) b — r. 
Since all "elements" in [Un+2] are multiples of the (m + 2) x (m + 2) 
identity matrix, [C/„+2] commutes with diag([C]), and [Ln+2] diag([Cff+2]) 
[Un+2] b = r. But the matrix Cm+2 is precisely equal to Nm+2, so we have 
immediately 

[Ln+2] diag([Lm+2]) dmg([Um+2])[Un+2] b = r. 

We can now solve for the vector 6 by solving the succession of problems 
(a) Solve [L„+2] bx = r by forward block substitution. 
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(b) Solve dmg([Lm+2])b2 = *i by forward substitution within each 
block. 

(c) Solve diag([£/m+2]) b3 = b2 by backward substitution within each 
block. 

(d) Solve [Un+2] b = b3 by backward block substitution. 
Note: It is clear that because of the band matrix formulation of the 

system problem, all solution and substitution operations are proportional 
to the number of extended grid points, i.e., to (m 4- 2) x (n + 2). This 
presents an extremely efficient determination of the 5-spline surface fit. 
In addition, when the number of data points is identical in the two co­
ordinate directions, only one LU factorization must be performed. 

11. Evaluation of the surface fit. To evaluate the spline determined 
above at any point (*, y) with Xi g x < xm, y\ g y < yn, let w, v be 
integers such that xu ^ x < xu+i and yv ^ x < yv+1. Then 

or a total of 16 terms are required for this sum. If x = xu 4- òxax, öx < 1, 
y = yV + ÖyAy, Ôy < 1, tllCn 

s(x, y) = (tfM-i,,-i*(l + 5X) + a^BQà + ^ I , H % - 0 

4- a„+2,„-i£(<?* - 2))Ä(1 4- <?y) + ( ^ - i . ^ d -f 5,) 

+ 0^5(5,) + au+hvB(3x - 1) + ^+2 ,^ (5 , - 2))5(5y) 

+ (<V-I,H-I£(1 + 5,) + aUtV+1B(3x) 4- fl„+iilH-iÄ(^ - 1) 

+ au+2>v+1B(ôx - 2))5(<?y - 1) + (au-.hv+2B(\ + dx) 

+ tf„it,-f2£(<5*) + <VH,H-2^(5* - 1) 

+ au+2,v+2B(öx-2))B(öy-2). 

In fact, for 0 ^ ä ^ 1 5(1 + ä) = (1/4)(1 - 5)3, 5(5) = 1 - (3/2)52 

4- (3/4)53, 5(1 - ö) = 5(5 - 1) = 1 - (3/2)(l - Ô)2 + (3/4)(l - 5)3, 
5(2 - 5) = 5(5 - 2) = (l/4)53. 

12. Remarks. The 5-spline formulation of surface fitting to data defined 
on a uniform rectangular grid has been derived. The user-transparent 
edge conditions incorporated in the fit have been derived as a natural 
generalization of the one-dimensional results. 

The development has been pursued to its conclusion for the uniform 
spacing case but the important elements, viz., the existence of natural 
extrapolation procedures, the uniqueness of the corner twist predictions 
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due to the linearity of the extrapolation, and the role of the extended basis 
set, are independent of the grid regularity. 

13. Appendix: B-spline curve fitting with user-transparent end conditions. 
We consider the case of equally spaced data. The cubic 2?-spline with 
compact support on [-2, 2] is the C2 twice continuously differentiate 
function B(x), defined by 

B(x) 

We note that 

5(0) = 

B'(0) « 

B"(0) = -

for all integers 

' - ( l /4 )Cx- 2)3 , Ï ^x^2 , 
1 -(3/2)x2 + (3/4)x3 , O ^ ^ l , 
1 -(3/2)x2 - (3/4)x3 , - l g ^ O , 
(l/4)(x + 2)3 , - 2 ^ x ^ - 1 , 

. 0 , otherwise. 

1, fi(±l) = 1/4, B(±n) = 0, n > 1, 

0, B\±\) = +3/4, B'(±n) = 0 , n > 1, 

•3, Jß"(±l) = 3/2, B"(±n) = 0, n > 1, 

n. 

One-dimensional curve fitting. Let y(x,-), i = 1, 2, . . . , m be given data 
points. We determine the cubic spline which interpolates to these data 
and given end conditions, using the extended basis set B(x — x,)lh, 
i = 0, 1, 2, . . . , m + 1. 

If we write (x,- = x0 + ih, i = 0,1, . . . , m + 1) s(x) = 
ESÉ&1 a{B{x - x,)jh, then 

^)=|'^(V) 
m+l 

= gMfr - 0 
= (l/4)ar_x + a, + (l/4)ar+1, if 1 = r £ m. 

Also s'(x) = E^(\lh)a{B'(x - *,•)//*, so 

1 m+l 

-J-ga^r-O 

= i[-Ta'-1+Ta'+1! 
but then the cubic spline with user-transparent end conditions is given by 
the solution of the tridiagonal system, 
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- 1 0 1 
1 4 1 

1 4 1 

\ 

1 4 1 
1 4 1 

- 1 0 1 
/ 

/ \ 
«0 

«2 

am 

am+l 
\ 1 

-js(xx) 

¥(xi) 
4/te) 

4/(^-i) 
4/(*J 
4A-, , 
- ö - ^ m ) 

\ 3 1 

where ̂ (Xi), £(.x:m) are given by the extrapolated slope end condition predic­
tions, i.e., 

s(xx) = (IWX-lSfixJ + 25f(x2) - 13/(x3) 4- 3/(*4)) 

and 

s(xm) = (l/8/0(15/(*J - 25/(xm_1) + 13/(*m_2) - 3/(*m_3)). 

Finally, 

so 

1 m+l 

= P g a< 2?"(r - i) 

= lf-3 ar_x - 3ar + -f ar Y\2u'-^~ JU' T 2U'+1_ , if 1 g r g m, 

so that the cubic spline with "natural" end conditions (s"(x) = 0 at the 
ends) is given by the solution of the tridiagonal system 

n -2 i 
1 4 1 

1 4 1 02 

1 4 1 
- 2 \) 

I 0 \ 

V(x2) 

¥(xm) 
\ o ; 

(We note that by subtracting the first equation from the second equation, 
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we obtain, for the natural spline, 6ai = 4f(xi\ or ax = (2/3)/(*i), and 
similarly, am = (2/3)f(xm) .) Once the a{ values are determined, the spline 
s(x) can be easily evaluated, using the fact that the function B(x) is identi­
cally zero outside of the interval [ -2 , 2]. In fact, if xr ^ x g xr+1, with 
1 ^ r ^ m, let ö = (JC - xr)/A; then 

,(*) -ar-rB^^) + M ( ^ ) + flr+i ̂ g ^ 1 ) + Or« * ( ^ H 

= ör_! £(1 + <5) + ûr £(<5) + ar+i £(<? - 1) 4- ar+2 B(ö - 2) 

= (1/4K_!(1 - 5)3 + ar(l - 3/2)ö2 + (3/4)53 + ar+1(l - (3/2X* - 0 2 

~(3/4)(5-l)3 + (l/4K+ 253 , 

which is a much simpler expression than the one obtained by use of the 
cardinal spline formulation. 
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