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THE CENTRALIZER OF THE LAGUERRE 
POLYNOMIAL SET 

N.A. AL-SALAM AND W.A. AL-SALAM 

1. Introduction. By a polynomial set (p.s.) we mean a sequence P = 
{PQ(X), Pi(x), P2W» ' • *} of polynomials in which PQ(X) # 0 and Pn(x) 
is of exact degree n. In this work we shall be interested in sets (or classes) 
whose elements are themselves polynomial sets. This point of view is not 
new. Appell [2] considered the class sé of Appell polynomials^ = {An(x)} 
whose generating function is 

(1.1) A(t)e« = %AH{x)-£-. 

The Sheffer class y [6] is the class of all p.s. S = {Sn(x}} for which 

(1.2) A(t)e>»<t> = S $„(*)-£. 
n=0 n' 

Similarly the Boas-Buck class $ consists of all p.s. B for which [3] 

(1.3) A(t)0(xH(t)) = f j 6A(x)f", 
n=0 

where in these formulas A(t), H(t) and 0{t) are formal power series such 
that ,4(0) * 0, 77(0) = 0 but H'(0) # 0, and 0(t) = 0O + fa* + fc*2 + 
• • • with (j)k # 0 for all k ^ 0. (1.1) is obtained when H(t) = t and 0(t) = 
e*. 

Many of the well known p.s. are included in one or more of the above 
classes. For example, the Hermite p.s. is in sé as well as in Sf. The Laguerre 
p.s. L{a) is in £f. Other examples are the Abel, the Meixner, the Bernoulli, 
and the Boole polynomial sets. 

Appell [2], Sheffer [6] as well as Rota, Kahaner and Odlysko [5] (see also 
[4]) gave sets of polynomials {sé in [2], Sf in [4], [5], [6]) an algebraic struc
ture by defining multiplication in the following manner. 

Let P = {Pn(x)} and Q = {Qn(x)} be two elements of the set un
der consideration. Let, furthermore, Pn(x) = Tii=o pnk

xk and Qn(x) = 

Received by the editors on June 15, 1983. 
Copyright © 1984 Rocky Mountain Mathematics Consortium 

713 



714 AL-SALAM 

2/?=<#»*** for all n. Then the (umbral) product R = PQ is defined as the 
p.s. for which Rn(x) = Pn(Q) = EUPnkQkM n = 0, 1, 2, . . . . 

It is clear that n, the set of all p.s., with this multiplication is a group 
(non-commutative) in which the identity is / = {xn, n = 0, 1, 2, . . . } . 

In [1] the present authors characterized the centralizer, C<%(L(a)), of the 
Laguerre p.s. in the Boas-Buck group 88. 

If we recall that J* c % it becomes natural to characterize elements of 
C^(L(a)) the centralizer of Z>} in %. 

As we shall see that, perhaps due to the fact that % lacks the nice struc
ture that <% has, this problem is somewhat more difficult than the problem 
considered in [1]. To our surprise the Euler numbers and polynomials 
played a prominent role in the solution (which did not arise in [1]). 

2. Preliminaries. Let us recall the Euler polynomials 

9 °° in 

(2.1) , « e« = J ] £„(Jt)-V 
v J et + 1 ^o n\ 
and the related tangent numbers C0 = 1 and 

(2.2) tanh;= - J c g J 

so that C2w = Oifn > 0 and C2w+1 = 22*+1£'2w+1(0). We shall abbreviate 
C2w+1/2

2w+1 by ( - l)*-i an (n = 0, 1, 2, . . . ) . 
It follows that in term of the Bernoulli numbers we have Cn = 1 + 

2»(1 - 2n)Bnjn (n ^ 1), and that 

(2.3) -C. + (2 + 0 » = {? ! M > S 
12 (n = 0), 

and 

(2.4) x» = -i- {£ w(* + 1) + £„(*)}. 

In (2.3) (2 + C)w is to be expanded by the binomial theorem and Ck be 
replaced by Ck. 

In this work we shall need the following lemmas : 

LEMMA 1. We have for N = 1, 2, 3, . . . 



LAGUERRE POLYNOMIAL SET 715 

These formulas follow from (2.3) with n = IN + 1 and n = IN respec
tively. 

LEMMA 2. For 0 ^ r <; 2m + 1 we have 

<"> -4-5{<-'>f" V > U ) } ^ - * -
LEMMA 3. For 0 ^ r ^ 2m we have 

<"> fi{G/+1)-ßnu}*»-ä"" 
To prove (2.6) and (2.7) let/(x) be the polynomial defined by 

f(x) = x'Oc - 1)»-' (0 ^ r ^ m). 

Then 

/w+/(, + D=go{(-i)f r ) + ( i ) H • 
This, using (2.4), gives 

/ (x )+ / (x + l) = ^ - g ) { ( - l ) * ( m - ' ' ) + ( ^ ) } { £ m _ , ( x ) + £ m _ , ( x + l)}. 

But if g(x) is a polynomial such that g(x) + g(x + 1) = 0 then g(x) = 0. 
Hence we get 

/w-4-s{(-i>ft->(ïK^ 
Now putting m even or odd and x = 0we get either (2.7) or (2.6). 

3. The Centralizer C^(L(a)). Let P = {Pn(x)} be an arbitrary p.s. in % 
and write for n = 0, 1, 2, . . . 

(3-D w-UX)%¥kp«* <*«-** <»• 
Let L = { L ^ x ) } be the Laguerre p.s. defined by 

(3.2) m*) = Eo(l)%ifk(-xy, » = o,i,2 
Our problem is, therefore, to determine pnk in (3.1) so that PL = LP. 

In this section we prove our main theorem, shown here. 

THEOREM. Â. p.s. P e C^L^) if and only if 

(a) Pn,n-2m-l = £ ^ L ( ^ + j) V2^1 Pn,n-2m+2j 
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and 
(b) p„t„-2k are arbitrary with pnn ^ 0. 

Here V is the backward difference operator acting on n: Vf(n) = 

A") -fin- 1). 
PROOF. We first note that PL = LP is equivalent to requiring that for 

j' = 0, 1, 2, . . . , n and n ^ Owe have 

e") £(-•<:>«-£<-<:>-
We next see that by putting y = n, n — 1, etc. in (3.3) we get that pnn 

is arbitrary, that /?w,w-i= - (\ß)(ßn - ßn-i) f° r fl = 1, 2, 3, • • • so that 
(3.3) determines uniquely pn>n_2m-i, and that />w,w_2m

 r e m a i n s arbitrary. 
To find the general solution of (3.3) we note that (3.3) can be rewritten 

in the form 

g , ( - !)*(£ )Pn+k-s,n-s = g ( l ) />, ._* (0 ^ ^ g «) 

which implies, for s = 2m (m = 1, 2, • • •), 

2 ] ( 2 £ ) \Pn-2m+2k,n-2m ~~ Pn,n-2kj 

m~11 2m \ 
= Z J ( 2k + \) {Pn-2m+2k+l,n-2m + / ^ . w ^ - l } » 

and for *s odd, s = 2m + I, 

o « v i /2mH-l\r ì 
LPn,n-2m-\ ~" Z J I 2A: / ^ n - 2 m + 2 * - 1 » »~2m-l " Pn,n-2k] 

- S i 

We now show that (3.4) and (3.5) are satisfied if pVyV-2li are arbitrary and 

(3-6) p„,„-2m^ = S / - ! ) ' - 1 « / ^ * l^+1Pn,«-2m+y 

Indeed if we substitute (3.6) in the right hand side (RHS) of (3.4) we 
get 

0.7» "*" gGÄ .)£<"'>"< îi) 
{V2J+1 Pn-2m+2k+l,n-2m+2J+l + ^2i+lPn,n-2k+2j}-

Since V2'+1/*(«) = L ^ H - l ) ^ 2 ^ 1 ) / ^ - 0 then the above expression 
(3.7) is a sum of terms of the form pn_fitn_fi_2k- T ° show that (3.6) satisfies 
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(3.4) we must show that the coefficient of/?„_^>w_^_ZÄ is - Qf) if p = 0, 
is (If) if (J. = 2m — 2k and is zero if fjt ̂  0 or fj, ^ 2m — 2k. 

For example in the latter case, the coefficient of /?w_^„_^_2* in (3.7) is 
a multiple of 

M 3\\2m-2k-2j-\) \2m-2k-2j-\J) 

which is zero by Lemma 3. 
Similarly // = 0 and ft = 2m — 2k follows from Lemma 1. 
Formula (3.5) can be seen to be satisfied by (3.6). This time we need 

to use Lemmas 1 and 2 and also we must show that that coefficient of 
Pn-fi,n—(i-2k 1 S 

This formula is a consequence of Lemma 2. This finishes the proof of the 
main theorem. 

Formula 3.6 can be written operationally using the Euler polynomials 
En(x). To do this let 7jf(n, m) — f(n — 1, m) and juf(n, m) = /(«, m — 1) 
so that V/(«, ri) = (1 - 7]jy)f(n, ri). We get 

/>w,*-2W-i = 0 - 97 / / ) 2 -+ i^ 2 m + 1 ( - r ^—) - ßn. 

where we have again written ßn = /?ww. 

4. Special Cases, (a) LCa) commutes with itself. This case follows when 
pnn_k = ( — \)n~k. Formula (3.6) can be seen to be satisfied since it implies 
that 

/V-2^-1 = ( -1 )*{0 + C)2w+1 - 1} = ( - l ) "" 1 . 

This is easily seen because (1 + C)2m+1 = 0 for m = 0, 1, 2, • • • . 
(b) Let ßn = pnn — n + a and let pn,„-2k = 0 for k > 0. Then easy 

calculations show that 

PA*) = (n + a)xn - -y n(n + a:).x:w_i. 

The commutativity implies the known recurrence formula for the Laguerre 
polynomials L^a\x) - n L^x) = L^~l)) (x). The polynomial set {Pn(x)} 
is not of the Boas-Buck type. 

(c) The "symmetric subgroup" £ • A p.s. P is said to be symmetric if 
Pn(~x) = ("" l)nPn(x)- I* is e a s y t o argue that the class of all symmetric 
p.s. 2 with umbral composition forms a subgroup of %. We ask the ques
tion, what are the elements of CE(L(a))? 

file:///2m-2k-2j-/J
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To answer this question we note first that P e g => pn,n-2m-i = 0 f° r 

m = 0, 1, . . . , [ « - 1 / 2 ] . 
Putting m = 0 in (3.6) shows that/?„„ is independent of n. It now fol

lows by induction on m that/?WM_2w = f2m *s independent of n. Thus such 
polynomial sets are given by 

°-*'<«>-S(i)(£nfc^ •2k 

Furthermore one can easily show that P%\pW) = p W(P<D) = P®(x) 
where <?2w/(2ft)! = S* (i?) /̂ 2Ä T2»-2Ä S O t n a t w e n a v e t n e following result. 

THEOREM. C2(L
ia)) is a commutative subgroup of C„(L{a)). 

We also remark that elements of C2(L
ia)) are related to Brenke poly

nomials since we can show that 

oo fn / oo ffi \ 

ä7nöWp" r tw = (5o^w)-°Fl (- ; 1+a ;^ 
where o* i ( - ; 1 + a; u) = E~=o«"/«!(1 + a ) , . 

The case r = {1} gives P,H)(x) = l /2{(- l)»Z4a)(*) + Z4 a )(-x)}. 
(d) As remarked earlier Appell showed that s/ is a subgroup of ». 

To determine CJ£) we see that if P e ja/ then P„(x) = £(*) a„_*x*. 
Hence />„,„_* = (1 + a)„-k/(l + a)„ak where ak is independent of n. Since 
».» -2* a r e arbitrary so are a2*- Using (3.6) we can show that 

C2M (2m - 2k) 
- 2*)! 2m~2*' 

- - (2mV V f2/M + ^ C2*+i ( 2 " a2m+1 _ (2m) ! g ^ 2;fc + j j - ^ r ^ 

We can also show that such p.s. are generated by 

e£CIog<l-«)+* = f^A^Jl 

where E(t) is an arbitrary even function of t. 
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