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ZEROS OF OPERATORS ON FUNCTIONS 
AND THEIR ANALYTIC CHARACTER 

CARL PRATHER 

1. Introduction. This is a survey of recent work on the behavior of the 
zeros of iterated operators on analytic functions. It is motivated by the 
classical survey paper of G. Pólya [50], the more recent survey due to 
Boas [8] and the collected papers by Pólya [49]. Some old and perhaps 
forgotten results coupled with new and interesting developments have 
helped to add a new dimension to some classical results as well as to 
some as yet unsolved problems. The classical problems include the deter
mination of the behavior of the zeros of the successive derivatives of an 
analytic function and the influence of the behavior of the sign changes 
of the derivatives of a function on its analytic character. 

The present paper is by no means exhaustive. The author's intention is 
merely to present recent results designed to indicate the flavor of the work 
being done on the topics under discussion. The reader should consult 
the original papers for more detailed information and perhaps will tackle 
some of the many interesting problems that remain. 

2. The complex domain; the case of derivatives. The classical problem 
involves the determination of the distribution of the zeros of the successive 
derivatives /(z), f'(z), f"(z)9 . . . . To be more precise, following Pólya, 
given a function f(z) analytic on a domain D, we say that a point z0 lies 
in the final set S o f /when every neighborhood of z0 contains zeros of 
infinitely many of the derivatives of/. The final set thus determines the 
final location of the zeros of the successive derivatives. 

3. Meromorphic Functions. For meromorphic functions, the final set 
for the zeros of the successive derivatives is easy to describe. Pólya's 
remarkable theorem [52] says that the poles behave like repellers for the 
zeros of the successive derivatives. Specifically, if a meromorphic function 
/ h a s at least two distinct poles, then a point z lies in the final set S of f 
if and only if z is equidistant from the two poles that are nearest to it. 
I f / ha s only one pole, the final set off is empty. Proofs of this theorem 
can be found in Whittaker [82] and Hayman [30]. When / i s meromorphic 
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with a single pole, the principle is that the pole repels the zeros of the 
successive derivatives, thereby creating a zero free region. Information on 
the asymptotic size of this zero free region was recently obtained [72]. 

Let F(z) be of the form 
(1) F(z) = a-ilz + A(z), where a^ ^ 0 and ^(z)is analytic in a neigh

borhood of z = 0 and possibly entire. 
(la) When A(z) is analytic in \z\ < R and 0 < T < 1/2, then for all n 

sufficiently large, F(n)(z) has no zero in \z\ ^ T R. The constant 1/2 is best 
possible. 

(lb) If A(z) is entire of exponential type T or less, C0 denotes the 
unique positive root of the equation xex+l = 1, and 0 < C < C0, then 
for all n sufficiently large, F(n)(z) has no zero in \z\ ^ CJT_1(/2 + 1). The 
constant C0 is the best possible. 

(lc) If A(z) is entire of order p, type r (0 < p, z < oo) and if 0 < y < 
[2(epz)l/p]-1, then for all n sufficiently large, F{n)(z) has no zero in \z\ ^ 
r(n + l)i'P. 

With only slight modifications, one can handle an F with a pole of 
order N. It is not known whether the constant ^(epr)1^]"1 in (le) is best 
possible. 

Not specifically mentioned in Polya's paper [50], but germane to the 
topic, is the characterization of meromorphic functions for which the 
derivatives fail to have zeros at all. Recent significant work stems from 
a well known conjecture of Hayman [30] that the only meromorphic 
functions/for which/(z) and/ ( / ) (z) have no zeros for some / ^ 2 are 
those of the form/(z) = exp(öz + b) or /(z) = (Az + B)~n. This con
jecture has been proven by G. Frank [27]. In addition, Frank, Henne-
kemper and Pollaczek [28] have shown that i f / i s meromorphic and if/ 
a n d / ( / ) have only finitely many zeros, t h e n / = (P1/P2) exp(P3), where 
Pl9 P2 and P3 are polynomials. The proof of the result appears for / ^ 3. 
The authors promise a proof when / = 2 in a future paper. 

4. Entire and analytic functions. The distribution of the zeros of the 
successive derivatives of an entire function is an active topic. Many of 
the classical references are listed in [50]. Whether the zeros of the succes
sive derivatives scatter or condense is determined by whether the function 
has order less than or greater than one, respectively. Moreover, if rn 

denotes the radius of the largest disk centered at the origin in which 
f(n) (z) is zero-free, then the behavior of r„ depends on whether the function 
has order less than or greater than one. If rn, instead, is taken to be the 
radius of the largest disk somewhere in the plane in which/(w) is zero-free, 
then Boas and Reddy [12] have shown that the critical order is two 
instead of one. In this regard there is a conjecture which shall be referred 
to as the Boas conjecture : If p > 2, then there is an entire function / of 
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order p such that for some positive A, every disk of radius A, anywhere 
in the plane, contains a zero of every f(n)(z). In a sequel to the paper of 
Boas and Reddy, Reddy [71] investigated zero free disks for so called D 
operators, which we now define. Let {dp}f=1 denote a nondecreasing 
sequence of positive numbers. Define the operator Donf(z) = ££Lo akzk 

by Df(z) = 2£Lo dk+1ak+1z
k. They-th iterate of D o n / i s given by 

&f(z) = LïLo (ek/eJ+1)aJ+kz*, 

where e0 = 1 and ek = {dxd2 • • • d^r1- The author proves that many 
results for derivatives appear as special cases of a general theory for these 
operators. 

Another interesting result is a verification of a conjecture of Erdös by 
Barth and Schneider [4]. They prove that if {Sk\f=l is any sequence of sets 
in the complex plane each of which has no finite limit point, then there is 
a sequence of positive integers {nk} and a transcendental entire function 
f(z) such that fn>(z) = 0 if z e Sk. 

In [74], I. J. Schoenberg, after 40 years, returned to an investigation 
about determining a lower bound for the type of an entire function of 
exponential type having the property that all its derivatives vanish at 
least h times in a real interval of length (k — 1/2). He poses the following 
conjecture. 

If/(z)(^0)is entire of exponential type ô and is such that eachf(v)(x) 
(v = 0, 1 ,2 , . . . ) has at least k zeros in Ik = [0, k — 1/2], then ö ^ % 
and the function f(z) = cos(^rz) would show that % is the best constant 
for this inequality. 

This problem is related to the problem of determining the Whittaker 
constant. For the definition of the Whittaker constant and other progress 
towards determining the Whittaker constant due to Evgrafov and Buck-
holtz, see Buckholtz [14]. 

For results on analytic functions having univalent derivatives, an up-
to-date survey has been written by Shah and Trimble [75]. The reader 
should consult this paper for information on this. 

Also of interest is the recent investigation of Boas [9] on the zeros of 
successive derivatives of a function analytic at infinity. He proves the 
following. 

Let F(w) = ££Li bnw~nbc analytic at oo, with F nonconstant. Then 
there is a constant c > 0 such that for all n sufficiently large, F^viOhas 
no finite zero outside the circle \w\ = nc. 

Among other reasons, its interest lies in the fact that the results are not 
obtainable from the results on zeros of derivatives of functions analytic 
in a neighborhood of z = 0 with the substitution w = z_1. These results 
have been generalized in [77] to include behavior of zeros of successive 
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derivatives of functions analytic in a half plane. Related results may be 
found in Widder [83]. 

5. Real entire functions. A real entire function is an entire function 
which is real valued on the real axis. As discussed in [50], the principle at 
work on the distribution of the zeros of the successive derivatives of such 
functions is that the non real zeros of f{n) (z) move toward the real axis if 
/ h a s order less than 2 and away from it i f /has order greater than 2. 

Of primary importance and interest are the three as yet unsolved con
jectures of Pólya [50], which he refers to as hypothetical theorems. They 
are stated as follows : 

A. If the order of a real entire function/is less than two and/(z) has 
only a finite number of complex zeros, then its derivatives, from a certain 
one onwards, will have no complex zeros at all. 

B. If the order of the real entire function /(z) is greater than two and 
/ has only a finite number of complex zeros, then the number of complex 
zeros of/(w)(z) tend to infinity as « -> oo. 

C. If a real entire function of order greater than one remains bounded 
for real values of the variable, then its final set contains the whole real 
axis. 

It seems that no progress has been made on conjecture A since the 
appearance of Polya's paper [50]. Pólya proved that conjecture A holds 
for functions having order less than 4/3 in [59]. 

Some advances towards the verification of conjecture B have recently 
been made by Hellerstein, Shen, and Williamson, Edrei and Gethner. 

In 1914 G. Pólya posed the problem of classifying all entire functions/ 
which have, along with all of their derivatives, only real zeros. He con
jectured that such a function / m u s t have one of the following forms: 

l.f(z) = Aexp(Bz), 
2. /(z) = A exp (expO'cz) - exp(W)), 
3. /(z) = AzmQxp(-az2 + bz)\[n(\ - zM exp(z/flw), 

where A and B are complex constants, a ^ 0, b, c, d and the an are real, 
2„(a„) - 2 < oo and m is a nonnegative integer. 

Hellerstein, Shen and Williamson [32] prove a strong form of this 
conjecture and thus completely settle Polya's problem. They prove the 
following theorem. 

THEOREM. Let f be an entire function which has, along with its first three 
derivatives, only real zeros. Then f has one of the three forms 1., 2., or 3. 

This result is a consequence of earlier work of the authors [33], [34], 
results of Levin and Ostrowski as well as of their main theorem. 

THEOREM. Let f be a strictly nonreal meromorphic function (i.e., not a 
constant multiple of a real meromorphic function). Suppose thatff andf" 
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have only real zeros. If fis entire, then it has the form 1., 2., or has one of 
the following two forms : 

4. f(z) = A exp(exp(i(cz + d))), 
5. f(z) = A Qxp{K[i(cz + tìf)- exp(/(cz + d)]}, 

where A is a complex constant, c and d are real and — oo < K ^ — 1/4. 
Iff has at least one pole, then f has one of the following two forms: 
6. f(z) = A exp( - i(cz + d))/sin(cz + d), 
7. f(z) = ^ exp[-2/(cz 4- d) - 2 exp(2/(cz + d))]/sin2(cz + d), 

w/zere y4, c ««J d are constants and c and d are real. 

An immediate corollary of this and the results of [35] is the classification 
of all entire functions/such that / , / ' , . . .,f{n), ... have only non-positive 
zeros. 

For functions that are reciprocals of real entire functions Hellerstein 
and Williamson [36] and Rossi [72] prove the following. 

THEOREM. Let F be real entire with only real zeros and not zero free. If 
F = 1 ff and F', F" have only real zeros, then F(z) — (Az + B)~n, A and 
B real constants, A ^ 0 and n is a positive integer. 

For real meromorphic functions, Hellerstein, Shen and Williamson 
[91] prove the following. 

THEOREM. Let F be a real meromorphic function with only real zeros and 
real poles {and at least one of each). If F' has no zeros and F" has only real 
zeros, then F has one of the forms'. 

F{z) = A tan(az + b) + B, 

F(z) = A(az + b)/(cz + d), 

F(z) = A[(az + 6)2 - l]/(az + Z>)2 

where A, B, a, b, c and d are real constants, A, a and c are non-zero and 
where, in the second case, ad — be ^ 0. 

Recently, Gethner [90] has verified Pólya's conjecture B for certain 
classes of functions. We cite certain examples to which his results apply. 

EXAMPLE. Let a e C and define La(f) = {z e C: every neighborhood of 
z contains solutions w to the equation f(k)(w) = a for infinitely many 
values of A:}. 

Let c,deC and write c = \c\e*r. Let N ^ 2 be an integer. Suppose that 
/ i s an entire function satisfying the following two conditions. 

a) There exists p > 0 such that log|/(z) exp(-cz^ - dzN~l)\ = o(rN~l) 
as r -• oo for 

zeS(p, r) = U {z: |arg(z) + ( r + 2%p)jN\ < p], 
p=i 
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and 
b) Max {log |/(z)|: \z\ = r) = o(r") (r->oo). Then for each a e C , La(f) 

consists of q rays with vertex at —d/Nc, passing through the points 
-d/Nc + exp{i(ff - 7* + 27up)/N},p = 1, . . . N. 

In particular, one may take/(z) = zmP(z) exp(g(z)), where Q(z) = 
czN + dzN~x + • • • is a polynomial of degree N and P is a canonical 
product of genus at most N — 2, having finitely many zeros in S(p9 f). 

Let nz(p, a,f(k)) denote the number of zeros off(k)(w) — a in \w — z\ ^ 
p, where a e C a n d / i s as above. If z = -d/Nc, then for some p0 > 0, 

as k -> oo for each p, 0 < p < p0. 
If z e L a( /) but z # - rf/TVc then for some p0 > 0, 

*,(p, fl,/(*}) ~ (27ZT1 s in^/AO)* 1" 1^ 

as /: -» oo for each p, 0 < p < p0-

The entire functions described above have finite order. Gethner also 
has results which apply to functions of infinite order. 

EXAMPLE. Let <f> be an entire function satisfying 

lim sup log+ log+M(r, (j>)jr < 1. 

Suppose that for each ^ e Z , there exists numbers nq, 0 < nq < % and 
Nq > 0 such that <j> has no zero in the half strip 

{x + iy: x > Nq, \y - (2q - l)x\ < nq). 

Let 

f(z) = <f>(z)exp(-e*). 

Then, for each a e C, La(f) is the union of the horizontal lines 

{y = 2%q). (q e Z) 

Futhermore, there exists p0 > 0 such that if z G La(f), then 

nM(p, a,f™) ~ 2pk/(log(k)y* (k - oo) 

for each p, 0 < p < p0. 

Edrei [24], [25] had proved this result when a = 0. Gethner has a 
multitude of other results to which the reader should refer. Gethner 
considers entire functions whose directions of maximal growth are rays 
in the plane. These rays repel the zeros of the successive derivatives. In 
recent related work, Abi-Khuzam [86] obtains information on the local 
and global maxima of Lindelöf functions. 
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For Pólya's conjecture C, the best results remain those of Edrei [23]. 
His two main theorems are as follows. 

THEOREM. 1. Let f(z) be a real entire function of finite order p and of 
mean type. Assume that, for x > 0, lim sup log \f(±x)\/xP < 0 as x -• oo. 
Then p > 1 and the set of all the real zeros of the successive derivatives of 

f is everywhere dense on the real axis. 

THEOREM. 2. Let f(z) be a real entire transcendental function which 
satisfies a differential equation of the form Q0(z)fim)(z) + • • • + 
Qm(z)f(z) = P(z), where P and the Q's are polynomials and Qo(z) ^ 0. 
Putting M(r) = max | f(z)\ on \z\ = r, there exists a suitable value of p 
(0 < p < oo) such that lim log M(r)/rP = z > 0 as r -+ oo. If p > 1 
and lim inf log \f(r)\/rP < z, lim inf log |/( — r)\/rP < z as r -» oo, 
then every point of the real axis belongs to the final set off{z). 

A.C. Schaeffer [73] proved the following intriguing theorem, which, in 
Pólya's own words " . . . seems to open a new vista on the hypothetical 
theorem C . . . " [50, p. 189]. 

THEOREM. In an interval a — L<x<a + L, let f(x) e Cn, n ^ 2, 
where f(x) is a real valued function. If\f(x)\ ^ M and if \f'(a)\ ^ 
(l0n)2nM/L, thenf{n)(x) changes sign at least ( « -1 ) times in the interval. 

Because of Bernstein's theorem (see, e.g., [7, Theorem 11.1.2]), entire 
functions of exponential type cannot satisfy the hypotheses of this 
theorem. Consequently, among the functions that might satisfy the 
hypotheses of Schaeffer's theorem are real entire functions (or infinitely 
many of their derivatives) of order > 1, precisely the functions given in 
conjecture C. 

6. The complex domain; the case of operators. In light of the results 
described above on zeros of derivatives, a natural question arises. Do 
similar results hold when differentiation is replaced by other operators? 
As we shall see, this question has its source in a number of works by 
Pólya. When successive differentiation is replaced by successive iterates 
of other operators, the distribution of the zeros of the iterates of the 
operators on analytic or entire functions is as much influenced by the 
operator in question as it is by the order of the entire function or the 
growth of the analytic function. 

The motivation for looking at the zeros of successive iterates of dif-
fierential operators on analytic functions can be found in a number of 
papers of Pólya. Expanding on work of Laguerre, Pólya and Schur [61] 
characterized two types of multiplier sequences, that is, sequences {7*̂ )̂ =1 
which transform a polynomial or entire function having real zeros or 
real zeros of the same sign into a function having only real zeros by 
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termwise multiplication of the A>th coefficient of the original function by 
j k . See also Levin [44, Chapter 8]. In a sequel to this paper Pólya [51] 
determined what the effect is on the real zeros upon applying a differential 
operator (possibly of infinite order) to a real entire function having only 
real zeros. 

Quite recently, Craven and Csordas have investigated various extensions 
of the above ideas in a number of fascinating papers [16], [17], [18], [19], 
[87], [88], [89]. For example, in [16], they present results on multiplier 
sequences for algebraic fields other than the real numbers and in [17] 
investigate those multiplier sequences which do not increase the number 
of non real zeros of real polynomials. Of particular interest is their result 
[19] on the characterization of zero diminishing linear transformations 
defined on the set of all polynomials with real coefficients. That is, a linear 
transformation T defined on polynomials Tii=oAkx

k by T(J^%QAkx
k) = 

Hk=o AkXkx
k is said to be zero diminishing when ZR[Tf] ^ ZR[/] for all 

polynomials, where ZR[h] denotes the number of real zeros of h. Craven 
and Csordas prove the following result. 

THEOREM. The following are equivalent. 
(i) Either (a) Z+[Tf] ^ Z+[f]for all polynomials f or 

(b) Z+[r/] S Z-[f]for all polynomials f 
(ii) T is a zero diminishing linear transformation; i.e., ZR[Tf] ^ ZR[/] 

for all polynomials f 
(iii) For each integer n, the polynomial E2=o(2WjT1<*r* nas onty real zeros, 

all of the same sign. 
(iv) The series cp(z) = ZD&oC^^*)-1^ converges in the whole plane 

and the entire function cp(z) can be represented in the form <p(z) = 
ceTZU™=1(l + z/zn) where T ^ 0, zn > 0, c is real and 2 ^ z"1 < oo. 

Furthermore, in case (i)(a) all of the numbers Xk have the same sign and 
in case (i)(b) they alternate in sign. 

In the papers [87], [88] Craven and Csordas develop a theory of n-
sequences and prove many interesting results to which the reader should 
refer. 

Related results were done by Verzhbinskii [81], who investigated condi
tions under which a differential operator applied to a transcendental real 
entire function of genus 1 has zeros close to the real axis. We state a 
typical result of Verzhbinskii [Theorem 6]. 

THEOREM. Let f(z) = 2£Loa*ZÄ be a transcendental entire function of 
genus g ^ 1 and order X < g + I with a finite number of non real zeros. 
Let P(w) be a transcendental entire function of genus ^ 1 with negative 
zeros —kl9 —k2, —k3, . . . . If 

min((l/(r) - / , (1/A) - / ) < 2~i 
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where / = l i m S ^ , kj1 as n -> oo and z is the exponent of convergence 
of the zeros of P, then the non real zeros of the function P(zd/dz)f(z) = 
Tit=oakP(h)zk asymptotically approach the real axis as Re(z) -• ± oo. 

The behavior of zeros of iterated multiplier sequence operators on 
analytic functions has been studied in [70]. The operators used here include 
fractional integration and infinite order operators G(d/dz), where G(w) 
is entire of exponential type. 

In [53], Pólya presents Gauss-Lucas theorems for differential operators 
and classifies those operators for which Gauss-Lucas theorems hold. 
Proofs of these results are found in a paper of E. Benz [5]. A simple proof 
of the Gauss-Lucas results of Benz using the B and B* operators of Levin 
[44, Chapter 9] is given in [67]. See also Marden [45]. 

Recently, Craven and Csordas have characterized the sequences r = 
{ïk}t=\ of r e a l numbers having the following Gauss-Lucas property. Let 
Kz) =£2=o akzk> ake C be an arbitrary complex polynomial. If K is a 
convex region containing the origin and all the zeros of f(z), then the 
zeros of the polynomial Ff(z) = Tii^o^kTkzk a l s o n e *n ^ Among the 
many results they prove is the following. 

THEOREM. Let 0(x) = 2 ?"*•**/£! oe a transcendental entire function of 
type I in the Laguer re-Pôly a class. For each n = 1, 2, 3, . . ., let gn(x) = 
££=0 Tkx* denote the Jensen polynomial associated with 0(x). Then the 
zeros of gn(x), n — 1, 2, 3, . . . all lie in [—1,0] if and only if either 0 g 

7*0 S n ^ " • • or ° ^ To ^ 7i ^ 
A sequence F = {7^} of non zero real numbers has the Gauss-Lucas 

property if and only if F is a multiplier sequence of the first kind and either 
O ^ r « ^ Tn+iJor n = 0, 1, 2, . . . or 0 ^ Tn ^ u+iJor n = 0, 1, 2, . . . 

The reader is advised to examine the paper of Craven and Csordas for 
many related results. 

As mentioned earlier, the distribution of the zeros of operators on 
analytic or entire functions can be drastically different from that of 
differentiation depending on the operator in question. To be more precise, 
we say that a point z0 lies in the final set S(L,f) of /with respect to the 
operator L when every neighborhood of z0 contains zeros of infinitely 
many iterates of L. The following theorem demonstrates this point [91]. 

THEOREM. Let f(z) be a real entire function of order one, normal type X, 
satisfying \f(x)\ ^ 1 for x e (— 00, 00). Let L = cp(D), with D = (d/dz) 
and (p(w) is a Laguerre-Pólya function satisfying <p(0) = 0. Then the final 
set off with respect to the operator L is either a discrete set on the real 
axis or the whole axis depending on whether the number ß, ß = arg(^(//l)/ 
<p( — //I)), is or is not a rational multiple of %. 

This result generalizes previous special cases [11], [64], [65]. The reader 
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should also note that Pólya's conjectures change when differentiation is 
replaced by more general differential operators. 

7. The real domain; the case of derivatives and operators. Wide use in 
various places has been made of regularly monotonie, absolutely mono-
tonic, completely monotonie and completely convex functions. These are 
functions for which each derivative is of fixed sign on[a,b]9f

(k)(x) ^ 0, 
(— l)kf<k)(x) ^ 0, and ( - l)kf2k)(x) ^ 0, respectively. Various characteri
zations by Bernstein and Widder of these functions and their properties 
are well known and can be found in Boas' survey [8] and in two of Wid-
der's books [84], [85]. All of these notions have been generalized to 
differential operators of various types. Generalized absolutely monotonie 
functions (denoted G.A.M. functions) have been characterized by Karlin 
and Zeigler [41] and Amir and Zeigler [2]. The author will define G.A.M. 
functions later. Dzrbasjan and Saakjan [21, Theorem 1.1] have studied 
the notion of <p>-absolutely monotonie functions which are defined by 
the non-negativity of the iterates of a fractional derivative of order I/p. 
They generalize a theorem of S. N. Bernstein (see Widder [84], p. 144-47) 
by showing that <p>-absolutely monotonie functions can be expressed in 
a generalized Taylor-Maclaurin series in powers of XVP. In addition, they 
partially generalize this result to the case of polynomial operators in DVP, 
D = (d/dx), relative to the sequence {Àk} of the roots of a polynomial 
(Theorems 4.4 and 4.5). They give further results in [22]. A comprehensive 
study of the fractional derivative as an operator can be found in the 
paper of Gaer and Rubel [29]. 

Generalized completely monotonie functions (G.C.M.) have been char
acterized by Studden [79] for weighted iterates of differential operators. 
Specifically, let {^(0}ëo be an infinite sequence of functions such that 
Wi(t) > 0 for / e [0, oo), W{{t) e O [ 0 , oo), and Dtf = {dldt)[f{t)IW{{t)l 
i = 0, 1, 2 , . . . . A function <j>(t) on [0, oo) is called a generalized com
pletely monotonie function on [0, oo) with respect to W{(t) if <f> e 
0 ( 0 , oo), <f> ^ 0 and ( - 1)*+1 A A - i • • • Z>0 ^ è 0 for all f e (0, oo), n = 
0, 1, 2, . . . . Generalized absolutely monotonie functions (G.A.M.) are 
defined similarly, except that the multiplier (-1)M + 1 before the iterated 
operators is absent. Studden characterized G.C.M. functions in terms of 
an integral representation which generalizes the classical integral repre
sentation of completely monotonie functions due to Bernstein. 

A representation for generalized completely convex functions that 
extends results of Widder [84] have recently been extended to a rather 
wide class of operators by Amir and Ziegler [3]. 

Using the methods of total positivity, they consider self adjoint dif
ferential operators of the form 

(a) (Mu)(x) = ( - !)«(£>£ - - • D*.1D1^l . . . D0u)(x) where Diu = (d/dx) 
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.[u/W;(x)], Dfu = (duldx)/Wt(x), and the {Wfa)} are positive functions 
with Wi being of class Cn~* on [0, 1]. Attach to (a) separable boundary 
conditions of the form 

/>!*••• />*.!/>_! • • • D0U(0) + ( - l)»ClW(0) = 0, 

(b) Df--- DUDn_x • • • D0u(0) + ( - 1)»+1C2AM0) = 0, 

DU • • • D0u(0) + ( - l)2»-iC„Z)„_2 • • • D0u(0) = 0 

and 

Df ... DU A - i . . . AMI) + (-iNi«(i) = o, 

A*-iA-i • • • AMO + ( - 1 ) 2 * - 1 ^ ^ • • • AMI) = o 
where 0 ^ Ck ^ dk, 0 < dk < co. 

For Amir and Ziegler, a function ^ is said to be a generalized completely 
convex function with respect to the operator M and the boundary condi
tions (b) if Mk(p ^ 0 for all k and <p satisfies (b). They prove that such a 
function (p has a uniformly convergent Taylor-Lidstone expansion. They 
are also able to handle non self-adjoint operators with regular boundary 
conditions and non regular separable boundary conditions. 

Various specializations lead to the results of Buckholtz and Shaw [15], 
Pethe and Sharma [48] and Leeming and Sharma [43]. These results are a 
consequence of Amir's and Ziegler's investigation of a generalized Taylor-
Lidstone series with respect to a linear operator L defined on a linear 
space E having m dimensional kernel and associated linear functional 
Bh . . . Bm on E. They generalize complete convexity in terms of convex 
cones and extreme rays and obtain representation theorems generalizing 
the classical Lidstone series. Related results can be found in [6]. 

Boas and Pólya [10] generalized classical results of Bernstein and Widder 
in their study of the influence of the sign changes of derivatives of func
tions on their analytic character. Sharma and Tzimbalario [76] generalized 
their results in their study of the influence of the sign changes of a sequence 
of linear differential operators on the analytic character of a function. 
To do so, they generalize the results of Kloosterman [42] and prove the 
following theorem. 

THEOREM. Let {^JILi be an infinite sequence of real numbers and let 
{nk}°°> {̂ yfe}£i be two sequences of positive integers, with {nk} strictly increas
ing. Let Ln(D)= UU(D - TJ)> H = 1, 2, . . . ; L0(D) = I. Let f(x) be a 
real valued function e C°°[— 1, 1] and assume that Lnk(D)f Lnk+2qk(D)f do 
not change sign in[-l, 1] with Lnk(D)fLnk+2qk(D)f ^ 0, k = 1, 2, . . . and 
* e [ - l , 1]. 
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(I) Ifnk— nk_i = 0(1), qk — 0(1), andyk = 0(1), then f(x) is the restric
tion to[— 1,1] of an entire function of growth not exceeding order one and 
finite type. 

(II) Ifnk - «*__! = o(n§
k), qk = o(nd

k), 0 < 8 < 1, E)=rfy = <>(nk) and if 
\fk\ ^ A 4- 7] log(k)for all k for some positive constants A andrj < (1 — <?)/2, 
then f(x) is the restriction to [—1, 1] of an entire function of finite order 
not exceeding 1/(1 — (8 + 2TJ)). 

(III) / / nk - nk_x = o(nk), qk = o(nk\ £*=i #/ = ^O*) ^ Ï / \yk\ = 
ö(log fc), thenf(x) is the restriction to [— 1, 1] Ö/OH entire function. 

In the process of proving this theorem, Sharma and Tzimbalario prove 
an extension to linear differential operators I T 7 = I ( ^ " ^ * ) J h r e a ^ of the 
Landau-Kolmogorov inequalities for a finite interval. Sharp Landau-
Kolmogorov inequalities for such operators on the infinite intervals 
(—00, oo) and [0, oo) have been given by Karlin [40]. 

Pólya and Wiener [63] and Szego [80] investigated the analytic character 
of periodic functions as a function of the sign changes of derivatives of 
large order within a period. In a little known paper, V. E. Kacnelson 
[38] has investigated almost periodic functions in the simplest case as 
suggested by Pólya and Wiener. Due to the lack of easy access to the 
results of this paper we give an account of them. 

As suggested by Pólya and Wiener, Kacnelson replaces the notion of 
the number of sign changes within a period by the density of the sign 
changes on the real axis. Iff is uniformly almost periodic and is of class 
C°°( —oo, oo), let 7jk(a, ß) be the number of sign changes of f(k)(x) in 
(a, ß). Denote the upper sign density of f(k)(x) by the expression Nk = 
lim sup nk( — t, t)/2t as t -> oo. If this limit exists, we denote it by A^ and 
call it the sign change density. Let / be an almost periodic function, with 
[ — <?, 3] being the smallest interval containing the spectrum of f(0 ^ ô ^ 
oo). We say that/belongs to the class [3], if 8 < oo and + 5 and —8 both 
belong to the spectrum of / . The zeros of functions in the class [8] are 
discussed in Levin's book [44, Chapter 6]. Kacnelson proves the following 
results. 

THEOREM. Letf be an infinitely differentiate real valued almost periodic 
function in the sense of Bohr [13]. Let [ — 8, 8] be the smallest segment 
containing the spectrum off Let Nk be defined as above. Then lim Nk = 
S/7C as k -> oo. 

Iff has bounded spectrum, a necessary and sufficient condition that there 
exists an m such that Nk = 8\%for k ^ mis that f belongs to the class [8]. 
In this case Nk = Nk for k = m. 

Kacnelson constructs an example of a function/of class [3] having an 
absolutely convergent Fourier series which fails to have a sign change 
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density N0, although by the result stated above, from some k on, there 
exists densities Nk. 

Pólya [50, p. 188] remarked that one can generalize the results of Pólya 
and Wiener [63] to Fourier integrals by looking at the density of the sign 
changes of/(n)(jc)in( — oo, oo). A result in this direction has recently been 
done for entire characteristic functions. 

THEOREM. Let 

f(x) = f °° e^(t)dt, 
J — oo 

where (p(t) ^ 0 is a real valued function that is absolutely continuous on 
( -oo , oo), satisfying $Z*> </>(t)dt = 1, J ^ \tk(p(t)\dt < oo for every k = 1, 
2, . . . and <J)( — t) = (p(t). Let Nk be the upper sign change density off(k)(x) 
in (—oo, oo). Then 

A) Assume that </> is nonincreasing in (0, oo) and that there exists a z > 0 
such that (]j{t) is strictly decreasing in [M — z, M] and c^{M) ^ 0. If 
\imNk = lim Nk = M\% as k -> oo, then 

f(x) = j^'*W)*-
Conversely, iff(x) = j5 M eixt(J)(t)dt, where cJjeL^-M, M], cjj(-t) = $(t), 
(J)(M) T̂  0, and the convex hull of support [cjj\ is[ — M, M], then lim Nk = 
lim Nk = M/TÜ as k -+ co. 

B) Assume that cjj satisfies the hypotheses of the theorem. Furthermore, 
for the infinitely many values of s for which 

(JK.t)/(J)(s) g exp(^ - tP), 0 g t < s (p > p > 1), 

and (Jj(t) ^ <Jj(s), t ^ s, hold, assume that there exists a z > 0, independent 
of s, such that c]j(t) is strictly decreasing in [s— z, s]. Then Nk = 0(kln?+l)), 
for p > Ì, implies that fis the restriction to the real axis of an entire func
tion of finite order ^ p/(p — 1). 

C) Assume that cj) satisfies the hypotheses of the theorem. Furthermore, 
for the infinitely many values of s for which 

(J)(t)l<J)(s) <; exp(0(s - t)), 0 <; t < s (da constant), 

and (/>(t)/(/>(s) ^ 1, t^ s hold, assume that there exists a z > 0, independent 
of s, such that <fi(t) is strictly decreasing in [s — z, s]. Then Nk = o(k1/2). 
implies that fis the restriction to the real axis of an entire function. 

It is known that the result in B) is not best possible, whereas in C) it 
is not known. 

As mentioned by Pólya [50, p. 188], a generalization in another direc
tion of the results of Pólya and Wiener [63] was done by Hille [37], who 
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studies the problem in the context of characteristic series of boundary 
value problems. We briefly describe his work. The reader should examine 
the original paper for details. He considers a general second order dif
ferential operator L such that Ly = Po(x)y" + P\{x)y' + P2(x)y9 with 
analytic coefficients. Let (a, b) be a finite or infinite interval and associate 
to L a boundary value problem (L -f ju)u = 0 with appropriate boundary 
conditions B.C. (u, a, b) = 0. Assume that there exists an infinite number 
of eigenvalues {jun} with associated eigenfunctions {un(x)}, normalized in 
weighted mean square. Consider the characteristic series 

/(*) = E^xMx), 
where Z!^=i \fn$l\ < °° f° r every m = 0, 1, 2, . . . . Computation shows 
that 

The Pólya and Wiener problem in this setting is to determine the relation
ship between the oscillations of the transforms Lmf(x) in (a, b) and the 
analytic character of/(x). For admissible functions f(x) (see [37] for the 
somewhat lengthy definition), Hille proves the following results. 

THEOREM. Iff(x) is admissible and lim inf Nk = N, as k -» oo, where Nk 

is the number of sign changes ofLkf(x) in (a, b), then there exists an integer 
M = M(N) such that f{x) = E f e / A ( 4 

In the case of eigenvalues of multiplicity one, M(N) is the largest integer 
such that un(x) has at most N sign changes in (a, b). In the case of double 
eigenvalues M(N) can exceed this number by at most one unit. 

Extensions of the other results of Pólya and Wiener in this setting have 
recently been done where Nk is allowed to grow as a function of k. The 
following results hold [70]. 

THEOREM. Let f(x) be admissible and satisfy 

lim sup \fH\ exp(r $*) = oo 
» - • ° o 

for some T > 0. Let {Cw)^=1 be a sequence such that km = Cmp?m is an 
integer for each m, and for all m sufficiently large, 

Cm/Xm ^ 1, {[lm+l - ßJlßm ^ 1, 

0 < fi2 - Ml < /*3 - i"2 < • • • > 

Cmißm - Mm-l) ^ T ( 3 + 2 r ) , CmJU2
m ^ 2(ß + <î) /Wl/(>2 ~ /*i), 

mjU^1 e x p [ ( ^ m - fim-Ùb - CmiVm ~ ßm-OP\ ~+ ° 

as m -^ co, where ß and ô are appropriately chosen constants. Then for 
infinitely many m, Nkm ^ m. 
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THEOREM. Let f(x) = L ^ I / A ( X ) be admissible with the eigenfunctions 
un(z) analytic in a region Q containing (a, b). Suppose that 

lim sup \fn\ exp(r/#2) < oo 

for every r > 0. Then this eigenfunction expansion converges uniformly on 
compact subsets of Q. Thus f(x) is analytically continuable into Q. 

Various other results are also given. 

8. Some open questions. 
1. What form do Pólya's conjectures A, B, C take for operators more 

general than differentiation? 
2. Can the results of Schaeffer [73] be generalized to operators using 

the methods of Sharma and Tzimbalario [76]? 
3. Edrei and MacLane [26] have shown that if AT is a compact set on 

the Riemann sphere such that oo e K, then there exists an entire function 
/ o f any order p, 0 ^ p ^ oo, whose final set with respect to differentiation 
is K. Does something similar hold for other differential operators? 

3. Let L = <p(zd/dz), where <p(w) is a real entire function of genus one 
having negative real zeros. L e t / b e a transcendental real entire function 
of genus one having real zeros. It is well known that (Lf)(z) = ç(zd/dz)f(z) 
has only real zeros (see Pólya [58], ObreschkofT [47], Craven and Csordas 
[17] and Marden [45]). Under what conditions is the final set o f /wi th 
respect to L the real axis? 

5. If F(z) and w(z) are Laguerre-Pólya, F(z) = exp( — 7*iz2)F1(z), w(z) = 
exp( — 7*2Z2)w1(z) where yl9 y2 = 0» a n d Fiy wx are real entire functions of 
genus one having only real zeros, then a theorem of Pólya [51] (see also 
Levin [44, Chapter 9]) gives that F(D)w(z) is a Laguerre Pólya function 
provided 0 < y^Ti < 4_1. Under what conditions is the final set of F 
with respect to L = F(D), D = d/dz, the real axis? 
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